Note: This problem set concentrates on material from the end of the course. For a complete review, you should also study the review problem sets for the two in-class exams. Please consider these earlier problem sets as implicitly included with this one. Particular topics that should be reviewed from earlier sets include: (i) Solving systems of linear equations, row operations, elementary matrices; (ii) The LU decomposition of a matrix; (iii) Inverses of matrices; (iv) Subspaces, finding bases for Col A, Row A, and Null A; (v) Determinants and characteristic polynomial of a matrix.

1. Let **u** and **v** be vectors in \mathbb{R}^n .

- (a) State the Cauchy–Schwarz inequality and the triangle inequality for \mathbf{u} and \mathbf{v} .
- (b) Prove the triangle inequality from the Cauchy–Schwarz inequality by calculating $\|\mathbf{u} + \mathbf{v}\|^2$.

2. Suppose that $\mathbf{u} = \begin{bmatrix} 1\\3\\2 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} -2\\1\\-3 \end{bmatrix}$, and that \mathbf{w} is a vector in \mathbb{R}^3 with $\|\mathbf{w}\| = 5$ and $\mathbf{w} \cdot \mathbf{u} = 13$.

- (a) Compute $\|\mathbf{u}\|$, $\|\mathbf{v}\|$, $\mathbf{u} \cdot \mathbf{v}$, and $\|\mathbf{u} + \mathbf{v}\|$.
- (b) Show that the Cauchy-Schwarz and triangle inequalities are satisfied by \mathbf{u} and \mathbf{v} .
- (c) Compute $(\mathbf{u} + 2\mathbf{w}) \cdot (\mathbf{u} \mathbf{w})$.

3. Let V be the subspace of \mathbb{R}^3 spanned by the vector $\mathbf{v} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$. Let $\mathbf{x} = \begin{bmatrix} 1\\0\\-1 \end{bmatrix}$.

(a) Find the vector \mathbf{y} that is the orthogonal projection of \mathbf{x} onto V. Then calculate $\mathbf{z} = \mathbf{x} - \mathbf{y}$ and check that $\mathbf{z} \perp V$.

(b) Find a basis for V^{\perp} (the subspace of vectors orthogonal to V). (*Hint:* This is the null space of a 1×3 matrix.)

(c) Use part (b) and Gram-Schmidt to obtain an orthonormal basis $\{\mathbf{q}_1, \mathbf{q}_2\}$ for V^{\perp} .

(d) Let \mathbf{z} be the vector from (a). Then $\mathbf{z} \in V^{\perp}$, so $\mathbf{z} = c_1\mathbf{q}_1 + c_2\mathbf{q}_2$ for suitable coefficients c_1 , \mathbf{c}_2 . Give the general formula for these coefficients in terms of inner products, and use the formula to calculate the coefficients for this particular \mathbf{z} . Then check that $\mathbf{z} = c_1\mathbf{q}_1 + c_2\mathbf{q}_2$.

4. Let
$$A = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$
.

(a) Give the dimensions of Row A, Col A, and Null A.

(b) Find orthonormal bases for Row A, Col A, and Null A. *Hint:* One of these requires no calculation, one requires a small calculation, and one requires Gram-Schmidt.

5. Find a 3 × 3 orthogonal matrix Q with first column $\frac{1}{\sqrt{6}}\begin{bmatrix} 1\\ -2\\ 1 \end{bmatrix}$.

Hint: There are some easy choices for columns 2 and 3.

6. True or false (four separate cases–justify your answer in each case). If a 4×4 matrix A satisfies the following condition, it is diagonalizable:

- T F (a) the eigenvalues of A are 0, 1, 2, 3.
- T F (b) the characteristic polynomial of A is $\lambda^2(\lambda 1)(\lambda 2)$;
- T F (c) the eigenvalues of A are 0, 1, and 2, and A has rank 2;
- T F (d) the eigenvalues of A are 0 and 2, and A is symmetric;

7. (a) Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 7 & 0 & 0 \\ 0 & 4 & 2 \\ 0 & 1 & 3 \end{bmatrix}$.

(b) Find an invertible matrix P and diagonal matrix D such that $A = PDP^{-1}$.

8. A certain 3×3 matrix A has eigenvalues $\lambda_1 = 2$, $\lambda_2 = 1$, and $\lambda_3 = -1$, and corresponding eigenvectors $\mathbf{v}_1 = \begin{bmatrix} 1\\ 1\\ -1 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 0\\ 1\\ 1 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}$.

(a) Use the formula $A = PDP^{-1}$ (for suitable P and D) to find A.

(b) Let $\mathbf{x} = \begin{bmatrix} 5\\4\\5 \end{bmatrix}$. Use (a) to find coefficients c_1, c_2, c_3 so that $\mathbf{x} = c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3$. Then compute $A^n\mathbf{x}$

from this formula for **x** for arbitrary n > 0. What is a good approximation to $A^n \mathbf{x}$ for n large?

9. Suppose that A is a symmetric $n \times n$ matrix and that the vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ satisfy $A\mathbf{x} = 2\mathbf{x}$ and $A\mathbf{y} = 3\mathbf{y}$. Show that \mathbf{x} and \mathbf{y} are orthogonal.

10. Let
$$A = \begin{bmatrix} 1 & 3 & 2 \\ 3 & 9 & 6 \\ 2 & 6 & 4 \end{bmatrix}$$
.

(a) Find a vector $\mathbf{v} \in \mathbb{R}^3$ such that $A = \mathbf{v}\mathbf{v}^T$. Show that \mathbf{v} is an eigenvector for A and find the eigenvalue.

(b) Calculate the nullity of A and find a basis for the zero eigenspace of A. Check that $\mathbf{v} \perp \text{Null}(A)$ and explain why you know this without explicit calculation.

- (c) Use (a) and (b) to find an orthonormal set of eigenvectors of A which form a basis for \mathbb{R}^3 .
- (d) Find an orthogonal matrix Q and a diagonal matrix D such that such that $A = QDQ^{T}$.

11. Classify each statement as true (T) or false (F). If your answer if T, give a brief proof showing that the statement is *always* true; if your answer is F, give a specific example for which the statement is not true.

- T F (a) The null space of a matrix A is the orthogonal complement of the column space of A.
- T F (b) Every orthogonal matrix has null space $\{0\}$.
- T F (c) If P and Q are orthogonal matrices then $P^T Q$ is an orthogonal matrix.
- T F (d) If A is an $n \times n$ matrix and 0 is an eigenvalue of A then $\operatorname{Col} A \neq \mathbb{R}^n$.
- T F (e) If Q is an orthogonal matrix then $Q = Q^{-1}$.
- T F (f) If A is an $n \times n$ matrix then eigenvectors for distinct eigenvalues of A are orthogonal.

12. Suppose that W is a subspace of \mathbb{R}^n of dimension k and that $\{\mathbf{w}_1, \ldots, \mathbf{w}_k, \mathbf{w}_{k+1}, \ldots, \mathbf{w}_n\}$ is an orthonormal basis for \mathbb{R}^n such that $\{\mathbf{w}_1, \ldots, \mathbf{w}_k\}$ is a basis for W.

(a) Any vector $\mathbf{u} \in \mathbb{R}^n$ has an expansion $\mathbf{u} = c_1 \mathbf{w}_1 + \cdots + c_n \mathbf{w}_n$. Give a simple formula for the coefficients c_j in terms of inner products.

(b) We know that any $\mathbf{u} \in \mathbb{R}^n$ can be written uniquely as $\mathbf{u} = \mathbf{w} + \mathbf{z}$, with $\mathbf{w} \in W$ and $\mathbf{z} \in W^{\perp}$. Explain why $\mathbf{w} = c_1 \mathbf{w}_1 + \cdots + c_k \mathbf{w}_k$.

(c) Let C be the $n \times k$ matrix with columns $\mathbf{w}_1, \ldots, \mathbf{w}_k$. Then $W = \operatorname{Col}(C)$. Show that $C^T C = I_k$. Then using your answers to (a) and (b), show that P_W , the orthogonal projection matrix onto W, is given by $P_W = CC^T$. (Recall that, in the notation of (b), $\mathbf{w} = P_W \mathbf{u}$.)

(d) Derive the result in (d) from the general formula for P_W in terms of C.

13. Consider the data points (-3, 9), (-1, 7), (0, 5), (4, 1) in the (x, y) plane.

(a) The method of least squares for a straight line fit to this data minimizes a certain quantity. What is that quantity in this case? Give the answer explicitly; define any variables used.

(b) We obtain a solution by solving the normal equations $C^T C \mathbf{u} = C^T \mathbf{y}$. What is C for the data above? What is \mathbf{y} ? What is \mathbf{u} ?

(c) Find the equation of the straight line which best fits this data.

14. Do the True-False questions from Sections 6.1 through 6.6 that are listed in the homework assignments.