Sub-level sets of the Bergman kernel on tube domains

Purvi Gupta University of Western Ontario, London, Canada

January 8, 2016

Setup

 $D \subset \mathbb{R}^n$, a bounded convex domain.

$$\Omega := \mathbb{R}^n + iD$$
, a pseudoconvex tube domain in \mathbb{C}^n .

 $K_{\Omega}: \Omega \times \Omega \to \mathbb{C}$, the Bergman kernel of Ω .

$$x \in D$$
,

$$K_D(x) := K_{\Omega}(ix, ix).$$

$$M > 0$$
,

$$D^M := \{ x \in D : K_D(x) < M \}.$$

- equi-affine invariant;
- strongly convex;
- exhaust D as $M \to \infty$.

Fact: For strongly convex D,

$$\lim_{M\to\infty} a_n \frac{\operatorname{vol}(D\setminus D^M)}{M^{\frac{-1}{n+1}}} = \int_{\partial D} \kappa(x)^{\frac{1}{n+1}} dS_{\operatorname{Euc}}(x) = \ \sigma_{\operatorname{aff}}(\partial D).$$

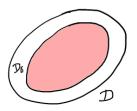
 $\sigma_{\rm aff} \colon$ Blaschke affine surface area measure.

Q. Does the LHS limit exist for all convex domains?

The Convex Floating Body

 $D \subset \mathbb{R}^n$ is a convex body.

 $D_{\delta}:=$ intersection of all the halfspaces whose defining hyperplanes cut off a set of volume δ from D.



- equi-affine invariant.
- strictly convex (but not necessarily C^1 -smooth);
- exhaust D as $\delta \to 0$.

The Convex Floating Body

Extended affine surface area:

Theorem (Schütt-Werner)

Let $D \subset \mathbb{R}^n$ be a convex body. If D is strongly convex, then

$$\lim_{\delta \to 0} b_n \frac{\operatorname{vol}(D \setminus D_\delta)}{\delta^{\frac{2}{n+1}}} = \int_{\partial D} \kappa(x)^{\frac{1}{n+1}} dS_{\operatorname{Euc}}(x) = \sigma_{\operatorname{aff}}(\partial D)$$

for some $b_n > 0$. The limit on the LHS always exists.

'Lower'-dimensional affine surface area:

Theorem (Schütt)

Let $P \subset \mathbb{R}^n$ be a convex polytope with non-empty interior. Then,

$$\lim_{\delta \to 0} c_n \frac{\operatorname{vol}(P \setminus P_\delta)}{\delta |\ln \delta|^{n-1}} = \sigma(\partial P)$$

for some $c_n > 0$, where σ is a measure supported on the vertices of P.

Main Result

For a strongly convex domain $D \in \mathbb{R}^n$, $\{D^M\}_{M>0}$ and $\{D_\delta\}_{\delta>0}$ yield the same boundary measure.

Theorem (G.)

Let $D \subset \mathbb{R}^n$ be a bounded convex domain. There are dimensional constants $\ell_n > 0$ and $u_n > 0$ such that

$$D^{\frac{\ell_n}{\delta^2}}\subseteq D_\delta\subseteq D^{\frac{u_n}{\delta^2}}.$$

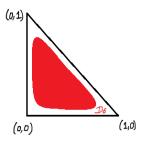
for small enough $\delta > 0$. Or,

$$D_{\sqrt{\frac{u_n}{M}}} \subseteq D^M \subseteq D_{\sqrt{\frac{\ell_n}{M}}}.$$

for large enough M > 0.

$$\ell_n = \frac{1}{4^{n+1}}$$
 and $u_n = \frac{n! n^{2n} (\omega_n)^2}{\pi^n}$, $\omega_n = \text{volume of the unit ball in } \mathbb{R}^n$.

An Example



$$D = \{(x,y) \in \mathbb{R}^2 : x > 0, y > 0, x + y < 1\}.$$

$$K_Dig((x,y)ig) = rac{1}{\pi^2} \int_{\mathbb{R}^2} rac{st(s-t)}{s(1-e^{-2t}) - t(1-e^{-2s})} e^{-2xs-2yt} \ ds \ dt.$$

$$D_{\delta} = \Big\{ (x,y) \in \mathbb{R}^2 : \min\Big(xy, (1-x-y)y, (1-x-y)x\Big) > \delta/2 \Big\}.$$

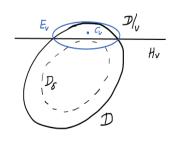
As
$$M \to \infty$$
, $D_{\frac{1}{4\sqrt{M}} + o(\frac{1}{\sqrt{M}})} \subseteq D^M \subseteq D_{\frac{1}{2\pi\sqrt{M}} + o(\frac{1}{\sqrt{M}})}$.

Proof of the Theorem - Step 1

For $v \in S^{n-1}$,

 ${\it H}_{\it v}$:= hyperplane perpendicular to $\it v$ that cuts off volume $\it \delta$ from $\it D$.

$$D|_{\nu} := \text{ slice of } D \text{ of volume } \delta \text{ cut off by } H_{\nu}.$$



• $E \subset_{cvx.} \mathbb{R}^n$ origin-symmetric. Nazarov and Blaschke-Santaló:

$$K_E(0) \leq \frac{n!\omega_n^2}{\pi^n} \frac{1}{\operatorname{vol}(E)^2}.$$

• $E_v := \min$. vol. ellipsoid $\supseteq D|_v$. $c_v := \text{center of } E_v$. John: $\widetilde{E}_v := c_v + \frac{1}{2}(E_v - c_v) \subseteq D|_v$.

$$\mathcal{K}_D(c_v) \leq \mathcal{K}_{\widetilde{E}_v}(c_v) \leq \frac{n!\omega_n^2}{\pi^n} \frac{1}{\mathsf{vol}(\widetilde{E}_v)^2} = \frac{n!n^{2n}\omega_n^2}{\pi^n} \frac{1}{\mathsf{vol}(E_v)^2} \leq \frac{n!n^{2n}\omega_n^2}{\pi^n} \frac{1}{\delta^2}.$$

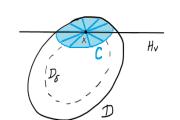
. The image of $v\mapsto c_v$ 'surrounds' $D_\delta.$ So, $D_\delta\subseteq D^{u_n\delta^{-2}}$

Proof of the Theorem - Step 2

Fix a $v \in S^{n-1}$ and $x \in H_v \cap D$. WLOG, let x be the origin and $H_v = \{z_n = 0\}$.

• Lempert, Błocki: $K_D(x) \geq \frac{1}{\operatorname{vol}_{\mathbb{C}^n}(\mathrm{I}_\Omega(x))}$,

$$I_{\Omega}(x) := \{\phi'(0) : \phi \in \mathcal{O}(\mathbb{D}; \Omega), \phi(0) = ix\}.$$



•
$$\frac{1}{2}I_{\Omega}(x) \subseteq C + iC$$
,

C = the largest origin-symmetric convex body contained in D.

• $\operatorname{vol}(C) \leq 2\delta \Rightarrow \operatorname{vol}_{\mathbb{C}^n}(\mathrm{I}_\Omega(x)) \leq (2)^{2n} 4\delta^2$.

Every $x \in \partial D_{\delta}$ is in some $H_{\nu} \cap D$. So, $D_{\delta} \supseteq D^{\ell_n \delta^{-2}}$.

On the constants

- ℓ_n and u_n are unlikely to be optimal.
- For the triangle, better constants than $\ell_2 = \frac{1}{64}$ and $u_2 = 16$.
- Affine invariant constants:

$$\begin{array}{ll} \ell_D & := & \liminf_{\delta \to 0} \Big(\sup\{\ell > 0 : D^{\ell/\delta^2} \subseteq D_\delta \} \Big); \\ u_D & := & \limsup_{\delta \to 0} \Big(\inf\{u > 0 : D_\delta \subseteq D^{u/\delta^2} \} \Big). \end{array}$$

- D strongly convex $\Rightarrow \ell_D = u_D (= \frac{4}{9\pi^2}, \text{ when } n = 2).$ $\ell_D = u_D \Rightarrow D$ is strongly convex?
- D triangle or parallelogram $\Rightarrow \ell_D = \frac{1}{4\pi^2}$ and $u_D = \frac{1}{16}$. Same value for all planar polygons?

