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Abstract

We derive for Bohmian mechanics topological factors for quantum systems
with a multiply-connected configuration space Q. These include nonabelian
factors corresponding to what we call holonomy-twisted representations of the
fundamental group of Q. We employ wave functions on the universal covering
space of Q. As a byproduct of our analysis, we obtain an explanation, within
the framework of Bohmian mechanics, of the fact that the wave function of a
system of identical particles is either symmetric or anti-symmetric.
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1 Introduction

We consider here a novel approach towards topological effects in quantum mechan-

ics. These effects arise when the configuration space Q of a quantum system is a

multiply-connected Riemannian manifold and involve topological factors forming a

representation (or holonomy-twisted representation) of the fundamental group π1(Q)
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of Q. Our approach is based on Bohmian mechanics [5, 2, 8, 3, 9, 12], a version of

quantum mechanics with particle trajectories. The use of Bohmian paths allows a

derivation of the link between homotopy and quantum mechanics that is essentially

different from derivations based on path integrals.

The topological factors we derive are equally relevant and applicable in orthodox

quantum mechanics, or any other version of quantum mechanics. Bohmian mechan-

ics, however, provides a sharp mathematical justification of the dynamics with these

topological factors that is absent in the orthodox framework. Different topological

factors give rise to different Bohmian dynamics, and thus to different quantum the-

ories, for the same configuration space Q (whose metric we regard as incorporating

the “masses of the particles”), the same potential, and the same value space of the

wave function.

The motion of the configuration in a Bohmian system of N distinguishable par-

ticles can be regarded as corresponding to a dynamical system in the configuration

space Q = R
3N , defined by a time-dependent vector field vψt on Q which in turn

is defined, by the Bohmian law of motion, in terms of ψt. We are concerned here

with the analogues of the Bohmian law of motion when Q is, instead of R3N , an

arbitrary Riemannian manifold.1 The main result is that, if Q is multiply connected,

there are several such analogues: several dynamics, which we will describe in detail,

corresponding to different choices of the topological factors.

It is easy to overlook the multitude of dynamics by focusing too much on just one,

the simplest one, which we will define in Section 2: the immediate generalization of

the Bohmian dynamics from R
3N to a Riemannian manifold, or, as we shall briefly call

it, the immediate Bohmian dynamics. Of the other kinds of Bohmian dynamics, the

simplest involve phase factors associated with non-contractible loops in Q, forming

a character2 of the fundamental group π1(Q). In other cases, the topological factors

are given by matrices or endomorphisms, forming a unitary representation of π1(Q)

or, in the case of a vector bundle, a holonomy-twisted representation (see the end

of Section 4 for the definition). As we shall explain, the dynamics of bosons is an

“immediate” one, but not the dynamics of fermions (except when using a certain not

entirely natural vector bundle). The Aharonov–Bohm effect can be regarded as an

example of a non-immediate dynamics on the accessible region of 3-space.

It is not obvious what “other kinds of Bohmian dynamics” should mean. We will

investigate one approach here, while others will be studied in forthcoming works. The

present approach is based on considering wave functions ψ that are defined not on

the configuration space Q but on its universal covering space Q̂. We then investigate

which kinds of periodicity conditions, relating the values on different levels of the

covering fiber by a topological factor, will ensure that the Bohmian velocity vector

field associated with ψ is projectable from Q̂ to Q. This is carried out in Section 3

1Manifolds will throughout be assumed to be Hausdorff, paracompact, connected, and C∞. They
need not be orientable.

2By a character of a group we refer to what is sometimes called a unitary multiplicative character,
i.e., a one-dimensional unitary representation of the group.
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for scalar wave functions and in Section 4 for wave functions with values in a complex

vector space (such as a spin-space) or a complex vector bundle. In the case of vector

bundles, we derive a novel kind of topological factor, given by a holonomy-twisted

representation of π1(Q).

The notion that multiply-connected spaces give rise to different topological factors

is not new. The most common approach is based on path integrals and began largely

with the work of Schulman [18, 19] and Laidlaw and DeWitt [14]; see [20] for de-

tails. Nelson [17] derives the topological phase factors for scalar wave functions from

stochastic mechanics. There is also the current algebra approach of Goldin, Menikoff,

and Sharp [11].

2 Bohmian Mechanics in Riemannian manifolds

Bohmian mechanics can be formulated by appealing only to the Riemannian structure

g of the configurationQ space of a physical system: the state of the system in Bohmian

mechanics is given by the pair (Q,ψ); Q ∈ Q is the configuration of the system and

ψ is a (standard quantum mechanical) wave function on the configuration space Q,

taking values in some Hermitian vector space W , i.e., a finite-dimensional complex

vector space endowed with a positive-definite Hermitian (i.e., conjugate-symmetric

and sesqui-linear) inner product ( · , · ).
The state of the system changes according to the guiding equation and Schrödinger’s

equation [8]:

dQt

dt
= vψt(Qt) (1a)

i~
∂ψt
∂t

= −~2

2
∆ψt + V ψt , (1b)

where the Bohmian velocity vector field vψ associated with the wave function ψ is

vψ := ~ Im
(ψ,∇ψ)

(ψ, ψ)
. (2)

In the above equations ∆ and ∇ are, respectively, the Laplace-Beltrami operator and

the gradient on the configuration space equipped with this Riemannian structure; V

is the potential function with values given by Hermitian matrices (endomorphisms of

W ). Thus, given Q, W , and V , we have specified a Bohmian dynamics, the immediate

Bohmian dynamics.3

3Since the law of motion involves a derivative of ψ, the merely measurable functions in L2(Q)
will of course not be adequate for defining trajectories. However, we will leave aside the question,
from which dense subspace of L2(Q) should one choose ψ. For a discussion of the global existence
question of Bohmian trajectories in R3N , see [4, 21].
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The empirical agreement between Bohmian mechanics and standard quantum

mechanics is grounded in equivariance [8, 10]. In Bohmian mechanics, if the con-

figuration is initially random and distributed according to |ψ0|2, then the evolution

is such that the configuration at time t will be distributed according to |ψt|2. This

property is called the equivariance of the |ψ|2 distribution. It follows from comparing

the transport equation arising from (1a)

∂ρt
∂t

= −∇ · (ρtvψt) (3)

for the distribution ρt of the configuration Qt to the quantum continuity equation

∂|ψt|2

∂t
= −∇ · (|ψt|2vψt), (4)

which is a consequence of Schrödinger’s equation (1b). A rigorous proof of equivari-

ance requires showing that almost all (with respect to the |ψ|2 distribution) solutions

of (1a) exist for all times. This was done in [4, 21]. A more comprehensive introduc-

tion to Bohmian mechanics may be found in [12, 3, 9].

An important example (with, say, W = C) is that of several particles moving in

a Riemannian manifold M , a possibly curved physical space. Then the configuration

space for N distinguishable particles is Q := MN . Let the masses of the particles be

mi and the metric of M be g. Then the relevant metric on MN is

gN(v1 ⊕ · · · ⊕ vN , w1 ⊕ · · · ⊕ wN) :=
N∑
i=1

mig(vi, wi).

Using gN allows us to write (2) and (1a) instead of the equivalent equations

dQk

dt
=
~

mk

Im
(ψ,∇kψ)

(ψ, ψ)
(Q1, . . . ,QN), k = 1, . . . , N (5)

i~
∂ψ

∂t
= −

N∑
k=1

~
2

2mk

∆kψ + V ψ, (6)

where Qk, the kth component of Q, lies in M , and ∇k and ∆k are the gradient and

the Laplacian with respect to g, acting on the kth factor of MN . Another important

example [14] is that of N identical particles in R3, for which the natural configuration

space is the set N
R

3 of all N -element subsets of R3,

N
R

3 := {S|S ⊆ R3, |S| = N} , (7)

which inherits a Riemannian metric from R
3. Spin is incorporated by choosing for

W a suitable spin space [2]. For one particle moving in R3, we may take W to be a
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complex, irreducible representation space of SU(2), the universal covering group4 of

the rotation group SO(3). If it is the spin-s representation then W = C2s+1.

More generally, we can consider a Bohmian dynamics for wave functions taking

values in a complex vector bundle E over the Riemannian manifold Q. That is, the

value space then depends on the configuration, and wave functions become sections

of the vector bundle. Such a case occurs for identical particles with spin s, where

the bundle E of spin spaces over the configuration space Q = N
R

3 consists of the

(2s+ 1)N -dimensional spaces

Eq =
⊗
q∈q

C
2s+1 , q ∈ Q . (8)

For a detailed discussion of this bundle, of why this is the right bundle, and of the

notion of a tensor product over an arbitrary index set, see [7].

We introduce now some notation and terminology.

Definition 1. A Hermitian vector bundle, or Hermitian bundle, over Q is a finite-

dimensional complex vector bundle E over Q with a connection and a positive-definite,

Hermitian local inner product ( · , · ) = ( · , · )q on Eq, the fiber of E over q ∈ Q, which

is parallel.

Our bundle, the one of which ψ is a section, will always be a Hermitian bundle.

Note that since a Hermitian bundle consists of a vector bundle and a connection,

it can be nontrivial even if the vector bundle is trivial: namely, if the connection is

nontrivial. The trivial Hermitian bundle Q ×W , in contrast, consists of the trivial

vector bundle with the trivial connection, whose parallel transport Pβ, in general a

unitary endomorphism from Eq to Eq′ for β a path from q to q′, is always the identity

on W . The case of a W -valued function ψ : Q → W corresponds to the trivial

Hermitian bundle Q×W .

The global inner product on the Hilbert space of wave functions is the local in-

ner product integrated against the Riemannian volume measure associated with the

metric g of Q,

〈φ, ψ〉 =

∫
Q
dq (φ(q), ψ(q)) .

The Hilbert space equipped with this inner product, denoted L2(Q, E), contains the

square-integrable, measurable (not necessarily smooth) sections of E modulo equality

almost everywhere. The covariant derivative Dψ of a section ψ is an “E-valued 1-

form,” i.e., a section of CTQ∗ ⊗ E (with TQ∗ the cotangent bundle), while we write

∇ψ for the section of CTQ ⊗ E metrically equivalent to Dψ. The potential V is

now a self-adjoint section of the endomorphism bundle E ⊗ E∗ acting on the vector

4The universal covering space of a Lie group is again a Lie group, the universal covering group.
It should be distinguished from another group also called the covering group: the group Cov(Q̂,Q)
of the covering (or deck) transformations of the universal covering space Q̂ of a manifold Q, which
will play an important role later.
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bundle’s fibers. The equations defining the Bohmian dynamics are, mutatis mutandis,

the same equations (1) and (2) as before.

We wish to introduce now further Bohmian dynamics beyond the immediate one.

To this end, we will consider wave functions on Q̂, the universal covering space of

Q. This idea is rather standard in the literature on quantum mechanics in multiply-

connected spaces [14, 6, 15, 16, 13]. However, the complete specification of the pos-

sibilities that we give in Section 4 includes some, corresponding to what we call

holonomy-twisted representations of π1(Q), that have not yet been considered. Each

possibility has locally the same Hamiltonian −~2

2
∆ + V , with the same potential V ,

and each possibility is equally well defined and equally reasonable. While in ortho-

dox quantum mechanics it may seem more or less axiomatic that the configuration

space Q is the space on which ψt is defined, Q appears in Bohmian mechanics also

in another role: as the space in which Qt moves. It is therefore less surprising from

the Bohmian viewpoint, and easier to accept, that ψt is defined not on Q but on Q̂.

In the next section all wave functions will be complex-valued; in Section 4 we shall

consider wave functions with higher-dimensional value spaces.

3 Scalar Wave Functions on the Covering Space

The motion of the configuration Qt in Q is determined by a velocity vector field vt on

Q, which may arise from a wave function ψ not on Q but instead on Q̂, the universal

covering space of Q, in the following way: Suppose we are given a complex-valued

map γ on the covering group Cov(Q̂,Q), γ : Cov(Q̂,Q) → C, and suppose that

a wave function ψ : Q̂ → C satisfies the periodicity condition associated with the

topological factors γ, i.e.,

ψ(σq̂) = γσψ(q̂) (9)

for every q̂ ∈ Q̂ and σ ∈ Cov(Q̂,Q). For (9) to be possible for a ψ that does not

identically vanish, γ must be a representation of the covering group, as was first

emphasized in [6]. To see this, let σ1, σ2 ∈ Cov(Q̂,Q). Then we have the following

equalities

γσ1σ2ψ(q̂) = ψ(σ1σ2q̂) = γσ1ψ(σ2q̂) = γσ1γσ2ψ(q̂). (10)

We thus obtain the fundamental relation

γσ1σ2 = γσ1γσ2 , (11)

establishing (since γId = 1) that γ is a representation.

Let π1(Q, q) denote the fundamental group of Q at a point q and let π be the

covering map (a local diffeomorphism) π : Q̂ → Q, also called the projection (the

covering fiber for q ∈ Q is the set π−1(q) of points in Q̂ that project to q under π).

The 1-dimensional representations of the covering group are, via the canonical iso-

morphisms ϕq̂ : Cov(Q̂,Q)→ π1(Q, q), q̂ ∈ π−1(q), in canonical correspondence with

the 1-dimensional representations of any fundamental group π1(Q, q): The different
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isomorphisms ϕq̂, q̂ ∈ π−1(q), will transform a representation of π1(Q, q) into repre-

sentations of Cov(Q̂,Q) that are conjugate. But the 1-dimensional representations

are homomorphisms to the abelian multiplicative group of C and are thus invariant

under conjugation.

From (9) it follows that ∇ψ(σq̂) = γσ σ
∗∇ψ(q̂), where σ∗ is the (push-forward)

action of σ on tangent vectors, using that σ is an isometry. Thus, the velocity field

v̂ψ on Q̂ associated with ψ according to

v̂ψ(q̂) := ~ Im
∇ψ
ψ

(q̂) (12)

is projectable, i.e.,

v̂ψ(σq̂) = σ∗v̂ψ(q̂), (13)

and therefore gives rise to a velocity field vψ on Q,

vψ(q) = π∗ v̂ψ(q̂) (14)

where q̂ is an arbitrary element of π−1(q).

If we let ψ evolve according to the Schrödinger equation on Q̂,

i~
∂ψ

∂t
(q̂) = −~2

2
∆ψ(q̂) + V̂ (q̂)ψ(q̂) (15)

with V̂ the lift of the potential V on Q, then the periodicity condition (9) is preserved

by the evolution, since, according to

i~
∂ψ

∂t
(σq̂)

(15)
= −~2

2
∆ψ(σq̂) + V̂ (σq̂)ψ(σq̂) = −~2

2
∆ψ(σq̂) + V̂ (q̂)ψ(σq̂) (16)

(note the different arguments in the potential), the functions ψ ◦ σ and γσψ satisfy

the same evolution equation (15) with, by (9), the same initial condition, and thus

coincide at all times.

Therefore we can let the Bohmian configuration Qt move according to vψt ,

dQt

dt
= vψt(Qt) = ~ π∗

(
Im
∇ψ
ψ

)
(Qt) = ~ π∗

(
Im
∇ψ
ψ

∣∣∣
q̂∈π−1(Qt)

)
. (17)

One can also view the motion in this way: Given Q0, choose Q̂0 ∈ π−1(Q0), let Q̂t

move in Q̂ according to v̂ψt , and setQt = π(Q̂t). Then the motion ofQt is independent

of the choice of Q̂0 in the fiber over Q0, and obeys (17).

If, as we shall assume from now on, |γσ| = 1 for all σ ∈ Cov(Q̂,Q), i.e., if γ

is a unitary representation (in C) or a character, then the motion (17) also has an

equivariant probability distribution, namely

ρ(q) = |ψ(q̂)|2. (18)

To see this, note that we have

|ψ(σq̂)|2 (9)
= |γσ|2|ψ(q̂)|2 = |ψ(q̂)|2, (19)

7



so that the function |ψ(q̂)|2 is projectable to a function on Q which we call |ψ|2(q) in

this paragraph. From (15) we have that

∂|ψt(q̂)|2

∂t
= −∇ ·

(
|ψt(q̂)|2 v̂ψt(q̂)

)
and, by projection, that

∂|ψt|2(q)

∂t
= −∇ ·

(
|ψt|2(q) vψt(q)

)
,

which coincides with the transport equation for a probability density ρ on Q,

∂ρt(q)

∂t
= −∇ ·

(
ρt(q) v

ψt(q)
)
.

Hence,

ρt(q) = |ψt|2(q) (20)

for all times if it is so initially; this is equivariance.

The relevant wave functions are those with∫
Q
dq |ψ(q̂)|2 = 1 (21)

where the choice of q̂ ∈ π−1(q) is arbitrary by (19). The relevant Hilbert space,

which we denote L2(Q̂, γ), thus consists of the measurable functions ψ on Q̂ (modulo

changes on null sets) satisfying (9) with∫
Q
dq |ψ(q̂)|2 <∞. (22)

It is a Hilbert space with the scalar product

〈φ, ψ〉 =

∫
Q
dq φ(q̂)ψ(q̂). (23)

Note that the value of the integrand at q is independent of the choice of q̂ ∈ π−1(q)

since, by (9) and the fact that |γσ| = 1,

φ(σq̂)ψ(σq̂) = γσ φ(q̂) γσ ψ(q̂) = φ(q̂)ψ(q̂).

We summarize the results of our reasoning.

Assertion 1. Given a Riemannian manifold Q and a smooth function V : Q → R,

there is a Bohmian dynamics in Q with potential V for each character γ of the

fundamental group π1(Q); it is defined by (9), (15), and (17), where the wave function

ψt lies in L2(Q̂, γ) and has norm one.
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Assertion 1 provides as many dynamics as there are characters of π1(Q) because

different characters γ′ 6= γ always define different dynamics. In particular, for the

trivial character γσ = 1, we obtain the immediate dynamics, as defined by (2) and

(1).

An important application of Assertion 1 is provided by identical particles without

spin. The natural configuration space N
R

3 for identical particles has fundamental

group SN , the group of permutations of N objects, which possesses two characters,

the trivial character, γσ = 1, and the alternating character, γσ = sgn(σ) = 1 or −1

depending on whether σ ∈ SN is an even or an odd permutation. The Bohmian

dynamics associated with the trivial character is that of bosons, while the one associ-

ated with the alternating character is that of fermions. However, in a two-dimensional

world there would be more possibilities since π1(NR2) is the braid group, whose gen-

erators σi, i = 1, . . . , N−1, are a certain subset of braids that exchange two particles

and satisfy the defining relations

σiσj = σjσi for i ≤ N − 3, j ≥ i+ 2,

σiσi+1σi = σi+1σiσi+1 for i ≤ N − 2.

Thus, a character of the braid group assigns the same complex number eiβ to each

generator, and therefore, according to Assertion 1, each choice of β corresponds to a

Bohmian dynamics; two-dimensional bosons correspond to β = 0 and two-dimensional

fermions to β = π. The particles corresponding to the other possibilities are usually

called anyons. They were first suggested in [15], and their investigation began in

earnest with [11, 22]. See [16] for some more details and references.

4 Vector-Valued Wave Functions on the Covering

Space

The analysis of Section 3 can be carried over with little change to the case of vector-

valued wave functions, ψ(q) ∈ W . In this case, however, the topological factors may

be given by any endomorphisms Γσ of W that form a representation of Cov(Q̂,Q)

and need not be restricted to characters, a possibility first mentioned in [20], Notes

to Section 23.3. Rather than directly considering this case, we focus instead on one

that is a bit more general and that will require a new sort of topological factor, that

of wave functions that are sections of a vector bundle. The topological factors for

this case will be expressed as periodicity sections, i.e., parallel unitary sections of

the endomorphism bundle indexed by the covering group and satisfying a certain

composition law, or, equivalently, as holonomy-twisted representations of π1(Q).

If E is a vector bundle over Q, then the lift of E, denoted by Ê, is a vector bundle

over Q̂; the fiber space at q̂ is defined to be the fiber space of E at q, Êq̂ := Eq,

where q = π(q̂). It is important to realize that with this construction, it makes sense

to ask whether v ∈ Êq̂ is equal to w ∈ Êr̂ whenever q̂ and r̂ are elements of the
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same covering fiber. Equivalently, Ê is the pull-back of E through π : Q̂ → Q. As a

particular example, the lift of the tangent bundle of Q to Q̂ is canonically isomorphic

to the tangent bundle of Q̂. Sections of E or E ⊗ E∗ can be lifted to sections of Ê

respectively Ê ⊗ Ê∗.
If E is a Hermitian vector bundle, then so is Ê. The wave function ψ that we

consider here is a section of Ê, so that ψ(q̂) is a vector in the q̂-dependent Hermitian

vector space Êq̂. V is a section of the bundle E ⊗ E∗, i.e., V (q) is an element of

Eq ⊗ E∗q . To indicate that every V (q) is a Hermitian endomorphism of Eq, we say

that V is a Hermitian section of E ⊗ E∗.
Since ψ(σq̂) and ψ(q̂) lie in the same space Eq = Êq̂ = Êσq̂, a periodicity condition

can be of the form

ψ(σq̂) = Γσ(q̂)ψ(q̂) (24)

for σ ∈ Cov(Q̂,Q), where Γσ(q̂) is an endomorphism Eq → Eq. By the same argument

as in (10), the condition for (24) to be possible, if ψ(q̂) can be any element of Êq̂, is

the composition law

Γσ1σ2(q̂) = Γσ1(σ2q̂) Γσ2(q̂). (25)

Note that this law differs from the one Γ(q̂) would satisfy if it were a representation,

which reads Γσ1σ2(q̂) = Γσ1(q̂) Γσ2(q̂), since in general Γ(σq̂) need not be the same as

Γ(q̂) .

For periodicity (24) to be preserved under the Schrödinger evolution,

i~
∂ψ

∂t
(q̂) = −~2

2
∆ψ(q̂) + V̂ (q̂)ψ(q̂), (26)

we need that multiplication by Γσ(q̂) commute with the Hamiltonian. Observe that

[H,Γσ]ψ(q̂) = −~2

2
(∆Γσ(q̂))ψ(q̂)− ~2(∇Γσ(q̂)) · (∇ψ(q̂)) + [V̂ (q̂),Γσ(q̂)]ψ(q̂). (27)

Since we can choose ψ such that, for any one particular q̂, ψ(q̂) = 0 and ∇ψ(q̂) is any

element of CTq̂Q̂ ⊗ Eq we like, we must have that

∇Γσ(q̂) = 0 (28)

for all σ ∈ Cov(Q̂,Q) and all q̂ ∈ Q̂, i.e., that Γσ is parallel. Inserting this in (27),

the first two terms on the right hand side vanish. Since we can choose for ψ(q̂) any

element of Eq we like, we must have that

[V̂ (q̂),Γσ(q̂)] = 0 (29)

for all σ ∈ Cov(Q̂,Q) and all q̂ ∈ Q̂. Conversely, assuming (28) and (29), we obtain

that Γσ commutes with H for every σ ∈ Cov(Q̂,Q), so that the periodicity (24) is

preserved.

From (24) and (28) it follows that ∇ψ(σq̂) = (σ∗ ⊗ Γσ(q̂))∇ψ(q̂). If every Γσ(q̂)

is unitary, as we assume from now on, the velocity field v̂ψ on Q̂ associated with ψ

according to

v̂ψ(q̂) := ~ Im
(ψ,∇ψ)

(ψ, ψ)
(q̂) (30)
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is projectable, v̂ψ(σq̂) = σ∗v̂ψ(q̂), and gives rise to a velocity field vψ on Q. We let

the configuration move according to vψt ,

dQt

dt
= vψt(Qt) = ~ π∗

(
Im

(ψ,∇ψ)

(ψ, ψ)

)
(Qt). (31)

Definition 2. Let E be a Hermitian bundle over the manifold Q. A periodicity

section Γ over E is a family indexed by Cov(Q̂,Q) of unitary parallel sections Γσ of

Ê ⊗ Ê∗ satisfying the composition law (25).

Since Γσ(q̂) is unitary, one sees as before that the probability distribution

ρ(q) = (ψ(q̂), ψ(q̂)) (32)

does not depend on the choice of q̂ ∈ π−1(q) and is equivariant.

As before, we define for any periodicity section Γ the Hilbert space L2(Q̂, Ê,Γ)

to be the set of measurable sections ψ of Ê (modulo changes on null sets) satisfying

(24) with ∫
Q
dq (ψ(q̂), ψ(q̂)) <∞, (33)

endowed with the scalar product

〈φ, ψ〉 =

∫
Q
dq (φ(q̂), ψ(q̂)). (34)

Also as before, the value of the integrand at q is independent of the choice of q̂ ∈
π−1(q).

We summarize the results of our reasoning.

Assertion 2. Given a Hermitian bundle E over the Riemannian manifold Q and a

Hermitian section V of E ⊗ E∗, there is a Bohmian dynamics for each periodicity

section Γ commuting (pointwise) with V̂ (cf. (29)); it is defined by (24), (26), and

(31), where the wave function ψt lies in L2(Q̂, Ê,Γ) and has norm 1.

Every character γ of Cov(Q̂,Q) (or of π1(Q)) defines a periodicity section by

setting

Γσ(q̂) := γσIdÊq̂ . (35)

It commutes with every potential V . Conversely, a periodicity section Γ that com-

mutes with every potential must be such that every Γσ(q̂) is a multiple of the identity,

Γσ(q̂) = γσ(q̂) IdÊq̂ . By unitarity, |γσ| = 1; by parallelity (28), γσ(q̂) = γσ must be

constant; by the composition law (25), γ must be a homomorphism, and thus a

character.

We briefly indicate how a periodicity section Γ corresponds to something like

a representation of π1(Q). Fix a q̂ ∈ Q̂. Then Cov(Q̂,Q) can be identified with

π1(Q) = π1(Q, π(q̂)) via ϕq̂. Since the sections Γσ of Ê ⊗ Ê∗ are parallel, Γσ(r̂)
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is determined for every r̂ by Γσ(q̂). (Note in particular that the parallel transport

Γσ(τ q̂) of Γσ(q̂) from q̂ to τ q̂, τ ∈ Cov(Q̂,Q), may differ from Γσ(q̂).) Thus, the

periodicity section Γ is completely determined by the endomorphisms Γσ := Γσ(q̂) of

Eq, σ ∈ Cov(Q̂,Q), which satisfy the composition law

Γσ1σ2 = hα2Γσ1h
−1
α2

Γσ2 , (36)

where α2 is any loop in Q based at π(q̂) whose lift starting at q̂ leads to σ2q̂, and hα2

is the associated holonomy endomorphism of Eq. Since (36) is not the composition

law Γσ1σ2 = Γσ1Γσ2 of a representation, the Γσ form, not a representation of π1(Q),

but what we call a holonomy-twisted representation.

The situation where the wave function assumes values in a fixed Hermitian space

W , instead of a bundle, corresponds to the trivial Hermitian bundle E = Q × W

(i.e., with the trivial connection, for which parallel transport is the identity on W ).

Then, parallelity (28) implies that Γσ(r̂) = Γσ(q̂) for any r̂, q̂ ∈ Q̂, or Γσ(q̂) = Γσ,

so that (25) becomes the usual composition law Γσ1σ2 = Γσ1Γσ2 and Γ is a unitary

representation of Cov(Q̂,Q).

The most important case of topological factors that are characters is provided by

identical particles with spin. In fact, for this case, Assertion 2 entails the same conclu-

sions we arrived at the end of Section 3, even for particles with spin. To understand

how this comes about, consider the potential occurring in the Pauli equation for N

identical particles with spin,

V (q) = −µ
∑
q∈q

B(q) · σq (37)

on the spin bundle (8) over N
R

3, with σq the vector of spin matrices acting on the

spin space of the particle at q. Clearly, the algebra generated by {V (q)} arising from

all possible choices of the magnetic field B is End(Eq). Thus the only holonomy-

twisted representations that define a dynamics for all magnetic fields are those given

by a character.5

An example of a topological factor that is not a character is provided by the

Aharonov–Casher variant [1] of the Aharonov–Bohm effect, according to which a

neutral spin-1/2 particle that carries a magnetic moment µ acquires a nontrivial

phase while encircling a charged wire C. A way of understanding how this effect

comes about is in terms of the non-relativistic Hamiltonian −~2

2
∆ + V based on a

nontrivial connection ∇ = ∇trivial − iµ
~
E ×σ on the vector bundle R3 ×C2. Suppose

the charge density %(q) is invariant under translations in the direction e ∈ R3, e2 = 1

in which the wire is oriented. Then the charge per unit length λ is given by the

integral

λ =

∫
D

%(q) dA (38)

5In fact, it can be shown [7] that the only holonomy-twisted representations for a magnetic field
B that is not parallel must be a character.
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over the cross-section disk D in any plane perpendicular to e. The restriction of this

connection, outside of C, to any plane Σ orthogonal to the wire turns out to be flat6

so that its restriction to the intersection Q of R3 \ C with the orthogonal plane can

be replaced, as in the Aharonov–Bohm case, by the trivial connection if we introduce

a periodicity condition on the wave function with the topological factor

Γ1 = exp
(
−4πiµλ

~

e · σ
)
. (39)

In this way we obtain a representation Γ : π1(Q) → SU(2) that is not given by a

character.

Another example of a topological factor that is not a character and which can

be generalized to a nonabelian representation is provided by a higher-dimensional

version of the Aharonov–Bohm effect: one may replace the vector potential in the

Aharonov–Bohm setting by a non-abelian gauge field (à la Yang–Mills) whose field

strength (curvature) vanishes outside a cylinder C but not inside; the value space W

(now corresponding not to spin but to, say, quark color) has dimension greater than

one, and the difference between two wave packets that have passed C on different

sides is given in general, not by a phase, but by a unitary endomorphism Γ of W . In

this example, involving one cylinder, the representation Γ, though given by matrices

that are not multiples of the identity, is nonetheless abelian, since π1(Q) ∼= Z is an

abelian group. However, when two or more cylinders are considered, we obtain a

non-abelian representation Γ, since when Q is R3 minus two disjoint solid cylinders

its fundamental group is isomorphic to the non-abelian group Z ∗Z, where ∗ denotes

the free product of groups, generated by loops σ1 and σ2 surrounding one or the other

of the cylinders. One can easily arrange that the matrices Γσi corresponding to loops

σi, i = 1, 2, fail to commute, so that Γ is nonabelian.

Our last example involves a holonomy-twisted representation Γ that is not a rep-

resentation in the ordinary sense. Consider N fermions, each as in the previous

examples, moving in M = R3 \∪iCi, where Ci are one or more disjoint solid cylinders.

More generally, consider N fermions, each having 3-dimensional configuration space

M and value space W (which may incorporate spin or “color” or both). Then the

configuration space Q for the N fermions is the set NM of all N -element subsets of

M , with universal covering space Q̂ = N̂M = M̂N \∆ with ∆ the extended diagonal,

the set of points in M̂N whose projection to MN lies in its coincidence set. Every

diffeomorphism σ ∈ Cov(N̂M,NM) can be expressed as a product

σ = pσ̃ (40)

where p ∈ SN and σ̃ = (σ(1), . . . , σ(N)) ∈ Cov(M̂,M)N and these act on q̂ =

6The curvature is Ω = dtrivialω+ω ∧ω with ω = −iµ
~
E×σ. The 2-form Ω is dual to the vector

∇trivial ×ω +ω ×ω = iµ
~

(∇ ·E)σ − iµ
~

(σ · ∇)E − 2i(µ
~

)2(σ ·E)E. Outside the wire, the first term
vanishes and, noting that E · e = 0, the other two terms have vanishing component in the direction
of e and thus vanish when integrated over any region within an orthogonal plane.
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(q̂1, . . . , q̂N) ∈ M̂N as follows:

σ̃q̂ = (σ(1)q̂1, . . . , σ
(N)q̂N) (41)

and

pq̂ = (q̂p−1(1), . . . , q̂p−1(N)). (42)

Thus

σq̂ = (σ(p−1(1))q̂p−1(1), . . . , σ
(p−1(N))q̂p−1(N)). (43)

Moreover, the representation (40) of σ is unique. Thus, since

σ1σ2 = p1σ̃1p2σ̃2 = (p1p2)(p−1
2 σ̃1p2σ̃2) (44)

with p−1
2 σ̃1p2 = (σ

(p2(1))
1 , . . . , σ

(p2(N))
1 ) ∈ Cov(M̂,M)N , we find that Cov(N̂M,NM) is

a semidirect product of SN and Cov(M̂,M)N , with product given by

σ1σ2 = (p1, σ̃1)(p2, σ̃2) = (p1p2, p
−1
2 σ̃1p2σ̃2). (45)

Wave functions for the N fermions are sections of the lift Ê to Q̂ of the bundle E

over Q with fiber

Eq =
⊗
q∈q

W (46)

and (nontrivial) connection inherited from the trivial connection on M ×W . If the

dynamics for N = 1 involves wave functions on M̂ obeying (24) with topological

factor Γσ(q̂) = Γσ given by a unitary representation of π1(M) (i.e., independent of

q̂), then the N fermion wave function obeys (24) with topological factor

Γσ(q̂) = sgn(p)
⊗
q∈π(q̂)

Γ
σ

(iq̂(q)) ≡ sgn(p)Γσ̃(q̂) (47)

where for q̂ = (q̂1, . . . , q̂N), π(q̂) = {πM(q̂1), . . . , πM(q̂N)} and iq̂(πM(q̂j)) = j. Since

Γσ̃1σ̃2(q̂) = Γσ̃1(q̂) Γσ̃2(q̂) (48)

we find, using (45) and (48), that

Γσ1σ2(q̂) = sgn(p1p2)Γp−1
2 σ̃1p2σ̃2

(q̂) (49a)

= sgn(p1)Γp−1
2 σ̃1p2

(q̂)sgn(p2)Γσ̃2(q̂) (49b)

= P2Γσ1(q̂)P−1
2 Γσ2(q̂), (49c)

which agrees with (36) since the holonomy on the bundle E is given by permutations

P acting on the tensor product (46).
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5 Conclusions

We have investigated the possible quantum theories on a topologically nontrivial

configuration space Q from the point of view of Bohmian mechanics, which is funda-

mentally concerned with the motion of matter in physical space, represented by the

evolution of a point in configuration space.

Our goal was to find all Bohmian dynamics in Q, where the wave functions may

be sections of a Hermitian vector bundle E. What “all” Bohmian dynamics means is

not obvious; we have followed one approach to what it can mean; other approaches

will be described in future works. The present approach uses wave functions ψ

that are defined on the universal covering space Q̂ of Q and satisfy a periodicity

condition ensuring that the Bohmian velocity vector field on Q̂ defined in terms of ψ

can be projected to Q. We have arrived in this way at a natural class of Bohmian

dynamics beyond the immediate Bohmian dynamics. Such a dynamics is defined

by a potential and some information encoded in “topological factors,” which form

either a character (one-dimensional unitary representation) of the fundamental group

of the configuration space, π1(Q), or a more general algebraic-geometrical object, a

holonomy-twisted representation Γ. Only those dynamics associated with characters

are compatible with every potential, as one would desire for what could be considered

a version of quantum mechanics in Q. We have thus arrived at the known fact that for

every character of π1(Q) there is a version of quantum mechanics inQ. A consequence,

which will be discussed in detail in a sister paper [7], is the symmetrization postulate

for identical particles. These different quantum theories emerge naturally when one

contemplates the possibilities for defining a Bohmian dynamics in Q.
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