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Setup

D C R", a bounded convex domain.
Q:=R"+iD, a pseudoconvex tube domain in C".

Kq : Q x Q — C, the Bergman kernel of Q.

€D, o
X Kp(x) := Kal(ix, ix).
M >0, DM = {x € D : Kp(x) < M}.
@ equi-affine invariant;
@ strongly convex;
@ exhaust D as M — oo.

Fact: For strongly convex D,
I(D\ DM
T L CAT o / K(x) 71 dSeuc(x) = 0air(OD).
M=o00 M1 aD
0. Blaschke affine surface area measure.

Q. Does the LHS limit exist for all convex domains?




The Convex Floating Body

D C R" is a convex body.

Ds := intersection of all the halfspaces whose defining hyperplanes cut off a set
of volume ¢ from D.

@ equi-affine invariant.
e strictly convex (but not necessarily C*-smooth);
@ exhaust D as § — 0.
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The Convex Floating Body

Extended affine surface area:

Theorem (Schiitt-Werner)
Let D C R" be a convex body. If D is strongly convex, then

lim bnm = / K(X) 7T dSguc(x) = T4t (OD)
oD

5—0 §m

for some b, > 0. The limit on the LHS always exists.

‘Lower’-dimensional affine surface area:

Theorem (Schiitt)

Let P C R" be a convex polytope with non-empty interior. Then,

lim ¢ vol(P\ Ps)

I gt~ °(0P)

for some ¢, > 0, where o is a measure supported on the vertices of P.
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Main Result

For a strongly convex domain D @ R”, {DM} /-0 and {D;s}s~0 yield the same
boundary measure.

Theorem (G.)

Let D C R" be a bounded convex domain. There are dimensional constants
£, >0 and u, > 0 such that

for small enough § > 0. Or,

for large enough M > 0.

2n 2
n'n“"(w . .
= g and u, = # wp = volume of the unit ball in R”.
T




An Example

(o 1)

D={(x,y) €ER?: x>0,y >0,x+y <1}

(0,0) (1,0

1 St(s — t) —2xs—2yt
== ds dt.
Ko(boy)) = 2 /R sA—e ) —tll—e )" °

Ds = {(X,y) € R? : min (Xy,(l —x—y)y,(1 fxfy)x> > 6/2}.

M
ASM—)OO,DﬁHJ(ﬁ)gD QDQWWJFO(ﬁ).




Proof of the Theorem - Step 1

For v € S"1,
H, := hyperplane perpendicular to v that cuts off volume § from D.
D], := slice of D of volume ¢ cut off by H,.

e £ C.x. R" origin-symmetric. Nazarov and

E, mj’/w Blaschke-Santalé:

nlw? 1
K < L .
-, ! fiv e(0) = " vol(E)?

e £, := min. vol. ellipsoid D D|,.
¢, := center of E,.

John: E‘, =c, + %(E\, —¢,) CD|,.

nlw? 1 n!n?ne? 1 nlm?ne? 1
Kp(c,) < Kz (c) < —0 = — n n_.
plev) = Kg (o) = ™ vol(E,)? w"  wvol(E,)? — w2

The image of v — ¢, ‘surrounds’ Ds. So, Ds C Dund 2




Proof of the Theorem - Step 2

Fixav e S"1and x € H,ND. WLOG, let x be the origin and H, = {z, = 0}.

1

e Lempert, Blocki: Kp(x) > ol ())’ %%_
fy
Ino(x) :={¢'(0) : ¢ € O(D; Q), $(0) = ix}.
° %IQ(X)Q C+iC, D

C = the largest origin-symmetric convex body contained in D.
e vol(C) < 20 = volen(In(x)) < (2)*" 462,

Every x € 9D; is in some H, N D. So, Dy D D% ",




On the constants

o /, and u, are unlikely to be optimal.
@ For the triangle, better constants than ¢, = 6—14 and u, = 16.

o Affine invariant constants:

— limi . /82 C .

lp I|gn_l(r)1f (sup{€ >0:D C D(;}),

up = limsup (inf{u >0:D5C D“/‘Sz}).
6—0

o D strongly convex = {p = up(= 5+, when n = 2).

{p = up = D is strongly convex?

. 1 1

o D triangle or parallelogram = {p = ;7 and up = 3.
Same value for all planar polygons?




THANK YOU.




