Math 300, Fall 2019

Homework 2

Due Tuesday Oct. 1, 2019
(1) Write the following statements in symbolic language, determine if the statement is true or false (with proof) and negate:
(a) Every integer of the form $4 y+2$, for some $y \in \mathbb{Z}$, is even.
(b) There is a positive integer that is prime, divides 6 and divides 9 .
(c) There is a positive integer that is both prime and irrational.
(2) Write the following statements in symbolic language, determine if the statement is true or false (with proof) and negate:
(a) If a and b are integers with a greater than or equal to 2 then a cannot divide both b and $b+1$.
(b) For every positive real number y, there is a unique real number x such that $y=2^{x}$.
(3) Prove that $P \Longrightarrow Q$ and $\neg Q \Longrightarrow \neg P$ are logically equivalent but that $P \Longrightarrow Q$ and $Q \Longrightarrow P$ are not logically equivalent.
(4) Prove that $\neg(P \wedge Q)$ and $(P \wedge \neg Q) \vee \neg P$ are logically equivalent.
(5) Prove that $P \Longleftrightarrow Q$ is logically equivalent to $(P \Longrightarrow Q) \wedge(Q \Longrightarrow P)$.
(6) Prove by contradiction that there is no integer k such that $4 k+3=m^{2}$ for some $m \in \mathbb{Z}$.

Hint: Use the fact that $4 k+3$ is odd.
(7) Prove by contradiction that if $a, b \in \mathbb{Z}$ then $a^{2}-4 b \neq 2$.
(8) Prove by contradiction that for $a, b \in \mathbb{Z}$, if $a b^{2}$ is even, then a is even or b is even.

