## 640:300 WORKSHOP 2 <br> ODD AND EVEN INTEGERS

We follow Euclid's definitions of even numbers (The Elements: Book VII: Def. 6) and odd numbers (The Elements: Book VII: Def. 7):

An even number is that which is divisible into two equal parts.
Let $\mathbb{E}$ denote the set of even integers. We may write

$$
\mathbb{E}=\{x \in \mathbb{Z} \mid(\exists y \in \mathbb{Z})(x=2 y)\}
$$

Then

$$
\mathbb{E}=\{\cdots-6,-4,-2,0,2,4,6 \ldots\}
$$

An odd number is that which is not divisible into two equal parts. Let $\mathbb{O}$ denote the set of odd integers. Then

$$
\mathbb{O}=\mathbb{Z}-\mathbb{E}=\{x \in \mathbb{Z} \mid x \notin \mathbb{E}\}
$$

and

$$
\mathbb{O}=\{\cdots-5,-3,-1,1,3,5 \ldots\} .
$$

Prove the following theorem.
Theorem Let $\mathbb{O}^{\prime}=\{z \in \mathbb{Z} \mid(\exists y \in \mathbb{Z})(z=2 y+1)\}$. Then $\mathbb{O}^{\prime} \subseteq \mathbb{O}$.
Recall that to prove $\mathbb{O}^{\prime} \subseteq \mathbb{O}$ we must prove that $x \in \mathbb{O}^{\prime} \Longrightarrow x \in \mathbb{O}$.
Hint: Use proof by contradiction.

