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We establish a characterization for an m-manifold M to admit n functions f1, . . . , fn and
n′ functions g1, . . . , gn′ in C∞(M) so that every element of Ck(M) can be approximated
by rational combinations of f1, . . . , fn and polynomial combinations of g1, . . . , gn′ . As
an application, we show that the optimal value of n and n′ for all manifolds of dimension
m is ⌊ 3m

2 ⌋, when k ≥ 1 and m ≥ 2.
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1. Introduction

Let M be a C∞-smooth compact manifold without boundary. We say that Ck(M),
the space of k-times continuously differentiable C-valued functions on M , has n-
rational density if there is a tuple F = (f1, . . . , fn) of n functions in C∞(M) such
that the set

{R ◦ F : R is a rational function on Cn with no poles on F (M)}

is dense in Ck(M) in the Ck-norm on M . If F exists, we call {f1, . . . , fn} an RD-basis
of Ck(M). If F can be chosen so that

{P ◦ F : P is a holomorphic polynomial on Cn}

is Ck-dense in Ck(M), then we say that Ck(M) has n-polynomial density and
call {f1, . . . , fn} a PD-basis of Ck(M). It is a simple consequence of the Stone–
Weierstrass theorem that the space of continuous functions on a circle has 1-rational
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density and 2-polynomial density. This paper is motivated by the following two-
dimensional analogue of this fact, the first part of which follows from [9] and the
second is proved in [19].

The space of continuous functions on any smooth compact surface has
3-polynomial density, and with the exception of the 2-sphere and the projective plane,
has 2-rational density.

For topological reasons, the space of continuous functions on any surface cannot
have 2-polynomial density. We ask whether similar statements can be made for
Ck-spaces on compact manifolds of higher dimensions. To this end, we first obtain
the following characterization.

Theorem 1.1. Let k, m, n ∈ N, and M be a compact C∞-smooth m-dimensional
manifold.

(1) For n > m, Ck(M) has n-polynomial density if and only if it has n-rational
density. These conditions are both equivalent to the embeddability of M as a
C∞-smooth totally real submanifold of Cn.

(2) Ck(M) has m-rational density if and only if M admits a C∞-smooth Lagrangian
embedding into (Cm,ωst).

The first part of Theorem 1.1 essentially follows from a result due to Løw and
Wold in [14] that relies on techniques developed by Forstnerič and Rosay in [9] and
Forstnerič in [7]. In Sec. 5, we present a topological approach to the equivalence
of n-rational density and totally-real embeddability that circumvents the issue of
polynomial density.

Theorem 1.1 allows us to invoke results from the literature to obtain the follow-
ing generalization of the above-mentioned bounds for surfaces.

Corollary 1.1. Let M be as in Theorem 1.1 and 0 ≤ ℓ ≤ k. Then

(1) No Cℓ(M), ℓ ≥ 0, has (m − 1)-rational density or m-polynomial density.
(2) There is an n with m ≤ n ≤ ⌊ 3m

2 ⌋, such that every Cℓ(M) has n-rational density
and n′-polynomial density, where n′ = max{n, m+1}. Furthermore, there is an
m-dimensional M such that no Cℓ(M), ℓ ≥ 1, has

(
⌊ 3m

2 ⌋− 1
)
-rational density.

Although the bounds obtained above are optimal in m, they can be improved for
particular m-dimensional manifolds. For instance, any m-fold whose complexified
tangent bundle is trivializable admits totally real embeddings into Cm+1, and can
always achieve (m + 1)-polynomial density. A similar argument (see [12, Theorem
4.1]) shows that the Ck-spaces of all orientable manifolds of dimension 4t+2, t > 0,
have (6t + 2)-polynomial density, which is an improvement over Corollary 1.1.

We must also note that the optimality of the upper bound ⌊ 3m
2 ⌋ in Corollary

1.1 has been stated for ℓ ≥ 1, as it is possible that the optimal bound for C0-spaces
is lower. This is because we do not have a characterization similar to Theorem 1.1
for n-rational (or polynomial) density of C0(M). For example, if M denotes the
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double torus, C0(M) has 2-rational density (by [19]), but since χ(M) is nonzero,
it does not admit a totally real embedding into C2 (see [22]). For an example in
the subcritical case (n > m), see Proposition 6.1, where we show that if M is
the product of two nonorientable surfaces of Euler characteristic −3, then C0(M)
has 5-polynomial density, but M does not admit a totally real embedding into C5.
We can say, however, that the optimal bounds for rational density and polynomial
density of C0(M) cannot be too far apart due to the following observation.

Corollary 1.2. Let M be as in Theorem 1.1 and 0 ≤ ℓ ≤ k. Suppose {f1, . . . , fn}
is an RD-basis of Cℓ(M), then there is a C∞-smooth g : M → C such that
{f1, . . . , fn, g} is a PD-basis of Cℓ(M).

It will be clear from our proof of Theorem 1.1 that if F = (f1, . . . , fn) : M →
(Cn,ωst) is an isotropic embedding, then {f1, . . . , fn} is an RD-basis. The most
practical approach of finding a PD-basis is to seek such an isotropic embedding
and to append the g granted by the above corollary. For instance, the n-torus
Tn := {(z1, . . . , zn) : |z1| = · · · = |zn| = 1} is Lagrangian with respect to ωst. Thus,
{z1, . . . , zn} is an RD-basis of Ck(M), k ≥ 0. It is easy to check that {z1, . . . , zn, z1 ·
· · · · zn} forms a PD-basis of Ck(M).

The notion of density is intimately related to that of convexity. A subset X ⊂ Cn

is called rationally convex if for every z ∈ Cn\X , there is a principal algebraic
hypersurface that passes through z and completely avoids X . If, for each z ∈ Cn\X ,
there is a holomorphic polynomial P such that

|P (z)| > sup{|P (x)| : x ∈ X},

then X is called polynomially convex. When {f1, . . . , fn} is a PD(RD)-basis of
Ck(M), F = (f1, . . . , fn) maps M onto a polynomially (rationally) convex set in
Cn that is totally real when k ≥ 1. On the other hand, if F : M → Cn maps onto a
polynomially convex set, then, due to an Oka–Weil-type result, functions in O(M)
can be Ck-approximated by polynomial functions on M . If, furthermore, F is totally
real, i.e. f∗(TpM) ∩ if∗(TpM) = 0 for all p ∈ M , then O(M) is dense in Ck(M).
Thus, the question of n-polynomial density reduces to that of finding totally real
polynomially convex embeddings of M into Cn. But, when n > m, Løw and Wold
[14] show that seeking totally real embeddings is enough. This matter has been
covered extensively in the literature (see [9, 6, 12], for instance).

The second part of Theorem 1.1 is substantially different as the Løw–Wold
argument does not apply to this case (n = m). Here, our main tool is a result
due to Duval and Sibony (see [4]) which states that any totally real C∞-smooth
submanifold X ⊂ Cn is rationally convex if and only if it is isotropic in Cn for some
Kähler form ω — i.e. j∗ω = 0 on X , where j : X → Cn is the inclusion map.

The rest of this paper is organized as follows. In the next section, we collect some
technical lemmas. We present the proof of Theorem 1.1 in Sec. 3. The corollaries of
Theorem 1.1 are proved in Sec. 4. In Sec. 5, we discuss an h-principle that directly
relates rationally density to totally-real embeddability without any reference to
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polynomial convexity. In the final section, we summarize the extent of what is
known for manifolds of low dimensions, and pose some open questions.

2. Preliminaries

We will use the following notation in this paper:

• ⌊x⌋ denotes the floor function of x ∈ R.
• O(X) is the space of functions that are holomorphic in some open neighborhood

of a compact X ⊂ Cn.
• B(z; r) denotes the Euclidean ball of radius r > 0 centered at z ∈ Cn.
• ωst = dx1∧dy1+· · ·+dxn∧dyn, at any (z1, . . . , zn) = (x1+iy1, . . . , xn+iyn) ∈ Cn.
• R(X) is the closed subalgebra of C0(X) that consists of uniform limits of rational

functions with no poles on X , restricted to X ⊂ Cn.
• P (X) is the closed subalgebra of C0(X) that consists of uniform limits of poly-

nomial functions restricted to X ⊂ Cn.

When talking about Ck-smooth functions on a C∞-smooth manifold M , we keep
the following in mind.

Remark 2.1. Let U := {Uβ,φβ}β∈B be a finite atlas on M . The Ck-norm on M
(with respect to U) is defined as

∥f∥Ck(M),U =
∑

β∈B

∥f ◦ φ−1
β ∥Ck(φβ(Uβ)).

Different choices of U lead to different, but equivalent, norms on Ck(M). The defi-
nition of n-rational density is, therefore, independent of the choice of U . It follows
that if F : M → M ′ is a Ck-smooth diffeomorphism, then the Ck-convergence of a
sequence {hj}j∈N ⊂ Ck(M ′) to some h ∈ Ck(M ′) is equivalent to the Ck-convergence
of {hj ◦ F}j∈N to h ◦ F .

We now present a fact that is implicitly proved in [4].

Lemma 2.1. Let S be a Ck-smooth, k ≥ 1, totally real compact submanifold of Cn

that is rationally convex. Then, for any open neighborhood U of S, there is an open
neighborhood V ! U of S such that V is rationally convex.

Proof. Let S and U be as given. Since S is totally real, we can rely on [21, Theorem
6.1.6], to obtain (after shrinking U , if need be) a non-negative strictly plurisubhar-
monic function ρ : U → R such that ρ ∈ C∞(U\S)∩Ck+1(U) and ρ−1({0})∩U = S.
Next, we fix a neighborhood V ! U of S, and choose χ to be a smooth cut-off func-
tion such that

χ|V ≡ 1;

χ|Cn\U ≡ 0.

We also fix a closed origin-centered ball B ⊂ Cn containing U . Our goal is to invoke
the following consequence of [4, Theorem 2.1]: Let S be a rationally convex compact
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set in Cn. For every x /∈ S, there is a smooth positive closed (1, 1)-form that is
strictly positive at x and vanishes in a neighborhood of S.

In a remark following the above theorem, Duval and Sibony show that, in fact,
one can construct a smooth closed (1, 1)-form which is strictly positive on Cn\S,
vanishes on S and has a global potential that is C′|z|2, for some C′ > 0, outside a
ball containing S. In view of this, we let ωB be a closed (1, 1)-form that vanishes
on B, is strictly positive outside B and has a global potential that is C′|z|2 outside
a larger ball B′. For any z ∈ B\V , we can find a smooth positive closed (1, 1)-form
ωz that vanishes in some neighborhood Wz of S, is positive in some neighborhood
Nz of z and has a global potential that is C′|z|2 outside B′. We cover the compact
set B\V by finitely many such neighborhoods Nz1 , . . . , Nzk , and set

W := Wz1 ∩ · · · ∩ Wzk ∩ V.

Note that W is a neighborhood of S contained in V . Now, for sufficiently large
constants cj > 0,

ω̃ := ddc(χρ) + ωB +
k∑

j=1

cjωzj

is a Kähler form on Cn with ω̃
∣∣
W

= ddcρ, and potential C|z|2 outside B′, for some
C > 0.

Now, we can employ the following result of Nemirovski (see [15, Prop. 1]): Let φ
be a strictly plurisubharmonic function on an open subset U ⊂ Cn such that its Levi
form ddcφ extends to a positive d-closed (1, 1)-form on Cn. If the set Kφ = {z ∈
U |φ(z) ≤ 0} is compact, then it is rationally convex. We can choose c > 0 small
enough so that Sc := {z ∈ U : ρ(z) < c} ! W . Then, ω̃ is the required extension of
ddc(ρ− c), and Sc is the required neighborhood of S.

The next lemma is an application of Moser’s trick that allows us to change the
underlying Kähler form. This is a well-known technique, but we present the details
here for the sake of completeness.

Lemma 2.2. Let ω = ddcφ for some C∞-smooth strictly plurisubharmonic function
φ on Cn. If a manifold M admits a C∞-smooth isotropic embedding into (Cn,ω),
then it admits a C∞-smooth isotropic embedding into (Cn,ωst).

Proof. We abuse notation and let M be an isotropic submanifold of (Cn,ω). We
may further assume that for some C > 0, φ = C|z|2 + d outside a ball containing
M . To see this, consider positive integers r1 < r2 < r3 < r4 so that M ⊂ B(0; r1).
Let η : Cn → R be a C∞-smooth cutoff function such that

η(z) =

{
1 when |z| ≤ r3;

0 when |z| ≥ r4.

Next, we choose C, d > 0 so that
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• η(z)φ(z) + C|z|2 is strictly plurisubharmonic on Cn; and
• there is a nondecreasing, convex C∞-function θ : R → R such that

θ(x) =

{
0 when |x| ≤ r1;

x + d when |x| ≥ r2.

Then, relabeling φ to be the strictly plurisubharmonic function

z .→ η(z)φ(z) + θ(C|z|2),
we note that M is isotropic with respect to ω = ddcφ, since the above modification
leaves φ unchanged in B(0; r1).

Now, let φt = tC|z|2 + (1 − t)φ. Then, ωt := ddcφt = ddcφ + dβt, where
βt = dc(tφ1 − tφ). Note that βt ≡ 0 outside B(0; r4). Consider the smooth (in
z) compactly supported vector field Xt defined by

ιXtωt +
∂

∂t
βt = 0,

where ιXω denotes the contraction of ω with X . Xt is unique since each ωt is
nondegenerate (each φt is strictly plurisubharmonic). As Xt is compactly supported,
its flow Φt exists. Moreover,

∂

∂t
Φ∗

tωt = Φ∗
t

(
∂

∂t
ωt + LXtωt

)

= Φ∗
t

(
∂

∂t
dβt + ιXtdωt + dιXtωt

)

= Φ∗
t d

(
∂

∂t
βt + ιXtωt

)
= 0.

So, Φ1 : Cn → Cn is a C∞-diffeomorphism such that Φ∗
1(4Cωst) = ddcφ = ω. Thus,

Φ1(M) gives the required isotropic embedding of M into (Cn,ωst).

3. Proof of Theorem 1.1

Let us consider the case when n > m. We will first show that the embeddability
of M as a C∞-smooth totally real submanifold of M implies that Ck(M) has n-
polynomial density. As n-polynomial density trivially implies n-rational density, it
will then suffice to show that if Ck(M) has n-rational density, M admits a totally
real C∞-embedding into Cn.

Suppose M admits a C∞-embedding F : M → Cn so that F (M) is totally real.
Due to [14, Theorems 1 and 2], there is a C∞-smooth map G : M → Cn (C1-close to
F ) such that G(M) is totally real and polynomially convex in Cn. Set M ′ := G(M).

Next, we fix an f ∈ Ck(M ′) and choose an arbitrary ε > 0. Let ε̃ = Cε, where C
is a constant to be determined later. Since M ′ is totally real, a result due to Range
and Siu (see [18, Theorem 1]) grants the existence of a neighborhood U of M ′ and
a g ∈ O(U) such that

∥f − g∥Ck(M ′) < ε̃, (3.1)
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Due to the polynomial convexity of M ′, we can find a neighborhood V ! U of M ′,
such that V is polynomially convex. By the Oka–Weil approximation theorem for
polynomially convex sets, there is a polynomial function P on Cn such that

∥g − P∥C0(V ) < ε̃. (3.2)

Now, fix an x ∈ M ′. Since M ′ is compact, there is an r > 0 — independent of
x ∈ M ′ — such that B(x; r) ⊂ V . As g − P ∈ O(B(x, r)), we can combine Cauchy
estimates and (3.2) to obtain

|g(j)(x) − P (j)(x)| ≤ j!
rj

sup
y∈B(x;r)

|g(y) − P (y)|

≤ j!
rj

∥g − P∥C0(V ) ≤
j!
rj
ε̃, (3.3)

for any j ∈ N+. So, we obtain from (3.1) and (3.3) that

∥f − P∥Ck(M ′) ≤ ∥f − g∥Ck(M ′) + ∥g − P∥Ck(M ′)

= ∥f − g∥Ck(M ′) +
k∑

j=0

∥g(j) − P (j)∥C0(M ′)

< ε̃

⎛

⎝1 +
k∑

j=0

j!
rj

⎞

⎠ = Cε

⎛

⎝1 +
k∑

j=0

j!
rj

⎞

⎠.

Now, setting C =
(
1 +

∑k
j=0

j!
rj

)−1
, we obtain that

∥f − P∥Ck(M ′) < ε.

Since ε > 0 and f ∈ Ck(M ′) were chosen arbitrarily, and C is independent of ε, we
conclude that rational functions are dense in the space of Ck-smooth functions on
M ′ in the Ck-norm. In view of Remark 2.1, the n components of G form a PD-basis
(and RD-basis) of Ck(M).

We now complete the proof of the subcritical case of Theorem 1.1. Let M be
a C∞-smooth manifold such that Ck(M) has n-rational density, and {f1, . . . , fn} is
an RD-basis of Ck(M). We claim that F : M → Cn given by F = (f1, . . . , fn) is a
C∞-smooth totally real embedding of M into Cn.

Suppose F is not injective — i.e. there are two distinct points p1, p2 ∈ M such
that fj(p1) = fj(p2) for all j = 1, . . . , n. Then, for any function G : F (M) → C,
(G◦F )(p1) = (G◦F )(p2). Now, by the n-rational density of Ck(M), any g in Ck(M)
can be uniformly approximated on M by functions of the form R ◦ F , where R is
a rational function on Cn with no poles on F (M). Hence, g(p1) = g(p2) for any
g ∈ Ck(M). But this is a contradiction as Ck(M) separates points.

Next, we show that F is a local embedding at every point in M . For this, we
fix a p ∈ M , and choose a coordinate chart φ : U → φ(U) ⊂ Rm around p, with
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φ(p) = 0. If φ = (x1, . . . , xm), we write, in local coordinates,

Fxj (x) :=
(
∂f1

∂xj
(x), . . . ,

∂fn

∂xj
(x)
)

, j = 1, . . . , m.

Suppose rank(dF (0)) < m. Then, up to relabeling, there exist C-valued constants
α1, . . . ,αm−1 such that

α1Fx1(0) + · · · + αm−1Fxm−1(0) = Fxm(0).

Therefore, if R is a holomorphic map in some neighborhood of F (U), then
m−1∑

j=1

αj
∂(R ◦ F )
∂xj

(0) =
m−1∑

j=1

αj

(
n∑

k=1

∂R

∂zk
(F (0))

∂fk

∂xj
(0)

)

=
n∑

k=1

∂R

∂zk
(F (0))

⎛

⎝
m−1∑

j=1

αj
∂fk

∂xj
(0)

⎞

⎠

=
n∑

k=1

∂R

∂zk
(F (0))

∂fk

∂xm
(0) =

∂(R ◦ F )
∂xm

(0).

It follows that every function g in the set (and therefore, in the Ck-closure of the
set)

RF (M) := {R ◦ F : R is a rational function on Cn with no poles on F (M)}

has the property that

∂g

∂xm
(0) =

m−1∑

1

αj
∂g

∂xj
(0).

But, by our assumption, the Ck-closure of RF (M) is Ck(M), and one can easily
construct a Ck-smooth function g on M such that ∂g

∂xj
(0) = 0 for j = 1, . . . , m− 1,

but ∂g
∂xm

(0) ̸= 0. Thus, rank(dF (p)) = m for every p ∈ M , and F : M → Cn is a
Ck-smooth embedding.

It now remains to show that F (M) is a totally real submanifold of Cn. This is
done using the same technique as in the preceding paragraphs. Suppose p ∈ M is
such that TpF (M)∩iTpF (M) ̸= 0. Then, we can choose local coordinates x1, . . . , xm

around p such that

i
∂F

∂x1
(p) =

∂F

∂x2
(p).

This property is inherited by any function of the form R ◦ F : M → C, where
R ∈ O(F (M)), and, therefore, by any function that can be expressed as a C1-limit
of functions of this form. Hence, by our hypothesis on M , any Ck-smooth function
g on M satisfies

i
∂g

∂x1
(p) =

∂g

∂x2
(p).
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This is a contradiction as one can construct Ck-smooth functions on M with any
prescribed 1-jet at p. Thus, F (M) is a C∞-smooth totally real submanifold of Cn.

For the first part of the case n = m, we assume that Ck(M) has m-rational den-
sity (with RD-basis {f1, . . . , fm}) and repeat the argument above to conclude that
F (M) is a C∞-smooth totally real submanifold of Cm, where F = (f1, . . . , fm).
Moreover, F (M) is rationally convex. To see this, recall that any continuous
function on F (M) can be uniformly approximated by Ck-functions on F (M).
But, R(F (M)) = Ck(F (M)) (see the beginning of Sec. 2 for notation). Thus,
R(F (M)) = C0(F (M)). This is a sufficient condition for rational convexity. So,
F (M) is a totally real and rationally convex C∞-submanifold of Cn. By [4, Theo-
rem 3.1], F (M) is Lagrangian with respect to some smooth Kähler form ω = ddcφ.
An application of Lemma 2.2 shows that M admits a Lagrangian embedding into
(Cn,ωst).

Conversely, suppose M admits a C∞-Lagrangian embedding with respect to ωst.
By [4, Theorem 3.1], F (M) is rationally convex. We can now repeat the first portion
of our proof for the subcritical case to conclude that the components of F form an
RD-basis of Ck(M). We need two ingredients for this: the existence of arbitrarily
small rationally convex neighborhoods of F (M), and an Oka–Weil-type result for
rationally convex sets. The former is granted by Lemma 2.1, and the latter is a
standard result (see [21, p. 44], for instance). The proof of Theorem 1.1 is now
complete.

Remark 3.1. As any C∞-smooth embedding of M can be C1-approximated by
a real-analytic one, we can apply [14, Theorem 1] (and an analogous theorem for
rationally convex sets) to conclude that when k > 0, any PD-basis (or RD-basis)
of Ck(M) can be perturbed to obtain a real-analytic basis.

4. Proofs of the Corollaries

Proof of Corollary 1.1. (1) As seen in the previous section, (m − 1)-RD bases
and m-PD bases of Cℓ(M) (0 ≤ ℓ ≤ k) yield rationally and polynomially convex
embeddings of M into Cm−1 and Cm, respectively. This is topologically impossible
as no m-dimensional manifold can be rationally convex in Cm−1 (see [21, Corollary
2.3.10]) or polynomially convex in Cm (see [21, Corollary 2.3.5]).

(2) Owing to Forstnerič and Rosay [9], it is known that any m-dimensional
manifold admits a totally real embedding into Cn if n = ⌊ 3m

2 ⌋. When m ≥ 2,
m < ⌊ 3m

2 ⌋, so by Part 1 of Theorem 1.1, the claim follows. When m = 1, the only
compact manifold without boundary is the circle, for which the result is standard.

For the optimality of the bound, we consider the examples produced in [12]. Let
M4t := CP2 × · · ·×CP2 be the product of t copies of the complex projective plane.
Then, invoking [12, Theorem 2.1], we have that for any ℓ > 0,

Cℓ(M4t) does not have (6t − 1)-polynomial density;

Cℓ(M4t × S1) does not have 6t-polynomial density;
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Cℓ(M4t × RP2) does not have (6t + 2)-polynomial density;

Cℓ(M4t × RP2 × S1) does not have (6t + 3)-polynomial density.

For the next proof, we rely on the fact that compact rationally convex sets in
Cn can be realized as polynomially convex subsets of Cn+1.

Proof of Corollary 1.2. We first assume that {f1, . . . , fn} is an RD-basis of
C0(M). As noted previously, F : (f1, . . . , fn) maps M onto a rationally convex
subset M ′ of Cn such that R(M ′) = C0(M ′). By the proof of [21, Theorem 1.2.11]
(due to Rossi and Basener), there is a ψ ∈ C∞(M ′) such that the closed subalgebra
[P (M ′),ψ] generated by the polynomials and ψ on M ′ coincides with R(M ′). Thus,
if F̃ := (f1, . . . , fn, g) : M → Cn+1, where g := ψ ◦ F , P (F̃ (M)) = R(M ′) =
C0(M ′) = C0(M). But this is precisely what it means for {f1, . . . , fn, g} to be a
PD-basis of C0(M).

Now, suppose {f1, . . . , fn} is an RD-basis of Cℓ(M), where ℓ ≥ 1. Then, M ′ =
F (M) is a totally real and rationally convex submanifold of Cn (as argued in the
proof of Theorem 1.1). Again, we let ψ : M ′ → C denote a C∞-smooth function
such that the graph Γψ := {(x,ψ(x)) ∈ Cn+1 : x ∈ M ′} is polynomially convex.
We claim that Γψ is totally real. Let ιn : M ′ ↪→ Cn and ιn+1 : Γg ↪→ Cn+1

denote inclusions maps and Ψ : Cn → Cn+1 be defined as z .→ (z,ψ(z)). Note that
ιn+1 = Ψ ◦ ιn ◦ π on Γψ, where π : Γψ → M ′ is the projection map onto the first n
coordinates. Then,

ι∗n+1(dw1 ∧ · · · ∧ dwn) = (Ψ ◦ ιn ◦ π)∗(dw1 ∧ · · · ∧ dwn)

= π∗ι∗n(dz1 ∧ · · · ∧ dzn),

which is nonzero everywhere on Γψ as ι∗n(dz1 ∧ · · · ∧ dzn) is nonzero on M ′ (M ′

is totally real) and (π∗)p : TΨ(p)Γψ → TpM ′ is a C-linear isomorphism for every
p ∈ M ′. Thus, Γψ is a polynomially convex and totally real smooth subset of Cn+1.
In Sec. 3, we saw that this suffices to conclude that {f1, . . . , fn, g = ψ ◦ F} is a
PD-basis of Cℓ(M).

5. An h-Principle

In our proof of Part 1 of Theorem 1.1, we rely on a powerful result from [14] that
establishes the genericity of polynomially convex embeddings of M in Cn among
totally real ones. As rational convexity is weaker than polynomial convexity, one can
establish the equivalence of n-rational density and totally-real embeddability into
Cn using purely topological methods without appealing to the constructive meth-
ods in [14, 9, 7]. For this, we establish a link between the totally-real embeddability
and the isotropic embeddability of any m-dimensional manifold M into Cn. When
n = m, the Gromov–Lees theorem (see [2]) states that M admits a Lagrangian
immersion into (Cn,ωst) precisely when its complexified tangent bundle is trivi-
alizable. This is the same topological condition that completely characterizes the
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totally real immersability of M in Cn (see [8, Prop. 9.1.4]). It is, therefore, not
surprising that when n > m, the obstruction to the existence of totally real embed-
dings and to that of isotropic embeddings is one and the same. Although there is
some indication of this in the literature, due to the lack of a clear reference, we
provide a complete statement and proof of this fact.

Lemma 5.1. Let M be a Ck-smooth (k ≥ 1) compact manifold of real dimension m,
and m < n. Then, M admits a Ck-smooth totally real embedding in Cn if and only
if M embeds in (Cn,ωst) as a C∞-smooth isotropic submanifold via a Ck-embedding.

Proof. The main tool in this proof will be the h-principle for contact isotropic
immersions. For this purpose, we first transfer the problem to the C∞-smooth cate-
gory. Let τ : M → Cn be a Ck-smooth totally real embedding of M into Cn. Then,
by standard approximation results, there exists a Ck-diffeomorphism φ : Cn → Cn

so that φ(τ(M)) is a C∞-smooth (embedded) submanifold of Cn and φ is Ck-close
to the identity. Due to the latter property, φ can be chosen so that φ(τ(M)) contin-
ues to be a totally real submanifold of Cn. This is because the condition of being
totally real is an open one. We relabel M to denote φ(τ(M)) and note that M is
now a C∞-smooth totally real submanifold of (Cn,ωst).

Now, consider the contact manifold (Cn × R,αst), where

(αst)(z,t) = dt −
n∑

j=1

yjdxj ,

z = (x1 + iy1, . . . , xn + iyn) ∈ Cn and t ∈ R. Let ξst denote the corresponding
contact structure — i.e. the codimension one sub-bundle of the tangent bundle
T (Cn ×R) that has fiber (ξst)p = ker(αst)p at each p ∈ Cn ×R. We observe that if
π : Cn × R → Cn denotes the projection map, then

π∗(ωst) = dαst. (5.1)

Also, for each p ∈ Cn × R, there is an R-isomorphism Tπ(p)Cn ∼= (ξst)p given by

λp : exj .→ (exj , yj(p))

λp : eyj .→ (eyj , 0),

where {ex1 , ey1 , . . . , exn , eyn} is the standard basis of R2n, and yj(p) denotes the
yjth coordinate of p. As λp is smooth in p, it gives a (real) bundle morphism
λ : TCn → ξst covering the inclusion map j : Cn → Cn × R given by z .→ (z, 0).
Moreover,

λ∗(dαst) = ωst. (5.2)

We will use (5.1) and (5.2) to move between (Cn,ωst) and (Cn × R,αst).
Recall that an immersion f : N → Cn × R is called contact isotropic if df :

TN → ξst. Moreover,

f∗(dαst) = d(f∗αst) = 0.
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From (5.1), we have that

(π ◦ f)∗(ωst) = f∗(π∗(ωst)) = f∗(dαst) = 0.

Thus, π ◦ f : N → Cn is a symplectic isotropic immersion. In general, π ◦ f need
not be an immersion if f is merely an immersion, but here we have the additional
fact that (f∗)p(TpN) ∩ ker(π∗)p = 0 for every p ∈ N , since f∗(TN) ⊂ ker(αst) and
ker(αst) ∩ kerπ∗ = 0. To summarize,

every contact isotropic immersed manifold in (Cn × R,αst) projects to a

symplectic isotropic immersed manifold in (Cn,ωst). (5.3)

Now, suppose we have a sequence of maps

N
g−→ Cn j−→ Cn × R,

where j is the inclusion map defined above. A contact isotropic monomorphism
covering j◦g is a monomorphism F : TN → ξst covering j◦g such that F ∗(dαst) = 0.
On the other hand, a symplectic isotropic monomorphism G : TN → TCn covering
g is one that satisfies G∗(ωst) = 0. Combining this with (5.2), we have that

(λ ◦ G)∗(dαst) = G∗(λ∗(dαst)) = G∗(ωst) = 0.

Hence, we have that

every symplectic isotropic monomorphism G : TN → TCn covering g lifts

to a contact isotropic monomorphism λ ◦ G : TN → ξst covering j ◦ g .

(5.4)

Let us now state the relevant h-principle. Let Immisotr(M ; Cn×R,αst) be the space
of contact isotropic immersions of M into (Cn × R,αst), and Monisotr(TM ; ξst) be
the space of contact isotropic monomorphisms TM → ξst. Note that any element
g ∈ Immisotr(M ; Cn × R,αst) can be identified with dg ∈ Monisotr(TM ; ξst). Thus,
there is an inclusion map

Immisotr(M ; Cn × R,αst) ↪→ Monisotr(TM ; ξst). (5.5)

The h-principle in this context states that the inclusion (5.5) is, in fact, a homotopy
equivalence (see [3, Theorem 7.9]). So, M admits a contact isotropic immersion
into Cn × R if Monisotr(TM ; ξst) is nonempty. Due to the observation (5.3), the
nonemptiness of Monisotr(TM ; ξst) would imply that M admits a smooth symplectic
isotropic immersion into Cn.

We now produce an element in Monisotr(TM ; ξst). Let ι : M → Cn denote the
inclusion map. Then, dι : TM → TCn is a totally real monomorphism covering ι.
We complexify this map to obtain a complex-linear monomorphism dCι : CTM →
TCn in the following way:

dCι : (p, v ⊗ (a + ib)) .→
(
p, a dιp(v) + ib dιp(v)

)
.

Now, for any complex m-frame fp : Cm → CTpM , we obtain an injective C-linear
map dCιp ◦ fp : Cm → Tι(p)Cn = Cn. Thus, dι lifts to a map on the frame bundle
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associated to CTM :

ιF : FCM → Cn × Vn,m,

where Vn,m is the Stiefel manifold of all complex m-frames in Cn. By the Gram–
Schmidt orthogonalization process, Vn,m is the product of Un,m — the space of uni-
tary m-frames in Cn, and P — the space of upper-triangular matrices with positive
eigenvalues. As P is contractible, there is a smooth homotopy H : FCM × [0, 1] →
Cn × Vn,m such that H(·, 0) = ιF (·), H(·, 1) maps FCM into Cn × Un,m and
H(·, t) covers ι for all t ∈ [0, 1]. This homotopy descends to TM to give monomor-
phisms F s : TM → TCn covering ι, such that F 0 = dι. Moreover, since the
real linear span of a unitary m-frame in Cn is an m-dimensional isotropic sub-
space (with respect to ωst), F 1 is a symplectic isotropic monomorphism. By (5.4),
λ◦F 1 ∈ Monisotr(TM ; ξst). Thus, there is a smooth immersion f : M → Cn so that
f(M) is symplectic isotropic in Cn. Since dimM < n, a general position lemma
allows us to approximate f by an isotropic embedding g (see [2, Lemma 1.2.4]).
Recall that M is actually φ(τ(M)), where φ and τ are both Ck-smooth. The embed-
ding we seek is g ◦ φ ◦ τ , which is clearly Ck-smooth. We have proved one direction
of our claim.

Any isotropic linear subspace of Cn is necessarily a totally real one. So, the
converse statement poses no challenge, and the proof of Lemma 5.1 is complete.

Remark 5.1. It is likely that the contactification procedure can be avoided in the
above proof. One approach would be to directly invoke an h-principle for symplectic
isotropic immersions. Such an h-principle is alluded to in [5, Sec. 14.1], but an actual
statement is missing. Alternatively, we could invoke the h-principle for subcritical
embeddings stated in [5, Sec. 12.4], but it is missing the case n = m + 1 (the
required hypothesis is m < ⌊dimR Cn−1

2 ⌋ = n− 1). We attribute this to an oversight,
as the proof given therein seems to work also for m ≤ ⌊dimR Cn−1

2 ⌋ in the symplectic
scenario.

6. Examples and Open Questions

We first show that in contrast to Theorem 1.1, n-polynomial density of C0(M) does
not have a characterization in terms of totally real embeddings (or immersions) of
M into Cn.

Proposition 6.1. Let M := S−3 × S−3 , where S−3 := (RP2)#5 is the connected
sum of 5 projective planes. Then, C0(M) has 5-polynomial density, but M does not
admit a totally real immersion into C5.

Proof. Note that by Corollary 1.2, it is enough to show that C0(M) has 4-rational
density. For this, we first use a result due to Nemirovski and Siegel (see [16]) which
says that a nonorientable surface with χ ≤ −1 admits a Lagrangian embedding in
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C2 with k open Whitney umbrellas if and only if

k ∈ {4 − 3χ,−3χ,−3χ− 4, . . . ,χ+ 4 − 4⌊χ/4 + 1⌋}.

Since χ(S−3) = −3, we can embed S−3 into C2 as a Lagrangian surface with one
open Whitney umbrella (say at the origin). Let us denote the embedded S−3 by S.
In [19], it is shown that S is holomorphically and rationally convex, and R(S) =
C0(S). It follows that X = S × S is a topological embedding of M in C4 that
is holomorphically and rationally convex, and totally real away from X0 =

(
S ×

{0}
)
∪
(
{0}× S

)
. The rational convexity of X implies that R(X) = O(X), where

O(X) denotes the closed subalgebra of C0(X) that consists of uniform limits on X
of elements in O(X). It, therefore, suffices to show that C0(X) = O(X). For this,
choose an arbitrary f ∈ C0(X). We claim that X , X0 and f satisfy the conditions
of the following result by O’Farrel, Preskenis and Walsch [17]:
Let X ⊂ Cn be a compact holomorphically convex set, and let X0 be a closed subset
of X such that X\X0 is a totally real subset of Cn\X0. A function f ∈ C0(X) can
be approximated uniformly on X by functions in O(X) if and only if f |X0 can be
approximated uniformly on X0 by functions in O(X).

To prove our claim, we consider f |X0 . Let g1(x) := f(x, 0) and g2(x) := f(0, x)
for x ∈ S. Note that g1(0) = g2(0) = f(0, 0). Since gj ∈ C0(S), there are rational
functions {Rj

n}, n ∈ N+, on C2 with no poles on S such that Rj
n converge uniformly

to gj on S, j = 1, 2. Now, let

Rn(x, y) := R1
n(x) + R2

n(y) − f(0, 0)

for (x, y) ∈ C4 and n ∈ N+. Then, Rn ∈ O(X) and, taking uniform limits on X0,

lim
n→∞

Rn(x, y) = lim
n→∞

(R1
n(x) + R2

n(y) − f(0, 0))

=

{
g1(x) + g2(0) − f(0, 0), when (x, y) ∈ S × {0};
g1(0) + g2(y) − f(0, 0), when (x, y) ∈ {0}× S

=

⎧
⎨

⎩
g1(x), when (x, y) ∈ S × {0};
g2(y), when (x, y) ∈ {0}× S;

= f(x, y).

So, f |X0 can be uniformly approximated by elements in O(X). By the O’Farrel–
Preskenis–Walsh result, f ∈ O(X). Since f ∈ C0(X) was arbitrary, C0(X) = O(X).
Thus, C0(M) has 4-rational density and 5-polynomial density.

Now, suppose M admits a totally real immersion into C5. Then, there is a
complex line bundle Q such that (C ⊗ TM)⊕ Q is trivial — i.e.

c(C ⊗ TM) ⌣ c(Q) = 1,

where c(B) denotes the total Chern class of the vector bundle B and ⌣ denotes the
cup product of cohomology classes. Let b denote the first Chern class of C⊗ TS−3,
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and b1 and b2 denote the pull-backs of b to M under the corresponding projections
to S−3 . Note that b is nonzero, as b = w2 (mod 2), where w2 is the second Stiefel–
Whitney class of S−3 and is the nonzero generator of H2(S−3 ; Z2). Then, Q must
satisfy

(1 + b1)(1 + b2)c(Q) = 1.

But, this means Q is of rank at least 2, which contradicts the assumption on Q.
Hence, M does not admit a totally real immersion into C5.

We now paraphrase Corollary 1.1 for low-dimensional manifolds, and pose some
open questions. Note that when m = 1, the only manifold in question is the circle,
any embedding of which is isotropic in C. So, for any k ≥ 0, the space of Ck-smooth
functions on the circle has 1-rational density and 2-polynomial density, and this is
optimal.

Surfaces. The case of compact surfaces is explored in [19], where it is shown
that the space of continuous functions on any surface other than S2 and RP2

has 2-rational density. For topological reasons, no compact surface can have
2-polynomial density. Corollary 1.1 says that the situation for the two exceptions is
not too bad since the space of continuous (or Ck-smooth) functions on any surface
has 3-polynomial density (and this is sharp). We point the reader towards Izzo and
Stout’s paper [13, Sec. 13] for a possible construction of a PD-basis. The torus T2

and all nonorientable compact surfaces with negative Euler characteristic that is a
multiple of 4 admit a smooth Lagrangian embedding into (C2,ωst) (see [10]), and
therefore, their Ck-spaces have 2-rational density. All other surfaces do not admit
a smooth Lagrangian embedding into C2 (see [1] or [16], the difficult case of the
Klein bottle was resolved by Shevchishin [20]). So, any RD-basis for their Ck-spaces
must contain three elements. These arguments cannot be used for k = 0, and this
raises the following.

Question 6.1. Is there a rationally convex topological 2-sphere in C2?

Clearly, such an embedding, if exists, cannot be totally real or have isolated elliptic
complex points, and therefore must have either singularities or nongeneric complex
points.

Three-folds. For 3-manifolds M , Corollary 1.1 guarantees 4-polynomial (and ratio-
nal) density of Ck(M), k ≥ 0. This is optimal for rational density when k > 0,
since M = RP2 × S1 does not admit a totally real immersion into C3 (see [12]).
Therefore, Ck(M), k > 0, has 4-rational density, but not 3-rational density. For a
U-parallelizable (and orientable) example, consider M = S3. If Ck(S3), k ≥ 1, has
an RD-basis of length 3, then by Theorem 1.1, S3 admits a C∞-embedding in Cn

that is Lagrangian with respect ωst. Due to a result by Gromov [11], the embedded
sphere supports the boundary of a nonconstant holomorphic disc. By Theorem 2.5
in [4], this is not possible since H1(S3, Z) = 0. Thus, Ck(S3) cannot have 3-rational
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density when k > 0. Note that our techniques do not exclude the possibility that
C0(M) has 3-rational density for all three manifolds M . One approach to this prob-
lem would be to seek Givental-type results (see [10]) on Lagrangian inclusions of
three-manifolds into C3.

Four-folds. By Corollary 1.1, Ck(M) always admits 6-polynomial density for any
4-manifold M . As CP2 does not admit a totally real embedding into C5, Ck(CP2)
(k > 0) cannot have 5-polynomial density. It follows from Theorem 1.1 and [12,
Lemma 4.1] that Ck(M), k > 0, has 5-rational (and polynomial) density precisely
when the first dual Pontryagin class of M vanishes. To see that 5 is the optimal
length of an RD-basis, consider M = S4. S4 has vanishing first dual Pontryagin
class (for orientable manifolds this condition is equivalent to U-parallelizability)
but, since its Euler characteristic does not vanish, it does not admit a totally real
embedding into C4 (see [22]). In particular, Ck(S4) (k > 0) does not have 4-rational
density.

In view of the difference between the C0(M) and Ck(M), when k > 0, we end
this discussion with the following question.

Question 6.2. What are the optimal integers n and n′ (in terms of m) so that
every C0(M) has n-rational density and n′-polynomial density?
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