640:300 WORKSHOP 3 QUANTIFIERS AND NEGATIONS

Write in symbolic language and negate each statement. Determine if each statement is true or false by giving a proof or counterexample. You can use the symbols $\mathbb{Z}, \mathbb{Z}_{>2}, \mathbb{N}, \mathbb{P}$, etc.
(1) There is an integer greater than two that is not a sum of two primes.
(2) There is a prime that is one more than a multiple of 4 and is also a sum of two squares.
(3) For any natural number n, there is a natural number s that is the product of n with itself.
(4) There is a natural number s such that for any natural number n, s is the product of n with itself.

In case you have some spare time, what do you think about the following "variation" of (1):
"There is an even integer greater than two that is not a sum of two primes." ?

