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1 Introdu
tionIn 
lassi
al me
hani
s, ensembles, su
h as the mi
ro
anoni
al and 
anoni
al ensembles,are represented by probability distributions on the phase spa
e. In quantum me
han-i
s, ensembles are usually represented by density matri
es. It is natural to regard thesedensity matri
es as arising from probability distributions on the (normalized) wave fun
-tions asso
iated with the thermodynami
al ensembles, so that members of the ensembleare represented by a random state ve
tor. There are, however, as is well known, manyprobability distributions whi
h give rise to the same density matrix, and thus to thesame predi
tions for experimental out
omes [25, se
. IV.3℄.1 Moreover, as emphasizedby Landau and Lifshitz [13, se
. I.5℄, the energy levels for ma
ros
opi
 systems are so
losely spa
ed (exponentially small in the number of parti
les in the system) that \the
on
ept of stationary states [energy eigenfun
tions℄ be
omes in a 
ertain sense unrealis-ti
" be
ause of the diÆ
ulty of preparing a system with su
h a sharp energy and keepingit isolated. Landau and Lifshitz are therefore wary of, and warn against, regarding thedensity matrix for su
h a system as arising solely from our la
k of knowledge about thewave fun
tion of the system. We shall argue, however, that despite these 
aveats su
hdistributions 
an be both useful and physi
ally meaningful. In parti
ular we des
ribehere a novel probability distribution, to be asso
iated with any thermal ensemble su
has the 
anoni
al ensemble.While probability distributions on wave fun
tions are natural obje
ts of study inmany 
ontexts, from quantum 
haos [3, 12, 23℄ to open quantum systems [4℄, our mainmotivation for 
onsidering them is to exploit the analogy between 
lassi
al and quantumstatisti
al me
hani
s [20, 21, 26, 14, 15, 16℄. This analogy suggests that some relevant
lassi
al reasonings 
an be transferred to quantum me
hani
s by formally repla
ing the
lassi
al phase spa
e by the unit sphere S (H ) of the quantum system's Hilbert spa
eH . In parti
ular, with a natural measure �(d ) on S (H ) one 
an utilize the notionof typi
ality, i.e., 
onsider properties of a system 
ommon to \almost all" members ofan ensemble. This is a notion frequently used in equilibrium statisti
al me
hani
s, asin, e.g., Boltzmann's re
ognition that typi
al phase points on the energy surfa
e of ama
ros
opi
 system are su
h that the empiri
al distribution of velo
ities is approximatelyMaxwellian. On
e one has su
h a measure for quantum systems, one 
ould attempt ananalysis of the se
ond law of thermodynami
s in quantum me
hani
s along the lines of1This empiri
al equivalen
e should not too hastily be regarded as implying physi
al equivalen
e.Consider, for example, the two S
hr�odinger's 
at states 	� = (	alive �	dead)=p2. The measure thatgives equal weight to these two states 
orresponds to the same density matrix as the one giving equalweight to 	alive and 	dead. However the physi
al situation 
orresponding to the former measure, amixture of two grotesque superpositions, seems dramati
ally di�erent from the one 
orresponding tothe latter, a routine mixture. It is thus not easy to regard these two measures as physi
ally equivalent.2



Boltzmann's analysis of the se
ond law in 
lassi
al me
hani
s, involving an argumentto the e�e
t that the behavior des
ribed in the se
ond law (su
h as entropy in
rease)o

urs for typi
al states of an isolated ma
ros
opi
 system, i.e. for the overwhelmingmajority of points on S (H ) with respe
t to �(d ).Probability distributions on wave fun
tions of a 
omposite system, with Hilbertspa
e H , have in fa
t been used to establish the typi
al properties of the redu
eddensity matrix of a subsystem arising from the wave fun
tion of the 
omposite. Forexample, Page [19℄ 
onsiders the uniform distribution on S (H ) for a �nite-dimensionalHilbert spa
e H , in terms of whi
h he shows that the von Neumann entropy of theredu
ed density matrix is typi
ally nearly maximal under appropriate 
onditions on thedimensions of the relevant Hilbert spa
es.Given a probability distribution � on the unit sphere S (H ) of the Hilbert spa
eH there is always an asso
iated density matrix �� [25℄: it is the density matrix of themixture, or the statisti
al ensemble of systems, de�ned by the distribution �, given by�� = ZS (H )�(d ) j ih j : (1)For any proje
tion operator P , tr (��P ) is the probability of obtaining in an experimenta result 
orresponding to P for a system with a �-distributed wave fun
tion. It isevident from (1) that �� is the se
ond moment, or 
ovarian
e matrix, of �, provided �has mean 0 (whi
h may, and will, be assumed without loss of generality sin
e  and � are equivalent physi
ally).While a probability measure � on S (H ) determines a unique density matrix � onH via (1), the 
onverse is not true: the asso
iation � 7! �� given by (1) is many-to-one.2 There is furthermore no unique \physi
ally 
orre
t" 
hoi
e of � for a given � sin
efor any � 
orresponding to � one 
ould, in prin
iple, prepare an ensemble of systemswith wave fun
tions distributed a

ording to this �. However, while � itself need notdetermine a unique probability measure, additional fa
ts about a system, su
h as thatit has 
ome to thermal equilibrium, might. It is thus not unreasonable to ask: whi
hmeasure on S (H ) 
orresponds to a given thermodynami
 ensemble?Let us start with the mi
ro
anoni
al ensemble, 
orresponding to the energy interval[E;E + Æ℄, where Æ is small on the ma
ros
opi
 s
ale but large enough for the interval2For example, in a k-dimensional Hilbert spa
e the uniform probability distribution u = uS (H ) overthe unit sphere has density matrix �u = 1k I with I the identity operator on H ; at the same time, forevery orthonormal basis ofH the uniform distribution over the basis (whi
h is a measure 
on
entratedon just k points) has the same density matrix, � = 1k I . An ex
eptional 
ase is the density matrix
orresponding to a pure state, � = j ih j, as the measure � with this density matrix is almost unique:it must be 
on
entrated on the ray through  , and thus the only non-uniqueness 
orresponds to thedistribution of the phase. 3



to 
ontain many eigenvalues. To this there is asso
iated the spe
tral subspa
e HE;Æ,the span of the eigenstates jni of the Hamiltonian H 
orresponding to eigenvalues Enbetween E and E+ Æ. Sin
eHE;Æ is �nite dimensional, one 
an form the mi
ro
anoni
aldensity matrix �E;Æ = (dimHE;Æ)�1PHE;Æ (2)with PHE;Æ = 1[E;E+Æ℄(H) the proje
tion toHE;Æ. This density matrix is diagonal in theenergy representation and gives equal weight to all energy eigenstates in the interval[E;E + Æ℄.But what is the 
orresponding mi
ro
anoni
al measure? The most plausible answer,given long ago by S
hr�odinger [20, 21℄ and Blo
h [26℄, is the (normalized) uniformmeasure uE;Æ = uS (HE;Æ) on the unit sphere in this subspa
e. �E;Æ is asso
iated with uE;Ævia (1).Note that a wave fun
tion 	 
hosen at random from this distribution is almost 
er-tainly a nontrivial superposition of the eigenstates jni with random 
oeÆ
ients hnj	ithat are identi
ally distributed, but not independent. The measure uE;Æ is 
learly sta-tionary, i.e., invariant under the unitary time evolution generated by H, and it is asspread out as it 
ould be over the set S (HE;Æ) of allowed wave fun
tions. This measureprovides us with a notion of a \typi
al wave fun
tion" fromHE;Æ whi
h is very di�erentfrom the one arising from the measure �E;Æ that, when H is nondegenerate, gives equalprobability (dimHE;Æ)�1 to every eigenstate jni with eigenvalue En 2 [E;E + Æ℄. Themeasure �E;Æ, whi
h is 
on
entrated on these eigenstates, is, however, less robust tosmall perturbations in H than is the smoother measure uE;Æ.Our proposal for the 
anoni
al ensemble is in the spirit of the uniform mi
ro
anoni
almeasure uE;Æ and redu
es to it in the appropriate 
ases. It is based on a mathemati
allynatural family of probability measures � on S (H ). For every density matrix � onH , there is a unique member � of this family, satisfying (1) for �� = �, namely theGaussian adjusted proje
ted measure GAP (�), 
onstru
ted roughly as follows: Eq. (1)(i.e., the fa
t that �� is the 
ovarian
e of �) suggests that we start by 
onsidering theGaussian measure G(�) with 
ovarian
e � (and mean 0), whi
h 
ould, in �nitely manydimensions, be expressed by G(�)(d ) / exp(�h j��1j i) d (where d is the obviousLebesgue measure on H ).3 This is not adequate, however, sin
e the measure that weseek must live on the sphere S (H ) whereas G(�) is spread out over all of H . Wethus adjust and then proje
t G(�) to S (H ), in the manner des
ribed in Se
tion 2,in order to obtain the measure GAP (�), having the pres
ribed 
ovarian
e � as well as3Berry [3℄ has 
onje
tured, and for some 
ases proven, that su
h measures des
ribe interestinguniversal properties of 
haoti
 energy eigenfun
tions in the semi
lassi
al regime, see also [12, 23℄. Itis perhaps worth 
onsidering the possibility that the GAP measures des
ribed here provide somewhatbetter 
andidates for this purpose. 4



other desirable properties.It is our 
ontention that a quantum system in thermal equilibrium at inverse tem-perature � should be des
ribed by a random state ve
tor whose distribution is given bythe measure GAP (��) asso
iated with the density matrix for the 
anoni
al ensemble,�� = �H ;H;� = 1Z exp(��H) with Z := tr exp(��H): (3)In order to 
onvey the signi�
an
e of GAP (�) as well as the plausibility of ourproposal that GAP (��) des
ribes thermal equilibrium, we re
all that a system des
ribedby a 
anoni
al ensemble is usually regarded as a subsystem of a larger system. It istherefore important to 
onsider the notion of the distribution of the wave fun
tion of asubsystem. Consider a 
omposite system in a pure state  2 H1 
H2, and ask whatmight be meant by the wave fun
tion of the subsystem with Hilbert spa
e H1. Forthis we propose the following. Let fjq2ig be a (generalized) orthonormal basis of H2(playing the role, say, of the eigenbasis of the position representation). For ea
h 
hoi
eof jq2i, the (partial) s
alar produ
t hq2j i, taken in H2, is a ve
tor belonging to H1.Regarding jq2i as random, we are led to 
onsider the random ve
tor 	1 2H1 given by	1 = N hQ2j i (4)where N = N ( ;Q2) = 

hQ2j i

�1 is the normalizing fa
tor and jQ2i is a randomelement of the basis fjq2ig, 
hosen with the quantum distributionP(Q2 = q2) = 

hq2j i

2: (5)We refer to 	1 as the 
onditional wave fun
tion [6℄ of system 1. Note that 	1 be
omesdoubly random when we start with a random wave fun
tion in H1 
H2 instead of a�xed one.The distribution of 	1 
orresponding to (4) and (5) is given by the probabilitymeasure on S (H1),�1(d 1) = P(	1 2 d 1) =Xq2 

hq2j i

2 Æ� 1 �N ( ; q2) hq2j i� d 1 ; (6)where Æ( � �) d denotes the \delta" measure 
on
entrated at �. While the densitymatrix ��1 asso
iated with �1 always equals the redu
ed density matrix �red1 of system1, given by �red1 = tr2j ih j =Xq2 hq2j ih jq2i ; (7)the measure �1 itself usually depends on the 
hoi
e of the basis fjq2ig. It turns out,nevertheless, as we point out in Se
tion 5.1, that �1(d 1) is a universal fun
tion of �red15



in the spe
ial 
ase that system 2 is large and  is typi
al (with respe
t to the uni-form distribution on all wave fun
tions with the same redu
ed density matrix), namelyGAP (�red1 ). Thus GAP (�) has a distinguished, universal status among all probabilitymeasures on S (H ) with density matrix �.To further support our 
laim that GAP (��) is the right measure for ��, we shallregard, as is usually done, the system des
ribed by �� as 
oupled to a (very large)heat bath. The intera
tion between the heat bath and the system is assumed to be(in some suitable sense) negligible. We will argue that if the wave fun
tion  of the
ombined \system plus bath" has mi
ro
anoni
al distribution uE;Æ, then the distributionof the 
onditional wave fun
tion of the (small) system is approximately GAP (��); seeSe
tion 4.Indeed, a stronger statement is true. As we argue in Se
tion 5.2, even for a typi
al�xed mi
ro
anoni
al wave fun
tion  of the 
omposite, i.e., one typi
al for uE;Æ, the
onditional wave fun
tion of the system, de�ned in (4), is then approximately GAP (��)-distributed, for a typi
al basis fjq2ig. This is related to the fa
t that for a typi
almi
ro
anoni
al wave fun
tion  of the 
omposite the redu
ed density matrix for thesystem is approximately �� [7, 21℄. Note that the analogous statement in 
lassi
alme
hani
s would be wrong: for a �xed phase point � of the 
omposite, be it typi
al oratypi
al, the phase point of the system 
ould never be random, but rather would merelybe the part of � belonging to the system.The remainder of this paper is organized as follows. In Se
tion 2 we de�ne themeasure GAP (�) and obtain several ways of writing it. In Se
tion 3 we des
ribe somenatural mathemati
al properties of these measures, and suggest that these propertiesuniquely 
hara
terize the measures. In Se
tion 4 we argue that GAP (��) represents the
anoni
al ensemble. In Se
tion 5 we outline the proof that GAP (�) is the distributionof the 
onditional wave fun
tion for most wave fun
tions in H1 
 H2 with redu
eddensity matrix � if system 2 is large, and show that GAP (��) is the typi
al distributionof the 
onditional wave fun
tion arising from a �xed mi
ro
anoni
al wave fun
tion ofa system in 
onta
t with a heat bath. In Se
tion 6 we dis
uss other measures thathave been or might be 
onsidered as the thermal equilibrium distribution of the wavefun
tion. Finally, in Se
tion 7 we 
ompute expli
itly the distribution of the 
oeÆ
ientsof a GAP (��)-distributed state ve
tor in the simplest possible example, the two-levelsystem.2 De�nition of GAP (�)In this se
tion, we de�ne, for any given density matrix � on a (separable) Hilbert spa
eH ; the Gaussian adjusted proje
ted measure GAP (�) onS (H ). This de�nition makes6



use of two auxiliary measures, G(�) and GA(�), de�ned as follows.G(�) is the Gaussian measure on H with 
ovarian
e matrix � (and mean 0). Moreexpli
itly, let fjnig be an orthonormal basis of eigenve
tors of � and pn the 
orrespondingeigenvalues, � =Xn pn jnihnj: (8)Su
h a basis exists be
ause � has �nite tra
e. Let Zn be a sequen
e of independent
omplex-valued random variables having a (rotationally symmetri
) Gaussian distribu-tion in C with mean 0 and varian
e E jZn j2 = pn (9)(where E means expe
tation), i.e., ReZn and ImZn are independent real Gaussianvariables with mean zero and varian
e pn=2. We de�ne G(�) to be the distribution ofthe random ve
tor 	G :=Xn Znjni : (10)Note that 	G is not normalized, i.e., it does not lie in S (H ). In order that 	G lie inH at all, we need that the sequen
e Zn be square-summable,Pn jZnj2 <1. That thisis almost surely the 
ase follows from the fa
t that EPn jZnj2 is �nite. In fa
t,EXn jZnj2 =Xn E jZn j2 =Xn pn = tr � = 1: (11)More generally, we observe that for any measure � onH with (mean 0 and) 
ovarian
egiven by the tra
e 
lass operator C,ZH �(d ) j ih j = C ;we have that, for a random ve
tor 	 with distribution �, Ek	k2 = trC.It also follows that 	G almost surely lies in the positive spe
tral subspa
e of �, the
losed subspa
e spanned by those jni with pn 6= 0, or, equivalently, the orthogonal
omplement of the kernel of �; we shall 
all this subspa
e support(�). Note further that,sin
e G(�) is the Gaussian measure with 
ovarian
e �, it does not depend (in the 
aseof degenerate �) on the 
hoi
e of the basis fjnig among the eigenbases of �, but only on�. Sin
e we want a measure on S (H ) while G(�) is not 
on
entrated on S (H ) butrather is spread out, it would be natural to proje
t G(�) to S (H ). However, sin
eproje
ting to S (H ) 
hanges the 
ovarian
e of a measure, as we will point out in detailin Se
tion 3.1, we introdu
e an adjustment fa
tor that exa
tly 
ompensates for the7




hange of 
ovarian
e due to proje
tion. We thus de�ne the adjusted Gaussian measureGA(�) on H by GA(�)(d ) = k k2 G(�)(d ): (12)Sin
e Ek	Gk2 = 1 by (11), GA(�) is a probability measure.Let 	GA be a GA(�)-distributed random ve
tor. We de�ne GAP (�) to be the dis-tribution of 	GAP := 	GAk	GAk = P (	GA) (13)with P the proje
tion to the unit sphere (i.e., the normalization of a ve
tor),P :H n f0g ! S (H ) ; P ( ) = k k�1 : (14)Putting (13) di�erently, for a subset B � S (H ),GAP (�)(B) = GA(�)(R+B) = ZR+B G(�)(d ) k k2 (15)where R+B denotes the 
one through B. More su

in
tly,GAP (�) = P��GA(�)� = GA(�) Æ P�1 : (16)where P� denotes the a
tion of P on measures.More generally, one 
an de�ne for any measure � on H the \adjust-and-proje
t"pro
edure: let A(�) be the adjusted measure A(�)(d ) = k k2 �(d ); then the adjusted-and-proje
ted measure is P��A(�)� = A(�) Æ P�1, thus de�ning a mapping P� ÆA fromthe measures on H with R �(d ) k k2 = 1 to the probability measures on S (H ). Wethen have that GAP (�) = P��A(G(�))�.We remark that 	GAP , too, lies in support(�) almost surely, and that P (	G) doesnot have distribution GAP (�)|nor 
ovarian
e � (see Se
t. 3.1).We 
an be more expli
it in the 
ase that � has �nite rank k = dim support(�), e.g. for�nite-dimensionalH : then there exists a Lebesgue volume measure � on support(�) =C k , and we 
an spe
ify the densities of G(�) and GA(�),dG(�)d� ( ) = 1�k det �+ exp(�h j��1+ j i); (17a)dGA(�)d� ( ) = k k2�k det �+ exp(�h j��1+ j i); (17b)with �+ the restri
tion of � to support(�). Similarly, we 
an express GAP (�) relative to
8



the (2k � 1){dimensional surfa
e measure u on S (support(�)),dGAP (�)du ( ) = 1�k det �+ 1Z0 dr r2k�1 r2 exp(�r2h j��1+ j i) = (18a)= k!2�k det �+ h j��1+ j i�k�1 : (18b)We note that GAP (�E;Æ) = uE;Æ ; (19)where �EÆ is the mi
ro
anoni
al density matrix given in (2) and uEÆ is the mi
ro
anoni
almeasure.3 Properties of GAP (�)In this se
tion we prove the following properties of GAP (�):Property 1 The density matrix asso
iated with GAP (�) in the sense of (1) is �, i.e.,�GAP (�) = �.Property 2 The asso
iation � 7! GAP (�) is 
ovariant: For any unitary operator U onH , U�GAP (�) = GAP (U�U�) (20)where U� = U�1 is the adjoint of U and U� is the a
tion of U on measures, U�� = �ÆU�1.In parti
ular, GAP (�) is stationary under any unitary evolution that preserves �.Property 3 If 	 2H1 
H2 has distribution GAP (�1 
 �2) then, for any basis fjq2igof H2, the 
onditional wave fun
tion 	1 has distribution GAP (�1). (\GAP of a produ
tdensity matrix has GAP marginal.")We will refer to the property expressed in Property 3 by saying that the family ofGAP measures is hereditary. We note that when 	 2H1
H2 has distribution GAP (�)and � is not a tensor produ
t, the distribution of 	1 need not be GAP (�red1 ) (as we willshow after the proof of Property 3).Before establishing these properties let us formulate what they say about our 
an-didate GAP (��) for the 
anoni
al distribution. As a 
onsequen
e of Property 1, thedensity matrix arising from � = GAP (��) in the sense of (1) is the density matrix ��.As a 
onsequen
e of Property 2, GAP (��) is stationary, i.e., invariant under the unitarytime evolution generated by H. As a 
onsequen
e of Property 3, if 	 2H =H1 
H2has distributionGAP (�H ;H;�) and systems 1 and 2 are de
oupled, H = H1
I2+I1
H2,9



where Ii is the identity on Hi, then the 
onditional wave fun
tion 	1 of system 1 hasa distribution (in H1) of the same kind with the same inverse temperature �, namelyGAP (�H1;H1;�). This �ts well with our 
laim that GAP (��) is the thermal equilibriumdistribution sin
e one would expe
t that if a system is in thermal equilibrium at inversetemperature � then so are its subsystems.We 
onje
ture that the family of GAP measures is the only family of measuressatisfying Properties 1{3. This 
onje
ture is formulated in detail, and established forsuitably 
ontinuous families of measures, in Se
tion 6.2.The following lemma, proven in Se
tion 3.3, is 
onvenient for showing that a randomwave fun
tion is GAP-distributed:Lemma 1 Let 
 be a measurable spa
e, � a probability measure on 
, and 	 : 
!Ha Hilbert-spa
e-valued fun
tion. If 	(!) is G(�)-distributed with respe
t to �(d!), then	(!)=k	(!)k is GAP (�)-distributed with respe
t to k	(!)k2�(d!).3.1 The Density MatrixIn this subse
tion we establish Property 1. We then add a remark on the 
ovarian
ematrix.Proof of Property 1. From (1) we �nd that�GAP (�) = ZS (H )GAP (�)(d ) j ih j = E�j	GAP ih	GAP j� =(13)= E�k	GAk�2 j	GAih	GAj� = ZH GA(�)(d ) k k�2 j ih j =(12)= ZH G(�)(d ) j ih j = �be
ause RH G(�)(d ) j ih j is the 
ovarian
e matrix of G(�), whi
h is �. (A numberabove an equal sign refers to the equation used to obtain the equality.) �Remark on the 
ovarian
e matrix. The equation �GAP (�) = � 
an be understood asexpressing that GAP (�) and G(�) have the same 
ovarian
e. For a probability measure� on H with mean 0 that need not be 
on
entrated on S (H ), the 
ovarian
e matrixC� is given by C� = ZH �(d�) j�ih�j: (21)
10



Suppose we want to obtain from � a probability measure on S (H ) having the same
ovarian
e. The proje
tion P�� of � to S (H ), de�ned by P��(B) = �(R+B) forB � S (H ), is not what we want, as it has 
ovarian
eCP�� = ZS (H )P��(d ) j ih j = ZH �(d�) k�k�2 j�ih�j 6= C�:However, P��A(�)� does the job: it has the same 
ovarian
e. As a 
onsequen
e, a nat-urally distinguished measure on S (H ) with given 
ovarian
e is the Gaussian adjustedproje
ted measure, the GAP measure, with the given 
ovarian
e.3.2 GAP (�) is CovariantWe establish Property 2 and then dis
uss in more general terms under whi
h 
onditionsa measure on S (H ) is stationary.Proof of Property 2. Under a unitary transformation U , a Gaussian measure with 
ovari-an
e matrix C transforms into one with 
ovarian
e matrix UCU�. Sin
e kU k2 = k k2,GA(C) transforms into GA(UCU�); that is, U	GAC and 	GAUCU� are equal in distribution,and sin
e kU	GAC k = k	GAC k, we have that U	GAPC and 	GAPUCU� are equal in distribution.In other words, GAP (C) transforms into GAP (UCU�), whi
h is what we 
laimed in(20). �3.2.1 StationarityIn this subse
tion we dis
uss a 
riterion for stationarity under the evolution generatedby H =PnEn jnihnj. Consider the following property of a sequen
e of 
omplex randomvariables Zn:The phases Zn=jZnj, when they exist, are independent of the moduli jZnjand of ea
h other, and are uniformly distributed on S1 = fei� : � 2 Rg: (22)(The phase Zn=jZnj exists when Zn 6= 0.) Condition (22) implies that the distributionof the random ve
tor 	 = Pn Znjni is stationary, sin
e Zn(t) = exp(�iEnt=~)Zn(0).Note also that (22) implies that the distribution has mean 0.We show that the Zn = hnj	GAP i have property (22). To begin with, the Zn =hnj	Gi obviously have this property sin
e they are independent Gaussian variables.Sin
e the density of GA(�) relative to G(�) is a fun
tion of the moduli alone, also theZn = hnj	GAi satisfy (22). Finally, sin
e the jhnj	GAP ij are fun
tions of the jhnj	GAijwhile the phases of the hnj	GAP i equal the phases of the hnj	GAi, also the Zn =hnj	GAP i satisfy (22). 11



We would like to add that (22) is not merely a suÆ
ient, but also almost a ne
essary
ondition (and morally a ne
essary 
ondition) for stationarity. Sin
e for any 	, themoduli jZnj = jhnj	ij are 
onstants of the motion, the evolution of 	 takes pla
e in the(possibly in�nite-dimensional) torusnXn jZnjei�n jni : 0 � �n < 2�o �= Yn:Zn 6=0S1; (23)
ontained in S (H ). Independent uniform phases 
orrespond to the uniform measure �on Qn S1. � is the only stationary measure if the motion on Qn S1 is uniquely ergodi
,and this is the 
ase whenever the spe
trum fEng of H is linearly independent overthe rationals Q , i.e., when every �nite linear 
ombination Pn rnEn of eigenvalues withrational 
oeÆ
ients rn, not all of whi
h vanish, is nonzero, see [2, 24℄.This is true of generi
 Hamiltonians, so that � is generi
ally the unique stationarydistribution on the torus. But even when the spe
trum of H is linearly dependent,e.g. when there are degenerate eigenvalues, and thus further stationary measures onthe torus exist, these further measures should not be relevant to thermal equilibriummeasures, be
ause of their instability against perturbations of H [11, 1℄.The stationary measure � on Qn S1 
orresponds, for given moduli jZnj or, equiva-lently, by setting jZnj = p(En)1=2 for a given probability measure p on the spe
trum ofH, to a stationary measure �p on S (H ) that is 
on
entrated on the embedded torus(23). The measures �p are (for generi
 H) the extremal stationary measures, i.e., theextremal elements of the 
onvex set of stationary measures, of whi
h all other stationarymeasures are mixtures.3.3 GAP Measures and Gaussian MeasuresLemma 1 is more or less immediate from the de�nition of GAP (�). A more detailedproof looks like this:Proof of Lemma 1. By assumption the distribution � Æ 	�1 of 	 with respe
t to � isG(�). Thus for the distribution of 	 with respe
t to �0(d!) = k	(!)k2�(d!), we have�0 Æ 	�1(d ) = k k2 � Æ 	�1(d ) = k k2G(�)(d ) = GA(�)(d ). Thus, P (	(!)) hasdistribution P�GA(�) = GAP (�). �3.4 Generalized BasesWe have already remarked in the introdu
tion that the orthonormal basis fjq2ig of H2,used in the de�nition of the 
onditional wave fun
tion, 
ould be a generalized basis, su
h12



as a \
ontinuous" basis, for whi
h it is appropriate to writeI2 = Z dq2 jq2ihq2jinstead of the \dis
rete" notation I2 =Xq2 jq2ihq2jwe used in (4){(7).We wish to elu
idate this further. A generalized orthonormal basis fjq2i : q2 2 Q2gindexed by the set Q2 is mathemati
ally de�ned by a unitary isomorphism H2 !L2(Q2; dq2), where dq2 denotes a measure onQ2. We 
an think ofQ2 as the 
on�gurationspa
e of system 2; as a typi
al example, system 2 may 
onsist of N2 parti
les in a box� � R3 , so that its 
on�guration spa
e is Q2 = �N2 with dq2 the Lebesgue measure(whi
h 
an be regarded as obtained by 
ombining N2 
opies of the volume measure onR3).4 The formal ket jq2i then means the delta fun
tion 
entered at q2; it is to be treatedas (though stri
tly speaking it is not) an element of H2.The de�nition of the 
onditional wave fun
tion 	1 then reads as follows: The ve
tor 2H1 
H2 
an be regarded, using the isomorphismH2 ! L2(Q2; dq2), as a fun
tion : Q2 !H1. Eq. (4) is to be understood as meaning	1 = N  (Q2) (24)where N = N ( ;Q2) = 

 (Q2)

�1is the normalizing fa
tor and Q2 is a random point in Q2, 
hosen with the quantumdistribution P(Q2 2 dq2) = 

 (q2)

2dq2 ; (25)whi
h is how (5) is to be understood in this setting. As  is de�ned only up to 
hangeson a null set in Q2, 	1 may not be de�ned for a parti
ular Q2. Its distribution inH1, however, is de�ned unambiguously by (24). In the most familiar setting withH1 = L2(Q1; dq1), we have that ( (Q2))(q1) =  (q1; Q2).In the following, we will allow generalized bases and use 
ontinuous instead of dis
retenotation, and set hQ2j i =  (Q2).4In fa
t, in the original de�nition of the 
onditional wave fun
tion in [6℄, q2 was supposed to be the
on�guration, 
orresponding to the positions of the parti
les belonging to system 2. For our purposeshere, however, the physi
al meaning of the q2 is irrelevant, so that any generalized orthonormal basisof H2 
an be used. 13



3.5 Distribution of the Wave Fun
tion of a SubsystemProof of Property 3. The proof is divided into four steps.Step 1. We 
an assume that 	 = P (	GA) where 	GA is a GA(�)-distributed randomve
tor in H =H1 
H2. We then have that 	1 = P1�hQ2j	i� = P1�hQ2j	GAi� whereP1 is the normalization in H1, and where the distribution of Q2, given 	GA, isP(Q2 2 dq2j	GA) = khq2j	GAik2k	GAk2 dq2 :	GA and Q2 have a joint distribution given by the following measure � on H �Q2:�(d � dq2) = khq2j ik2G(�)(d ) dq2 : (26)Thus, what needs to be shown is that with respe
t to �, P1(hq2j i) is GAP (�1)-distributed.Step 2. If 	 2 H1 
H2 is G(�1 
 �2)-distributed and q2 2 Q2 is �xed, then therandom ve
tor f(q2) hq2j	i 2 H1 with f(q2) = hq2j�2jq2i�1=2 is G(�1)-distributed. Thisfollows, more or less, from the fa
t that a subset of a set of jointly Gaussian randomvariables is also jointly Gaussian, together with the observation that the 
ovarian
e ofhq2j	i is ZH G(�1 
 �1)(d ) hq2j ih jq2i = hq2j�1 
 �2jq2i = �1 hq2j�2jq2i :More expli
itly, pi
k an orthonormal basis fjniig of Hi 
onsisting of eigenve
tors of�i with eigenvalues p(i)ni , and note that the ve
tors jn1; n2i := jn1i 
 jn2i form an or-thonormal basis of H =H1
H2 
onsisting of eigenve
tors of �1
 �2 with eigenvaluespn1;n2 = p(1)n1 p(2)n2 . Sin
e the random variables Zn1;n2 := hn1; n2j	i are independent Gaus-sian random variables with mean zero and varian
es E jZn1 ; n2j2 = pn1;n2, so are theirlinear 
ombinationsZ(1)n1 := hn1jf(q2)	(q2)i = f(q2)Xn2 hq2jn2iZn1;n2with varian
es (be
ause varian
es add when adding independent Gaussian random vari-ables) E jZ(1)n1 j2 = f 2(q2)Xn2 ��hq2jn2i��2E jZn1 ;n2j2 = p(1)n1 Pn2 jhq2jn2ij2 p(2)n2hq2j�2jq2i = p(1)n1 :Thus f(q2) hq2j	i is G(�1)-distributed, whi
h 
ompletes step 2.14



Step 3. If 	 2 H1 
H2 is G(�1 
 �2)-distributed and Q2 2 Q2 is random with anydistribution, then the random ve
tor f(Q2) hQ2j	i is G(�1)-distributed. This is a trivial
onsequen
e of step 2.Step 4. Apply Lemma 1 as follows. Let 
 =H �Q2, 	(!) = 	( ; q2) = f(q2) hq2j i,and �(d �dq2) = G(�)(d ) hq2j�2jq2i dq2 (whi
h means that q2 and  are independent).By step 3, the hypothesis of Lemma 1 (for � = �1) is satis�ed, and thus P1(	) =P1(hq2j i) is GAP (�1)-distributed with respe
t tok	(!)k2�(d!) = f 2(q2)khq2j ik2G(�)(d ) hq2j�2jq2i dq2 = �(d!) ;where we have used that f 2(q2) = hq2j�2jq2i�1. But this is, a

ording to step 1, whatwe needed to show. �To verify the statement after Property 3, 
onsider the density matrix � = j�ih�j fora pure state � of the form � =Pnppn  n 
 �n, where f ng and f�ng are respe
tivelyorthonormal bases for H1 and H2 and the pn are nonnegative with Pn pn = 1. Thena GAP (�)-distributed random ve
tor 	 
oin
ides with � up to a random phase, andso �red1 = Pn pn j nih nj. Choosing for fjq2ig the basis f�ng, the distribution of 	1 isnot GAP (�red1 ) but rather is 
on
entrated on the eigenve
tors of �red1 . When the pn arepairwise-distin
t this measure is the measure EIG(�red1 ) we de�ne in Se
tion 6.1.1.4 Mi
ro
anoni
al Distribution for a Large SystemImplies the Distribution GAP (��) for a SubsystemIn this se
tion we use Property 3, i.e., the fa
t that GAPmeasures are hereditary, to showthat GAP (��) is the distribution of the 
onditional wave fun
tion of a system 
oupledto a heat bath when the wave fun
tion of the 
omposite is distributed mi
ro
anoni
ally,i.e., a

ording to uE;Æ.Consider a system with Hilbert spa
e H1 
oupled to a heat bath with Hilbert spa
eH2. Suppose the 
omposite system has a random wave fun
tion 	 2 H = H1 
H2whose distribution is mi
ro
anoni
al, uE;Æ. Assume further that the 
oupling is negligiblysmall, so that we 
an write for the HamiltonianH = H1 
 I2 + I1 
H2 ; (27)and that the heat bath is large (so that the energy levels of H2 are very 
lose).It is a well known fa
t that for ma
ros
opi
 systems di�erent equilibrium ensembles,for example the mi
ro
anoni
al and the 
anoni
al, give approximately the same answerfor appropriate quantities. By this equivalen
e of ensembles [17℄, we should have that15



�E;Æ � �� for suitable � = �(E). Then, sin
e GAP (�) depends 
ontinuously on �, wehave that uE;Æ = GAP (�E;Æ) � GAP (��). Thus we should have that the distributionof the 
onditional wave fun
tion 	1 of the system is approximately the same as wouldbe obtained when 	 is GAP (��)-distributed. But sin
e, by (27), the 
anoni
al densitymatrix is then of the form�� = �H ;H;� = �H1;H1;� 
 �H2;H2;� ; (28)we have by Property 3 that 	1 is approximately GAP (�H1;H1;�)-distributed, whi
h iswhat we wanted to show.5 Typi
ality of GAP MeasuresThe previous se
tion 
on
erns the distribution of the 
onditional wave fun
tion 	1 aris-ing from the mi
ro
anoni
al distribution of the wave fun
tion of the 
omposite. It
on
erns, in other words, a random wave fun
tion of the 
omposite. The result there isthe analogue, on the level of measures on Hilbert spa
e, of the well known result that ifa mi
ro
anoni
al density matrix (2) is assumed for the 
omposite, the redu
ed densitymatrix �red1 of the system, de�ned as the partial tra
e tr2 �E;Æ, is 
anoni
al if the heatbath is large [13℄.As indi
ated in the introdu
tion, a stronger statement about the 
anoni
al densitymatrix is in fa
t true, namely that for a �xed (nonrandom) wave fun
tion  of the
omposite whi
h is typi
al with respe
t to uE;Æ, �red1 � �H1;H1;� when the heat bath islarge (see [7, 21℄; for a rigorous study of spe
ial 
ases of a similar question, see [22℄).5This stronger statement will be used in Se
tion 5.2 to show that a similar statementholds for the distribution of 	1 as well, namely that it is approximately GAP (�H1;H1;�)-distributed for a typi
al �xed  2 HE;Æ and basis fjq2ig of H2. But we must �rst
onsider the distribution of 	1 for a typi
al  2H .5.1 Typi
ality of GAP Measures for a Subsystem of a LargeSystemIn this se
tion we argue that for a typi
al wave fun
tion of a big system the 
onditionalwave fun
tion of a small subsystem is approximately GAP-distributed, �rst giving apre
ise formulation of this result and then sket
hing its proof. We give the detailedproof in [8℄.5It is a 
onsequen
e of the results in [19℄ that when dimH2 ! 1, the redu
ed density matrix be-
omes proportional to the identity onH1 for typi
al wave fun
tions relative to the uniform distributionon S (H ) (
orresponding to uE;Æ for E = 0 and H = 0).16



5.1.1 Statement of the ResultLet H = H1 
 H2, where H1 and H2 have respe
tive dimensions k and m, withk < m <1. For any given density matrix �1 on H1, 
onsider the setR(�1) = � 2 S (H ) : �red1 ( ) = �1	 ; (29)where �red1 ( ) = tr2j ih j is the redu
ed density matrix for the wave fun
tion  . Thereis a natural notion of (normalized) uniform measure u�1 on R(�1); we give its pre
isede�nition in Se
tion 5.1.3.We 
laim that for �xed k and large m, the distribution � 1 of the 
onditional wavefun
tion 	1 of system 1, de�ned by (4) and (5) for a basis fjq2ig of H2, is 
lose toGAP (�1) for the overwhelming majority, relative to u�1 , of ve
tors  2H with redu
eddensity matrix �1. More pre
isely:For every " > 0 and every bounded 
ontinuous fun
tion f : S (H1)! R,u�1n 2 R(�1) : ��� 1 (f)�GAP (�1)(f)�� < "o! 1 as m!1 ; (30)regardless of how the basis fjq2ig is 
hosen.Here we use the notation �(f) := ZS (H ) �(d ) f( ) : (31)5.1.2 Measure on H Versus Density MatrixIt is important to resist the temptation to translate u�1 into a density matrix in H .As mentioned in the introdu
tion, to every probability measure � on S (H ) there
orresponds a density matrix �� in H , given by (1), whi
h 
ontains all the empiri
allya

essible information about an ensemble with distribution �. It may therefore seema natural step to 
onsider, instead of the measure � = u�1, dire
tly its density matrix�� = 1m�1
I2, where I2 is the identity onH2. But sin
e our result 
on
erns properties ofmost wave fun
tions relative to �, it 
annot be formulated in terms of the density matrix��. In parti
ular, the 
orresponding statement relative to another measure �0 6= � onS (H ) with the same density matrix ��0 = �� 
ould be false. Noting that �� has a basisof eigenstates that are produ
t ve
tors, we 
ould, for example, take �0 to be a measure
on
entrated on these eigenstates. For any su
h state  , � 1 is a delta-measure.
17



5.1.3 Outline of ProofThe result follows, by (5), Lemma 1, and the 
ontinuity of P�ÆA, from the 
orrespondingstatement about the Gaussian measure G(�1) on H1 with 
ovarian
e �1:For every " > 0 and every bounded 
ontinuous f :H1 ! R,u�1n 2 R(�1) : ���� 1 (f)�G(�1)(f)�� < "o! 1 as m!1 ; (32)where �� 1 is the distribution of pm hQ2j i 2 H1 (not normalized) with respe
t to theuniform distribution of Q2 2 f1; : : : ; mg.We sket
h the proof of (32) and give the de�nition of u�1. A

ording to the S
hmidtde
omposition, every  2H 
an be written in the form =Xi 
i �i 
 �i ; (33)where f�ig is an orthonormal basis of H1, f�ig an orthonormal system in H2, and the
i are 
oeÆ
ients whi
h 
an be assumed real and nonnegative. From (33) one reads o�the redu
ed density matrix of system 1,�red1 =Xi 
2i j�iih�ij : (34)As the redu
ed density matrix is given, �red1 = �1, the orthonormal basis f�ig and the
oeÆ
ients 
i are determined (when �1 is nondegenerate) as the eigenve
tors and thesquare-roots of the eigenvalues of �1, and, R(�1) is in a natural one-to-one 
orrespon-den
e with the set ONS(H2; k) of all orthonormal systems f�ig in H2 of 
ardinalityk. (If some of the eigenvalues of �1 vanish, the one-to-one 
orresponden
e is withONS(H2; k0) where k0 = dimsupport(�1).) The Haar measure on the unitary group ofH2 de�nes the uniform distribution on the set of orthonormal bases of H2, of whi
hthe uniform distribution on ONS(H2; k) is a marginal, and thus de�nes the uniformdistribution u�1 on R(�1). (When �1 is degenerate, u�1 does not depend upon how theeigenve
tors �i of �1 are 
hosen.)The key idea for establishing (32) from the S
hmidt de
omposition (33) is this: �� 1is the average of m delta measures with equal weights, �� 1 = m�1Pq2 Æ 1(q2), lo
ated atthe points  1(q2) = kXi=1 
ipm hq2j�ii�i : (35)Now regard  as random with distribution u�1; then the  1(q2) are m random ve
tors,and �� 1 is their empiri
al distribution. If the mk 
oeÆ
ients hq2j�ii were independent18



Gaussian (
omplex) random variables with (mean zero and) varian
e m�1, then the 1(q2) would be m independent drawings of a G(�1)-distributed random ve
tor; by theweak law of large numbers, their empiri
al distribution would usually be 
lose to G(�1);in fa
t, the probability that ���� 1 (f)�G(�1)(f)�� < " would 
onverge to 1, as m!1.However, when f�ig is a random orthonormal system with uniform distribution asdes
ribed above, the expansion 
oeÆ
ients hq2j�ii in the de
omposition of the �i's�i =Xq2 hq2j�iijq2i (36)will not be independent|sin
e the �i's must be orthogonal and sin
e k�ik = 1. Nonethe-less, repla
ing the 
oeÆ
ients hq2j�ii in (36) by independent Gaussian 
oeÆ
ients ai(q2)as des
ribed above, we obtain a system of ve
tors�0i =Xq2 ai(q2)jq2i (37)that, in the limit m!1, form a uniformly distributed orthonormal system: k�0ik ! 1(by the law of large numbers) and h�0ij�0ji ! 0 for i 6= j (sin
e a pair of randomly 
hosenve
tors in a high-dimensional Hilbert spa
e will typi
ally be almost orthogonal). This
ompletes the proof.5.1.4 ReformulationWhile this result suggests that GAP (��) is the distribution of the 
onditional wavefun
tion of a system 
oupled to a heat bath when the wave fun
tion of the 
omposite is atypi
al �xed mi
ro
anoni
al wave fun
tion, belonging toHE;Æ, it does not quite imply it.The reason for this is thatHE;Æ has measure 0 with respe
t to the uniform distribution onH ; even when the latter is �nite-dimensional. Nonetheless, there is a simple 
orollary,or reformulation, of the result that will allow us to 
ope with mi
ro
anoni
al wavefun
tions.We have indi
ated that for our result the 
hoi
e of basis fjq2ig of H2 does notmatter. In fa
t, while � 1 , the distribution of the 
onditional wave fun
tion 	1 of system1, depends upon both  2 H and the 
hoi
e of basis fjq2ig of H2, the distributionof � 1 itself, when  is u�1-distributed, does not depend upon the 
hoi
e of basis. Thisfollows from the fa
t that for any unitary U on H2hU�1q2j i = hq2jI1 
 U i (38)(and the invarian
e of the Haar measure of the unitary group of H2 under left multi-pli
ation). It similarly follows from (38) that for �xed  2 H , the distribution of � 119



arising from the uniform distribution � of the basis fjq2ig, in the set ONB(H2) of allorthonormal bases ofH2, is the same as the distribution of � 1 arising from the uniformdistribution u�1 of  with a �xed basis (and the fa
t that the Haar measure is invariantunder U 7! U�1). We thus have the following 
orollary:Let  2 H and let �1 = tr2j ih j be the 
orresponding redu
ed density matrix forsystem 1. Then for a typi
al basis fjq2ig of H2, the 
onditional wave fun
tion 	1 ofsystem 1 is approximately GAP (�1)-distributed when m is large: For every " > 0 andevery bounded 
ontinuous fun
tion f : S (H1)! R,�nfjq2ig 2 ONB(H2) : ��� 1 (f)�GAP (�1)(f)�� < "o! 1 as dim(H2)!1 : (39)
5.2 Typi
ality of GAP (��) for a Subsystem of a Large Systemin the Mi
ro
anoni
al EnsembleIt is an immediate 
onsequen
e of the result of Se
tion 5.1.4 that for any �xed mi
ro-
anoni
al wave fun
tion  for a system 
oupled to a (large) heat bath, the 
onditionalwave fun
tion 	1 of the system will be approximately GAP-distributed. When this is
ombined with the \
anoni
al typi
ality" des
ribed near the beginning of Se
tion 5, weobtain the following result:Consider a system with �nite-dimensional Hilbert spa
e H1 
oupled to a heat bath with�nite-dimensional Hilbert spa
e H2. Suppose that the 
oupling is weak, so that we 
anwrite H = H1
I2+I1
H2 onH =H1
H2, and that the heat bath is large, so that theeigenvalues of H2 are 
lose. Then for any wave fun
tion  that is typi
al relative to themi
ro
anoni
al measure uE;Æ, the distribution � 1 of the 
onditional wave fun
tion 	1,de�ned by (4) and (5) for a typi
al basis fjq2ig of the heat bath, is 
lose to GAP (��)for suitable � = �(E), where �� = �H1;H1;�. In other words, in the thermodynami
limit, in whi
h the volume V of the heat bath and dim(H2) go to in�nity and E=V = eis 
onstant, we have that for all "; Æ > 0, and for all bounded 
ontinuous fun
tionsf : S (H1)! R,uE;Æ � �n( ; fjq2ig) 2 S (H )�ONB(H2) : ��� 1 (f)�GAP (��)(f)�� < "o! 1 (40)where � = �(e).We note that if fjq2ig were an energy eigenbasis rather than a typi
al basis, theresult would be false. 20



6 Remarks6.1 Other Candidates for the Canoni
al DistributionWe review in this se
tion other distributions that have been, or may be, 
onsidered aspossible 
andidates for the distribution of the wave fun
tion of a system from a 
anoni
alensemble.6.1.1 A Distribution on the Eigenve
torsOne possibility, whi
h goes ba
k to von Neumann [25, p. 329℄, is to 
onsider �(d ) as
on
entrated on the eigenve
tors of �; we denote this distribution EIG(�) after the �rstletters of \eigenve
tor"; it is de�ned as follows. Suppose �rst that � is nondegenerate.To sele
t an EIG(�)-distributed ve
tor, pi
k a unit eigenve
tor jni, so that �jni = pnjni,with probability pn and randomize its phase. This de�nition 
an be extended in a naturalway to degenerate �: EIG(�) = Xp2spe
(�) p dimHp uS (Hp); (41)whereHp denotes the eigenspa
e of � asso
iated with eigenvalue p. The measure EIG(�)is 
on
entrated on the set SpHp of eigenve
tors of �, whi
h for the 
anoni
al � =�H ;H;� 
oin
ides with the set of eigenve
tors of H; it is a mixture of the mi
ro
anoni
aldistributions uS (Hp) on the eigenspa
es ofH in the same way as in 
lassi
al me
hani
s the
anoni
al distribution on phase spa
e is a mixture of the mi
ro
anoni
al distributions.Note that EIG(�E;Æ) = uE;Æ, and that in parti
ular EIG(�E;Æ) is not, when H isnondegenerate, the uniform distribution �E;Æ on the energy eigenstates with energies in[E;E + Æ℄, against whi
h we have argued in the introdu
tion.The distribution EIG(�) has the same properties as those of GAP (�) des
ribed inProperties 1{3, ex
ept when � is degenerate:The measures EIG(�) are su
h that (a) they have the right density matrix: �EIG(�) =�; (b) they are 
ovariant: U�EIG(�) = EIG(U�U�); (
) they are hereditary at nonde-generate �: when H =H1
H2 and � is nondegenerate and un
orrelated, � = �1
 �2,then EIG(�) has marginal (i.e., distribution of the 
onditional wave fun
tion) EIG(�1).Proof. (a) and (b) are obvious. For (
) let, for i = 1; 2, jnii be a basis 
onsisting ofeigenve
tors of �i with eigenvalues p(i)ni . Note that the tensor produ
ts jn1i 
 jn2i areeigenve
tors of � with eigenvalues p(1)n1 p(2)n2 , and by nondegenera
y all eigenve
tors of �are of this form up to a phase fa
tor. Sin
e an EIG(�)-distributed random ve
tor 	 isalmost surely an eigenve
tor of �, we have 	 = ei�jN1ijN2i with random N1, N2, and �.The 
onditional wave fun
tion 	1 is, up to the phase, the eigenve
tor jN1i of �1 o

urring21



as the �rst fa
tor in 	. The probability of obtaining N1 = n1 is Pn2 p(1)n1 p(2)n2 = p(1)n1 .6 �In 
ontrast, for a degenerate � = �1 
 �2 the 
onditional wave fun
tion need notbe EIG(�1)-distributed, as the following example shows. Suppose �1 and �2 are non-degenerate but p(1)n1 p(2)n2 = p(1)m1p(2)m2 for some n1 6= m1; then an EIG(�)-distributed 	,whenever it happens to be an eigenve
tor asso
iated with eigenvalue p(1)n1 p(2)n2 , is of theform 
jn1ijn2i + 
0jm1ijm2i, almost surely with nonvanishing 
oeÆ
ients 
 and 
0; as a
onsequen
e, the 
onditional wave fun
tion is a multiple of 
jn1ihQ2jn2i+
0jm1ihQ2jm2i,whi
h is, for typi
al Q2 and unless jn2i and jm2i have disjoint supports, a nontrivial su-perposition of eigenve
tors jn1i, jm1i with di�erent eigenvalues|and thus 
annot arisefrom the EIG(�1) distribution.7Note also that EIG(�) is dis
ontinuous as a fun
tion of � at every degenerate �;in other words, EIG(�H ;H;�) is, like �E;Æ, unstable against small perturbations of theHamiltonian. (And, as with �E;Æ, this fa
t, quite independently of the 
onsiderationson behalf of GAP-measures in Se
tions 4 and 5, suggests against using EIG(��) as athermal equilibrium distribution.) Moreover, EIG(�) is highly 
on
entrated, generi
allyon a one-dimensional subset of S (H ), and in the 
ase of a �nite-dimensional Hilbertspa
eH fails to be absolutely 
ontinuous relative to the uniform distribution uS (H ) onthe unit sphere.For further dis
ussion of families �(�) of measures satisfying the analogues of Prop-erties 1{3, see Se
tion 6.2.6.1.2 An Extremal DistributionHere is another distribution onH asso
iated with the density matrix �. Let the randomve
tor 	 be 	 = Xp2spe
(�)pp	p; (42)the 	p being independent random ve
tors with distributions uS (Hp). In 
ase all eigen-values are nondegenerate, this means the 
oeÆ
ients Zn of 	, 	 = Pn Znjni, haveindependent uniform phases but �xed moduli jZnj = ppn|in sharp 
ontrast with themoduli when 	 is GAP (�)-distributed. And in 
ontrast to the measure EIG(�) 
onsid-ered in the previous subse
tion, the weights pn in the density matrix now 
ome from the�xed size of the 
oeÆ
ients of 	 when it is de
omposed into the eigenve
tors of �, rather6The relevant 
ondition for (
) follows from nondegenera
y but is weaker: it is that the eigenvalues of�1 and �2 are multipli
atively independent, in the sense that p(1)n1 p(2)n2 = p(1)m1p(2)m2 
an o

ur only trivially,i.e., when p(1)n1 = p(1)m1 and p(2)n2 = p(2)m2 . In parti
ular, the nondegenera
y of �1 and �2 is irrelevant.7A property weaker than (
) does hold for EIG(�) also in the 
ase of the degenera
y of � = �1
�2: ifthe orthonormal basis fjq2ig used in the de�nition of 
onditional wave fun
tion 
onsists of eigenve
torsof �2, then the distribution of the 
onditional wave fun
tion is EIG(�1).22



than from the probability with whi
h these eigenve
tors are 
hosen. This measure, too,is stationary under any unitary evolution that leaves � invariant. In parti
ular, it isstationary in the thermal 
ase � = �H ;H;�, and for generi
 H it is an extremal station-ary measure as 
hara
terized in Se
tion 3.2.1; in fa
t it is, in the notation of the lastparagraph of Se
tion 3.2.1, �p with p(En) = (1=Z) exp(��En).This measure, too, is highly 
on
entrated: For a Hilbert spa
eH of �nite dimensionk, it is supported by a submanifold of real dimension 2k�m where m is the number ofdistin
t eigenvalues of H, hen
e generi
ally it is supported by a submanifold of just halfthe dimension of H .6.1.3 The Distribution of Guerra and Lo�redoIn [10℄, Guerra and Lo�redo 
onsider the 
anoni
al density matrix �� for the one-dimensional harmoni
 os
illator and want to asso
iate with it a di�usion pro
ess onthe real line, using sto
hasti
 me
hani
s [18, 9℄. Sin
e sto
hasti
 me
hani
s asso
iates apro
ess with every wave fun
tion, they a
hieve this by �nding a measure �� onS (L2(R))whose density matrix is ��.They propose the following measure ��, supported by 
oherent states. With everypoint (q; p) in the 
lassi
al phase spa
e R2 of the harmoni
 os
illator there is asso
iateda 
oherent state  q;p(x) = (2��2)�1=4 exp��(x� q)24�2 + i~xp� i2~pq� (43)with �2 = ~=2m!, thus de�ning a mapping C : R2 ! S (L2(R)), C(q; p) =  q;p. LetH(q; p) = p2=2m + 12m!2q2 be the 
lassi
al Hamiltonian fun
tion, and 
onsider the
lassi
al 
anoni
al distribution at inverse temperature � 0,�
lass�0 (dq � dp) = 1Z 0 e��0H(q;p) dq dp ; Z 0 = ZR2 dq dp e��0H(q;p) : (44)Let � 0 = e�~!�1~! : Then �� = C��
lass�0 is the distribution on 
oherent states arising from�
lass�0 . The density matrix of �� is �� [10℄.This measure is 
on
entrated on a 2-dimensional submanifold of S (L2(R)), namelyon the set of 
oherent states (the image of C). Note also that not every density matrix �on L2(R) 
an arise as the density matrix of a distribution on the set of 
oherent states;for example, a pure state � = j ih j 
an arise in this way if and only if  is a 
oherentstate.
23



6.1.4 The Distribution Maximizing an Entropy Fun
tionalIn a similar spirit, one may 
onsider, on a �nite-dimensional Hilbert spa
e H , thedistribution 
(d ) = f( ) uS (H )(d ) that maximizes the Gibbs entropy fun
tionalG [f ℄ = � ZS (H )u(d ) f( ) log f( ) (45)under the 
onstraints that 
 be a probability distribution with mean 0 and 
ovarian
e�H ;H;�: f � 0 (46a)ZS (H )u(d ) f( ) = 1 (46b)ZS (H )u(d ) f( ) j i = 0 (46
)ZS (H )u(d ) f( ) j ih j = �H ;H;� : (46d)A standard 
al
ulation using Lagrange multipliers leads tof( ) = exph jLj i (47)with L a self-adjoint matrix determined by (46b) and (46d); 
omparison with (18b)shows that 
 is not a GAP measure. (We remark, however, that another Gibbs entropyfun
tional, G 0[f ℄ = � RH �(d ) f( ) log f( ), based on the Lebesgue measure � onH instead of uS (H ), is maximized, under the 
onstraints that the mean be 0 andthe 
ovarian
e be �, by the Gaussian measure, f( )�(d ) = G(�)(d ).) There is noapparent reason why the family of 
 measures should be hereditary.The situation is di�erent for the mi
ro
anoni
al ensemble: here, the distributionuE;Æ = GAP (�E;Æ) that we propose is in fa
t the maximizer of the appropriate Gibbsentropy fun
tional G 00. Whi
h fun
tional is that? Sin
e any measure 
(d ) on S (H )whose 
ovarian
e matrix is the proje
tion �E;Æ = 
onst: 1[E;E+Æ℄(H) must be 
on
entratedon the subspa
e HE;Æ and thus 
annot be absolutely 
ontinuous (possess a density)relative to uS (H ), we 
onsider instead its density relative to uS (HE;Æ) = uE;Æ, that is, we
onsider 
(d ) = f( ) uE;Æ(d ) and setG 00[f ℄ = � ZS (HE;Æ) uE;Æ(d ) f( ) log f( ) : (48)24



Under the 
onstraints that the probability measure 
 have mean 0 and 
ovarian
e �E;Æ,G 00[f ℄ is maximized by f � 1, or 
 = uE;Æ; in fa
t even without the 
onstraints on 
,G 00[f ℄ is maximized by f � 1.6.1.5 The Distribution of Brody and HughstonBrody and Hughston [5℄ have proposed the following distribution � to des
ribe thermalequilibrium. They observe that the proje
tive spa
e arising from a �nite-dimensionalHilbert spa
e, endowed with the dynami
s arising from the unitary dynami
s on Hilbertspa
e, 
an be regarded as a 
lassi
al Hamiltonian system with Hamiltonian fun
tionH(C  ) = h jHj i=h j i (and symple
ti
 form arising from the Hilbert spa
e stru
-ture). They then de�ne � to be the 
lassi
al 
anoni
al distribution of this Hamiltoniansystem, i.e., to have density proportional to exp(��H(C  )) relative to the uniform vol-ume measure on the proje
tive spa
e (whi
h 
an be obtained from the symple
ti
 formor, alternatively, from uS (H ) by proje
tion from the sphere to the proje
tive spa
e).However, this distribution leads to a density matrix, di�erent from the usual one ��given by (3), that does not des
ribe the 
anoni
al ensemble.6.2 A Uniqueness Result for GAP (�)As EIG(�) is a family of measures satisfying Properties 1{3 for most density matri
es �,the question arises whether there is any family of measures, besides GAP (�), satisfyingthese properties for all density matri
es. We expe
t that the answer is no, and formulatethe following uniqueness 
onje
ture: Given, for every Hilbert spa
eH and every densitymatrix � on H , a probability measure �(�) on S (H ) su
h that Properties 1{3 remaintrue when GAP (�) is repla
ed by �(�), then �(�) = GAP (�). In other words, we
onje
ture that � = GAP (�) is the only hereditary 
ovariant inverse of (1).This is in fa
t true when we assume in addition that the mapping � : � 7! �(�) issuitably 
ontinuous. Here is the argument: When � is a multiple of a proje
tion, � =(dimH 0)�1PH 0 for a subspa
e H 0 � H , then �(�) must be, by 
ovarian
e U��(�) =�(U�U�), the uniform distribution on S (H 0), and thus �(�) = GAP (�) in this 
ase.Consider now a 
omposite of a system (system 1) and a large heat bath (system 2) withHilbert spa
e H = H1 
H2 and Hamiltonian H = H1 
 I2 + I1 
 H2, and 
onsiderthe mi
ro
anoni
al density matrix �E;Æ for this system. By equivalen
e of ensembles, wehave for suitable � > 0 that �E;Æ � �H ;H;� = �(1)� 
 �(2)� where �(i)� = �Hi;Hi;�. By the
ontinuity of � and GAP ,���(1)� 
 �(2)� � � �(�E;Æ) = GAP (�E;Æ) � GAP (�(1)� 
 �(2)� ) :25



Now 
onsider, for a wave fun
tion 	 with distribution ���(1)� 
�(2)� � respe
tivelyGAP (�(1)� 
�(2)� ), the distribution of the 
onditional wave fun
tion 	1: by heredity, this is �(�(1)� )respe
tively GAP (�(1)� ). Sin
e the distribution of 	1 is a 
ontinuous fun
tion of thedistribution of 	, we thus have that �(�(1)� ) � GAP (�(1)� ). Sin
e we 
an make the degreeof approximation arbitrarily good by making the heat bath suÆ
iently large, we musthave that �(�(1)� ) = GAP (�(1)� ). For any density matrix � onH1 that does not have zeroamong its eigenvalues, there is an H1 su
h that � = �(1)� = Z�1 exp(��H1) for � = 1,and thus we have that �(�) = GAP (�) for su
h a �; sin
e these are dense, we have that�(�) = GAP (�) for all density matri
es � on H1. Sin
e H1 is arbitrary we are done.6.3 Dynami
s of the Conditional Wave Fun
tionMarkov pro
esses in Hilbert spa
e have long been 
onsidered (see [4℄ for an overview),parti
ularly di�usion pro
esses and pie
ewise deterministi
 (jump) pro
esses. This isoften done for the purpose of numeri
al simulation of a master equation for the densitymatrix, or as a model of 
ontinuous measurement or of spontaneous wave fun
tion
ollapse. Su
h pro
esses 
ould arise as follows.Sin
e the 
onditional wave fun
tion 	1 arises from the wave fun
tion hq2j i by in-serting a random 
oordinate Q2 for the se
ond variable (and normalizing), any dynami
s(i.e., time evolution) for Q2, des
ribed by a 
urve t 7! Q2(t) and preserving the quantumprobability distribution of Q2, for example, as given by Bohmian me
hani
s [6℄, givesrise to a dynami
s for the 
onditional wave fun
tion, t 7! 	1(t) = N (t) hQ2(t)j (t)i,where  (t) evolves a

ording to S
hr�odinger's equation and N (t) = khQ2(t)j (t)ik�1 isthe normalizing fa
tor. In this way one obtains a sto
hasti
 pro
ess (a random path)in S (H1). In the 
ase 
onsidered in Se
tion 4, in whi
h H2 
orresponds to a largeheat bath, this pro
ess must have GAP (�H1;H1;�) as an invariant measure. It would beinteresting to know whether this pro
ess is approximately a simple pro
ess in S (H1),perhaps a di�usion pro
ess, perhaps one of the Markov pro
esses on Hilbert spa
e 
on-sidered already in the literature.7 The Two-Level System as a Simple ExampleIn this last se
tion, we 
onsider a two-level system, with H = C 2 andH = E1j1ih1j+ E2j2ih2j; (49)and 
al
ulate the joint distribution of the energy 
oeÆ
ients Z1 = h1j	i and Z2 = h2j	ifor a GAP (��)-distributed 	 as expli
itly as possible. We begin with a general �nite-dimensional system, H = C k , and spe
ialize to k = 2 later.26



One way of des
ribing the distribution of 	 is to give its density relative to thehypersurfa
e area measure u on S (C k ); this we did in (18). Another way of des
ribingthe joint distribution of the Zn is to des
ribe the joint distribution of their moduli jZnj,or of jZnj2, as the phases of the Zn are independent (of ea
h other and of the moduli)and uniformly distributed, see (22).Before we determine the distribution of jZnj2, we repeat that its expe
tation 
an be
omputed easily. In fa
t, for any � 2H we haveE ��h�j	i��2 = ZS (H )GAP (��)(d ) ��h�j i��2 (1)= h�j��j�i (3)= 1Z(�)h�je��Hj�i:Thus, for j�i = jni, we obtain E jZn j2 = e��En=tr e��H .For greater 
larity, from now on we write ZGAPn instead of Zn. A relation similarto that between GAP (�), GA(�), and G(�) holds between the joint distributions of thejZGAPn j2, of the jZGAn j2, and of the jZGn j2. The joint distribution of the jZGn j2 is very sim-ple: they are independent and exponentially distributed with means pn = e��En=Z(�).Sin
e the density of GA relative to G, dGA=dG =Pn jznj2, is a fun
tion of the modulialone, and sin
e, a

ording to (22), GA = GAphases �GAmoduli, we have thatGAmoduli =Xn jznj2Gmoduli:Thus,P�jZGA1 j2 2 ds1; : : : ; jZGAk j2 2 dsk� = s1 + : : :+ skp1 � � � pk exp�� kXn=1 snpn�ds1 � � �dsk; (50)where ea
h sn 2 (0;1). Finally, the jZGAPn j2 arise by normalization,jZGAPn j2 = jZGAn j2Pn0 jZGAn0 j2 : (51)We now spe
ialize to the two-level system, k = 2. Sin
e jZGAP1 j2 + jZGAP2 j2 = 1, itsuÆ
es to determine the distribution of jZGAP1 j2, for whi
h we give an expli
it formulain (52
) below. We want to obtain the marginal distribution of (51) from the jointdistribution of the jZGAn j2 in (0;1)2, the �rst quadrant of the plane, as given by (50).To this end, we introdu
e new 
oordinates in the �rst quadrant:s = s1s1 + s2 ; � = s1 + s2;where � > 0 and 0 < s < 1. Conversely, we have s1 = s� and s2 = (1 � s)�, and thearea element transforms a

ording tods1 ds2 = ���det �(s1; s2)�(s; �) ���ds d� = � ds d�:27
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Figure 1: Plot of the distribution density fun
tion f(s) of jZ1j2, de�ned in (52
), forvarious values of the parameter Æ = exp(�(E2�E1)): (a) Æ = 1=3, (b) Æ = 1=2, (
) Æ = 1,(d) Æ = 2, (e) Æ = 3.Therefore, using 1Z0 d� �2e�x� = 2x�3 for x > 0;we obtainP�jZGAP1 j2 2 ds� = ds 1Z0 d� e�trHZ(�)�2 exp����e�E1s+ e�E2(1� s)�� = (52a)= 2e�trHZ(�) �e�E1s+ e�E2(1� s)��3ds = (52b)= ��1s+ �2(1� s)��3ds =: f(s) ds ; 0 < s < 1; (52
)with �1 = (Æ�1(Æ�1 + 1)=2)1=3 and �2 = (Æ(Æ + 1)=2)1=3 for Æ = exp(�(E2 � E1)). Thedensity f of the distribution (52
) of jZGAP1 j2 is depi
ted in Figure 1 for various valuesof Æ. For Æ = 1, f is identi
ally 1. For Æ > 1, we have �2 = Æ�1 > �1, so that�1s+ �2(1� s) is de
reasing monotoni
ally from �2 at s = 0 to �1 at s = 1; hen
e, f isin
reasing monotoni
ally from ��32 to ��31 . For Æ < 1, we have �2 < �1, and hen
e f isde
reasing monotoni
ally from ��32 to ��31 . In all 
ases f is 
onvex sin
e f 00 � 0.A
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