640:300 WORKSHOP 9 EQUIVALENCE RELATIONS AND EQUIVALENCE CLASSES

(1) Define a relation ' \backsim ' on \mathbb{R} by

 $x \sim y \iff x = y \text{ or } xy = 1$

for all $x, y \in \mathbb{R}$.

(i) Show that \sim is an equivalence relation.

(ii) Find the equivalence classes of (a) 5; (b) -2/5; (c) 0.

(2) Let X be the set of all cities in the US. Define a relation \sim on X by

 $x \sim y \iff x$ and y lie in the same state

for all $x, y \in X$. (We assume that each city in the US lies in a unique state.)

(i) Show that \sim is an equivalence relation

(ii) Find the partition of X under \sim .

(3) Find the intersection $X \cap Y$, where X is the equivalence class of 1 under congruence modulo 2 and Y is the equivalence class of 2 under congruence modulo 3.