640:300 WORKSHOP 4 PRIME AND COMPOSITE NUMBERS

A natural number $p>1$ is called prime if p has no positive divisors other than 1 and p. A number $n \in \mathbb{Z}_{>1}$ is called composite if there exist $1 \lessgtr k \not n \mathfrak{n}$ and $1 \leftrightarrows \ell \lessgtr n$ such that $n=k \ell$.
(A) Let $\mathrm{n} \in \mathbb{Z}_{>1}$. Prove that if $2^{n}-1$ is prime then n is prime.
(Hint. Prove by contradiction: let $x, n \in \mathbb{Z}_{>0}$ and let $1 \lesseqgtr k \lessgtr n, 1 \lessgtr \ell \leq n$ with $n=k \ell$. Then $x^{n}-1$ is composite:

$$
\left.x^{n}-1=\left(x^{\ell}-1\right)\left(x^{\ell(k-1)}+x^{\ell(k-2)}+\ldots x^{\ell}+1\right) .\right)
$$

(B) Let $a, n \in \mathbb{Z}_{>1}$. Prove that if $a^{n}-1$ is prime then $a=2$, and so n is prime by (A).
(Hint. Prove by contradiction, and again use the factorization for $x^{n}-1$.)

