640:300 WORKSHOP 4 PRIME AND COMPOSITE NUMBERS

A natural number p > 1 is called *prime* if p has no positive divisors other than 1 and p. A number $n \in \mathbb{Z}_{>1}$ is called *composite* if there exist $1 \leq k \leq n$ and $1 \leq \ell \leq n$ such that $n = k\ell$.

(A) Let $n \in \mathbb{Z}_{>1}$. Prove that if $2^n - 1$ is prime then n is prime.

(*Hint*. Prove by contradiction: let $x, n \in \mathbb{Z}_{>0}$ and let $1 \leq k \leq n, 1 \leq \ell \leq n$ with $n = k\ell$. Then $x^n - 1$ is composite:

$$x^{n} - 1 = (x^{\ell} - 1)(x^{\ell(k-1)} + x^{\ell(k-2)} + \dots x^{\ell} + 1).)$$

(B) Let $a, n \in \mathbb{Z}_{>1}$. Prove that if $a^n - 1$ is prime then a = 2, and so n is prime by (A).

(*Hint*. Prove by contradiction, and again use the factorization for $x^n - 1$.)