640:300 WORKSHOP 9 EQUIVALENCE RELATIONS AND EQUIVALENCE CLASSES

(1) Define a relation ' \backsim ' on \mathbb{R} by

$$
x \backsim y \quad \Longleftrightarrow \quad x=y \text { or } x y=1
$$

for all $x, y \in \mathbb{R}$.
(i) Show that \backsim is an equivalence relation.
(ii) Find the equivalence classes of (a) 5 ; (b) $-2 / 5$; (c) 0 .
(2) Let X be the set of all cities in the US. Define a relation \sim on X by
$x \sim y \Longleftrightarrow x$ and y lie in the same state
for all $x, y \in X$. (We assume that each city in the US lies in a unique state.)
(i) Show that \sim is an equivalence relation
(ii) Find the partition of X under \sim.
(3) Find the intersection $X \cap Y$, where X is the equivalence class of 1 under congruence modulo 2 and Y is the equivalence class of 2 under congruence modulo 3.

