Note: This problem set concentrates on material from the end of the course. For a complete review, you should also study the review problem sets for the two in-class exams. Please consider these earlier problem sets as implicitly included with this one. Particular topics that should be reviewed from earlier sets include: (i) Solving systems of linear equations, row operations, elementary matrices; (ii) The LU decomposition of a matrix; (iii) Inverses of matrices; (iv) Subspaces, finding bases for $\operatorname{Col} A$, Row A, and Null A; (v) Determinants and characteristic polynomial of a matrix.

1. Let \mathbf{u} and \mathbf{v} be vectors in \mathbb{R}^{n}.
(a) State the Cauchy-Schwarz inequality and the triangle inequality for \mathbf{u} and \mathbf{v}.
(b) Prove the triangle inequality from the Cauchy-Schwarz inequality by calculating $\|\mathbf{u}+\mathbf{v}\|^{2}$.
2. Suppose that $\mathbf{u}=\left[\begin{array}{l}1 \\ 3 \\ 2\end{array}\right], \mathbf{v}=\left[\begin{array}{r}-2 \\ 1 \\ -3\end{array}\right]$, and that \mathbf{w} is a vector in \mathbb{R}^{3} with $\|\mathbf{w}\|=5$ and $\mathbf{w} \cdot \mathbf{u}=13$.
(a) Compute $\|\mathbf{u}\|,\|\mathbf{v}\|, \mathbf{u} \cdot \mathbf{v}$, and $\|\mathbf{u}+\mathbf{v}\|$.
(b) Show that the Cauchy-Schwarz and triangle inequalities are satisfied by \mathbf{u} and \mathbf{v}.
(c) Compute $(\mathbf{u}+2 \mathbf{w}) \cdot(\mathbf{u}-\mathbf{w})$.
3. Let V be the subspace of \mathbb{R}^{3} spanned by the vector $\mathbf{v}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$. Let $\mathbf{x}=\left[\begin{array}{r}1 \\ 0 \\ -1\end{array}\right]$.
(a) Find the vector \mathbf{y} that is the orthogonal projection of \mathbf{x} onto V. Then calculate $\mathbf{z}=\mathbf{x}-\mathbf{y}$ and check that $\mathbf{z} \perp V$.
(b) Find a basis for V^{\perp} (the subspace of vectors orthogonal to V). (Hint: This is the null space of a 1×3 matrix.)
(c) Use part (b) and Gram-Schmidt to obtain an orthonormal basis $\left\{\mathbf{q}_{1}, \mathbf{q}_{2}\right\}$ for V^{\perp}.
(d) Let \mathbf{z} be the vector from (a). Then $\mathbf{z} \in V^{\perp}$, so $\mathbf{z}=c_{1} \mathbf{q}_{1}+c_{2} \mathbf{q}_{2}$ for suitable coefficients c_{1}, \mathbf{c}_{2}. Give the general formula for these coefficients in terms of inner products, and use the formula to calculate the coefficients for this particular \mathbf{z}. Then check that $\mathbf{z}=c_{1} \mathbf{q}_{1}+c_{2} \mathbf{q}_{2}$.
4. Let $A=\left[\begin{array}{lllll}1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1\end{array}\right]$.
(a) Give the dimensions of Row $A, \operatorname{Col} A$, and $\operatorname{Null} A$.
(b) Find orthonormal bases for Row $A, \operatorname{Col} A$, and $\operatorname{Null} A$. Hint: One of these requires no calculation, one requires a small calculation, and one requires Gram-Schmidt.
5. Find a 3×3 orthogonal matrix Q with first column $\frac{1}{\sqrt{6}}\left[\begin{array}{r}1 \\ -2 \\ 1\end{array}\right]$.

Hint: There are some easy choices for columns 2 and 3.
6. True or false (four separate cases-justify your answer in each case). If a 4×4 matrix A satisfies the following condition, it is diagonalizable:
T F (a) the eigenvalues of A are $0,1,2,3$.
$\mathrm{T} \quad \mathrm{F} \quad(\mathrm{b})$ the characteristic polynomial of A is $\lambda^{2}(\lambda-1)(\lambda-2)$;
T F (c) the eigenvalues of A are 0,1 , and 2, and A has rank 2;
T F (d) the eigenvalues of A are 0 and 2 , and A is symmetric;
7. (a) Find the eigenvalues and eigenvectors of the matrix $A=\left[\begin{array}{lll}7 & 0 & 0 \\ 0 & 4 & 2 \\ 0 & 1 & 3\end{array}\right]$.
(b) Find an invertible matrix P and diagonal matrix D such that $A=P D P^{-1}$.
8. A certain 3×3 matrix A has eigenvalues $\lambda_{1}=2, \lambda_{2}=1$, and $\lambda_{3}=-1$, and corresponding eigenvectors $\mathbf{v}_{1}=\left[\begin{array}{r}1 \\ 1 \\ -1\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$.
(a) Use the formula $A=P D P^{-1}$ (for suitable P and D) to find A.
(b) Let $\mathbf{x}=\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right]$. Use (a) to find coefficients c_{1}, c_{2}, c_{3} so that $\mathbf{x}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}$. Then compute $A^{n} \mathbf{x}$ from this formula for \mathbf{x} for arbitrary $n>0$. What is a good approximation to $A^{n} \mathbf{x}$ for n large?
9. Suppose that A is a symmetric $n \times n$ matrix and that the vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ satisfy $A \mathbf{x}=2 \mathbf{x}$ and $A \mathbf{y}=3 \mathbf{y}$. Show that \mathbf{x} and \mathbf{y} are orthogonal.
10. Let $A=\left[\begin{array}{lll}1 & 3 & 2 \\ 3 & 9 & 6 \\ 2 & 6 & 4\end{array}\right]$.
(a) Find a vector $\mathbf{v} \in \mathbb{R}^{3}$ such that $A=\mathbf{v} \mathbf{v}^{T}$. Show that \mathbf{v} is an eigenvector for A and find the eigenvalue.
(b) Calculate the nullity of A and find a basis for the zero eigenspace of A. Check that $\mathbf{v} \perp \operatorname{Null}(A)$ and explain why you know this without explicit calculation.
(c) Use (a) and (b) to find an orthonormal set of eigenvectors of A which form a basis for \mathbb{R}^{3}.
(d) Find an orthogonal matrix Q and a diagonal matrix D such that such that $A=Q D Q^{T}$.
11. Classify each statement as true (T) or false (F). If your answer if T, give a brief proof showing that the statement is always true; if your answer is F, give a specific example for which the statement is not true.
T F (a) The null space of a matrix A is the orthogonal complement of the column space of A.
T F (b) Every orthogonal matrix has null space $\{\mathbf{0}\}$.
T $\quad \mathrm{F} \quad$ (c) If P and Q are orthogonal matrices then $P^{T} Q$ is an orthogonal matrix.
T $\quad \mathrm{F} \quad$ (d) If A is an $n \times n$ matrix and 0 is an eigenvalue of A then $\operatorname{Col} A \neq \mathbb{R}^{n}$.
$\mathrm{T} \quad \mathrm{F} \quad$ (e) If Q is an orthogonal matrix then $Q=Q^{-1}$.
T $\quad \mathrm{F} \quad$ (f) If A is an $n \times n$ matrix then eigenvectors for distinct eigenvalues of A are orthogonal.
12. Suppose that W is a subspace of \mathbb{R}^{n} of dimension k and that $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{k}, \mathbf{w}_{k+1}, \ldots, \mathbf{w}_{n}\right\}$ is an orthonormal basis for \mathbb{R}^{n} such that $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{k}\right\}$ is a basis for W.
(a) Any vector $\mathbf{u} \in \mathbb{R}^{n}$ has an expansion $\mathbf{u}=c_{1} \mathbf{w}_{1}+\cdots+c_{n} \mathbf{w}_{n}$. Give a simple formula for the coefficients c_{j} in terms of inner products.
(b) We know that any $\mathbf{u} \in \mathbb{R}^{n}$ can be written uniquely as $\mathbf{u}=\mathbf{w}+\mathbf{z}$, with $\mathbf{w} \in W$ and $\mathbf{z} \in W^{\perp}$. Explain why $\mathbf{w}=c_{1} \mathbf{w}_{1}+\cdots+c_{k} \mathbf{w}_{k}$.
(c) Let C be the $n \times k$ matrix with columns $\mathbf{w}_{1}, \ldots, \mathbf{w}_{k}$. Then $W=\operatorname{Col}(C)$. Show that $C^{T} C=I_{k}$. Then using your answers to (a) and (b), show that P_{W}, the orthogonal projection matrix onto W, is given by $P_{W}=C C^{T}$. (Recall that, in the notation of (b), w $=P_{W} \mathbf{u}$.)
(d) Derive the result in (d) from the general formula for P_{W} in terms of C.
13. Consider the data points $(-3,9),(-1,7),(0,5),(4,1)$ in the (x, y) plane..
(a) The method of least squares for a straight line fit to this data minimizes a certain quantity. What is that quantity in this case? Give the answer explicitly; define any variables used.
(b) We obtain a solution by solving the normal equations $C^{T} C \mathbf{u}=C^{T} \mathbf{y}$. What is C for the data above? What is \mathbf{y} ? What is \mathbf{u} ?
(c) Find the equation of the straight line which best fits this data.
14. Do the True-False questions from Sections 6.1 through 6.6 that are listed in the homework assignments.

