1. (a) What does it mean to say that a set $S=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ of vectors in \mathbb{R}^{n} is linearly independent? Give the precise definition in one or more full sentences. Then describe what this means in terms of the matrix A with columns $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$.
(b) Do the three vectors $\mathbf{u}_{1}=\left[\begin{array}{r}1 \\ 3 \\ -2\end{array}\right], \quad \mathbf{u}_{2}=\left[\begin{array}{r}3 \\ 5 \\ -3\end{array}\right], \quad$ and $\mathbf{u}_{3}=\left[\begin{array}{r}1 \\ -1 \\ 2\end{array}\right]$ make up a linearly independent set? Justify your answer using the matrix A as in (a).
2. (a) What is meant by the span of a set $S=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ of vectors in \mathbb{R}^{n} ? Give the precise definition in one or more full sentences. Then describe what this means in terms of the matrix A with columns $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$.
(b) Suppose that $\mathbf{u}_{1}=\left[\begin{array}{r}1 \\ 3 \\ -2\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{r}3 \\ 5 \\ -3\end{array}\right]$, and $\mathbf{u}_{3}=\left[\begin{array}{r}1 \\ -1 \\ 2\end{array}\right]$. Is the span of the set of vectors $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ all \mathbb{R}^{3} ? Justify your answer using the matrix A as in (a).
3. Answer questions 1 and 2 when \mathbf{u}_{3} is changed to $\mathbf{u}_{3}=\left[\begin{array}{r}1 \\ -1 \\ 1\end{array}\right]$.
4. In (a)-(c) below we suppose that we have a system of equations $A \mathbf{x}=\mathbf{b}$ and that we have used row operations to transform the augmented matrix $[A \mathbf{b}]$ to the reduced row-echelon form [$R \mathbf{c}$] given below. In each case, determine (i) whether the original equations have a solution; (ii) if they do have a solution, whether or not it is unique; and (iii) if it is not unique, how many free parameters there are in the solution. Then write the solution explicitly as a fixed vector plus a linear combination of vectors \mathbf{y} that satisfy $A \mathbf{y}=0$ with the free variables as coefficients.
(a) $[R \quad \mathbf{c}]=\left[\begin{array}{rrrrrr}1 & 5 & 0 & 2 & 8 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$
(b) $\left[R \quad \begin{array}{ll}\mathbf{c}\end{array}\right]=\left[\begin{array}{rrrrr}1 & 0 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 3 \\ 0 & 0 & 0 & 1 & 4\end{array}\right]$
(c) $\quad\left[\begin{array}{ll}R & \mathbf{c}\end{array}\right]=\left[\begin{array}{rrrrrrr}0 & 1 & 2 & 0 & -2 & 0 & 2 \\ 0 & 0 & 0 & 1 & 3 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
5. In each part below, give a $m \times n$ matrix R in reduced row-echelon form satisfying the given condition, or explain briefly why it is impossible to do so.
(a) $m=3, n=4$, and the equation $R \mathbf{x}=\mathbf{c}$ has a solution for all \mathbf{c}.
(b) $m=3, n=4$, and the equation $R \mathbf{x}=\mathbf{0}$ has a unique solution.
(c) $m=4, n=3$, and the equation $R \mathbf{x}=\mathbf{c}$ has a solution for all \mathbf{c}.
(d) $m=4, n=3$, and the equation $R \mathbf{x}=\mathbf{0}$ has a unique solution.
(e) $m=4, n=4$, and the equation $R \mathbf{x}=\mathbf{0}$ has no solution.
(f) $m=4, n=4$, and the equation $R \mathbf{x}=\mathbf{0}$ has a nontrivial solution.
(g) $m=4, n=4$, and for every \mathbf{c} the equations $R \mathbf{x}=\mathbf{c}$ have a solution containing a free parameter.
6. (a) Suppose that \mathbf{u} and \mathbf{v} are solutions of the system of equations $A \mathbf{x}=\mathbf{0}$. Show that $c \mathbf{u}+d \mathbf{v}$ is also a solution, for any scalars c and d.
(b) Why does the above conclusion not hold (in general) if the system of equations is $A \mathbf{x}=\mathbf{b}$ with b a nonzero vector?
7. Suppose that

$$
A=\left[\begin{array}{rr}
1 & 3 \\
-1 & 2
\end{array}\right], \quad B=\left[\begin{array}{rrr}
3 & 2 & -1 \\
-1 & 2 & 0
\end{array}\right], \quad C=\left[\begin{array}{rr}
-2 & 3 \\
3 & -3 \\
4 & 1
\end{array}\right] .
$$

Which of the following quantities are defined? Calculate those that are defined.
(a) $B A$
(b) $A B$
(c) $3 C-2 B^{T}$
(d) $B C$
(e) $C A B$
(f) $C+2 A$
(g) $C^{T} C$.
8. Let A be an $m \times n$ matrix of rank r. What can you conclude about m, n, and r (other than $r \leq m$ and $r \leq n$ which is always true) if the equation $A \mathbf{x}=\mathbf{b}$ has
(a) exactly one solution for some \mathbf{b} and no solution for other \mathbf{b} ?
(b) infinitely many solutions for all \mathbf{b} ?
(c) exactly one solution for every \mathbf{b} ?
(d) infinitely many solutions for some \mathbf{b} and no solutions for other \mathbf{b} ?
(e) exactly one solution when $\mathbf{b}=\mathbf{0}$?
9. (a) Suppose that A and B are 4×5 matrices and that B is obtained from A by the row operation given below. In each case give an elementary matrix E such that $B=E A$.
(i) $\mathbf{r}_{1} \leftrightarrow \mathbf{r}_{4}$,
(ii) $\mathbf{r}_{3}+3 \mathbf{r}_{2} \rightarrow \mathbf{r}_{3}$,
(iii) $7 \mathbf{r}_{2} \rightarrow \mathbf{r}_{2}$.
(b) Give the inverses of the elementary matrices found in (i), (ii), and (iii) above. (You can do this without calculation; think about reversing the corresponding row operations.)
10. A certain 3×3 matrix $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3}\end{array}\right]$ has reduced row echelon form $R=\left[\begin{array}{rrr}1 & 0 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 0\end{array}\right]$.
(a) Find a nontrivial linear relation on the columns of A, that is, a relation $c_{1} \mathbf{a}_{1}+c_{2} \mathbf{a}_{2}+c_{3} \mathbf{a}_{3}=\mathbf{0}$ with c_{1}, c_{2}, and c_{3} not all zero.
(b) Suppose that $\mathbf{a}_{1}=\left[\begin{array}{l}0 \\ 4 \\ 5\end{array}\right]$ and $\mathbf{a}_{2}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$. Find \mathbf{a}_{3}.
11. (a) Suppose that A is a square matrix. What does it mean to say that A is invertible? (Give the definition, not one of the many equivalent conditions in Theorem 2.6 of the text.)
(b) Suppose that A and B are invertible $n \times n$ matrices. Show that $(A B)^{-1}=B^{-1} A^{-1}$.
(c) Suppose that A is an invertible $n \times n$ matrix. Show that $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$.
12. Use row reduction to show that the matrix $\left[\begin{array}{rrr}0 & 2 & -1 \\ 1 & -1 & 2 \\ 2 & -1 & 3\end{array}\right]$ is invertible and to find its inverse.
13. Do the True-False questions from Sections 1.1-1.4, 1.6, 1.7, 2.1, 2.3, and 2.4 that are listed in the homework assignments.

