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1 Abstract

We show that the particle motion in Bohmian mechanics as the solution of an or-
dinary differential equation exists globally, i.e., the singularities of the velocity field
and infinity will not be reached in finite time for typical initial configurations and a
large class of potentials, including the physically most relevant potential of N -particle
Coulomb interaction with arbitrary charges and masses. The analysis is based on the
probabilistic significance of the quantum flux. We point to the connection between
the global existence of Bohmian mechanics and the self-adjointness of the Schrödinger
Hamiltonian.

2 Introduction

The title alludes to two of the tenets of orthodox quantum theory: 1) the self-adjointness
of observables, especially of the Hamiltonian

H = −
N∑
k=1

h̄2

2mk

∆k + V, (1)

and 2) the impossibility of understanding quantum phenomena on the basis of an un-
derlying theory with deterministic trajectories, with quantum randomness arising “clas-
sically” from randomness in the initial conditions.

David Bohm [1] showed several decades ago that the second tenet is false: His theory,
Bohmian mechanics, does precisely what has been held impossible. Bohmian mechanics
is a Galilean and time-reversal invariant theory for the motion of point particles. The
state of an N -particle system is given by the configuration Q = (Q1, . . . ,QN) ∈ IR3N

and the wave function ψ on configuration space IR3N . Qk ∈ IR3 is the position of the
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k-th particle. On the subset of IR3N where ψ 6= 0 and is differentiable, ψ generates a
velocity field vψ = (vψ1 , . . . ,v

ψ
N)

vψk =
h̄

mk

Im
∇kψ

ψ
(2)

determining the motion of particles with masses m1, ...,mN . The time evolution of the
state (Qt, ψt) is given by a first-order ordinary differential equation for the configuration
Qt

dQt

dt
= vψt(Qt) (3)

and Schrödinger’s equation for the wave function ψt

ih̄
∂ψt(q)

∂t
=

(
−
∑N

k=1

h̄2

2mk

∆k + V (q)

)
ψt(q). (4)

We shall assume that the potential V is a C∞-function on an open set Ω ⊂ IR3N , and
the set of singularities S(= IR3N \Ω) of the potential is a set of Lebesgue measure zero.

Bohmian mechanics can be regarded as a (completion of) nonrelativistic quantum
theory. It resolves all problems associated with the measurement problem in nonrel-
ativistic quantum mechanics [1, 2]. It accounts for the “collapse” of the wave func-
tion, for the quantum randomness as expressed by Born’s law ρ = |ψ|2, and familiar
(macroscopic) reality. Moreover, the usual quantum measurement formalism involving
self-adjoint operators as observables emerges from Bohmian mechanics as a phenomeno-
logical description. (See [2, 3], and the contribution of M. Daumer et al. in this volume.)

Here we are concerned with the mathematical problem of existence and uniqueness
of the motion in Bohmian mechanics, i.e., with establishing that for given Q0 and ψ0 at
some “initial” time t0 (t0 = 0), solutions (Qt, ψt) of (3, 4) with Qt0 = Q0 and ψt0 = ψ0

exist uniquely and globally in time. This problem initiates further analysis on the status
of the self-adjointness of the Hamiltonian.

3 Global existence of Bohmian mechanics

The solution of the problem of the existence of dynamics for Schrödinger’s equation
(4) (which is independent of the solution of equation (3), i.e., the actual motion of the
configuration) is, of course, well known: if the Hamiltonian is self-adjoint (on a domain
D(H)), there exists a unitary one parameter group Ut = e−itH/h̄, and, for all ψ0 ∈ D(H),
ψt := Utψ0 is a solution of Schrödinger’s equation in the L2-sense.

Thus we assume, as usual, the Hamiltonian to be a self-adjoint extension of H|C∞
0 (Ω).

(Under the above assumptions on the potential V , the set C∞
0 (Ω) is dense in L2(IR3N),

and the Hamiltonian as defined by (1) is symmetric on this set. Since the Hamilto-
nian commutes with complex conjugation, there always exist self-adjoint extensions of
H|C∞

0 (Ω).)

In order for equation (3) to be well-defined we need the wave function to be smooth.
A particular suitable set of wave functions is the set C∞(H) of C∞-vectors of H.1 This
set of wave functions is dense in L2(IR3N) and invariant under the time evolution e−itH/h̄

(and is hence a core, i.e., a domain of essential self-adjointness for H).

1C∞(H) =
∩∞
n=1D(Hn), where D(Hn) is the domain of Hn. Special C∞-vectors are eigenfunctions

and “wave packets” ψ ∈ Ran(P[a,b]), where P[a,b] denotes the spectral projection of H to the finite
energy interval [a, b].
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We shall therefore assume that the initial wave function ψ0 ∈ C∞(H). Then
ψt = e−itH/h̄ψ0 may be regarded as an element of C∞(Ω × IR) and thus also as a
classical solution of Schrödinger’s equation [4]. The velocity field vψ is thus C∞ on the
complement of the set N := {(q, t) ∈ Ω× IR : ψt(q) = 0} of nodes of ψ, and the (space-
time) set of singularities S × IR, i.e., on the set of “good” points G := (Ω × IR) \ N ,
which is an open subset of configuration-space-time IR3N × IR. Let Gt denote the slice
of G at a fixed time t: Gt := Ω \ Nt, where Nt := {q ∈ Ω : ψt(q) = 0}. Then by a
standard theorem of existence and uniqueness of ordinary differential equations, for any
initial value q0 in G0 there exists a unique right maximal (non-extendible in positive
time direction2) solution Qt of (3) on a time interval 0 ≤ t < τ(q0). The problem is
to exclude that τ(q0) < ∞, in which case the solution Qt as t ↗ τ reaches infinity or
points in the boundary of G, i.e., singularities of the velocity field vψ.

For large classes of potentials, we shall show that for typical q0 we have that τ(q0) =
∞, i.e., that the solution exists globally in time Pψ0-almost surely,

Pψ0(τ <∞) = 0,

where Pψ0 denotes the probability measure on configuration space IR3N (supported
on G0) given by the density |ψ0|2. (We assume the initial wave function ψ0 to be
normalized.) This measure is the natural measure associated with the dynamical system
defined by “Bohmian mechanics:” it plays the role of the “equilibrium measure” and
defines our notion of “typicality” [2]. Moreover, given the existence of the dynamics
for configurations Qt—the result we report on here—the notion of typicality is time
independent by “equivariance” [2]:

ρ0 = |ψ0|2 =⇒ ρt = |ψt|2 for all t ∈ IR,

where ρt denotes the probability density on configuration space IR3N at time t—the
image density of ρ0 under the process Qt.

We now state the Theorem we have established in [4]: If i) the potential V is a
C∞-function on an open set Ω ⊂ IR3N , and the set of singularities S(= IR3N \ Ω) of
the potential is contained in a finite union of (3N − 3)-dimensional hyperplanes Sl,
S ⊂ ∪m

l=1 Sl, ii) the Hamiltonian H is a self-adjoint extension of H|C∞
0 (Ω), iii) the

initial wave function ψ0 is a C∞-vector of H and normalized, and iv) for all T > 0∫ T
0 ‖∇ψt‖2dt <∞, then Pψ0(τ <∞) = 0, i.e., Bohmian mechanics exists uniquely and

globally in time Pψ0-almost surely.

We comment on the conditions in the theorem: The condition i) on the shape of S
is very natural from a physical point of view, as it includes pair potentials and central
potentials. The condition iv) of “finite integrated kinetic energy” is automatically
satisfied for all ψ ∈ Q(H)(⊃ C∞(H)), the form domain of H, provided the quadratic
form (∇ψt,∇ψt)(≤ M(ψt, H0ψt) with M = (2/h̄2) max(m1, . . . ,mN)) can be bounded
in terms of the form (ψt, Hψt), which is finite and independent of t. Such a bound
follows from various bounds on the potential: (a) Potentials which are bounded below, a
class which includes, for example, harmonic and anharmonic potentials, and arbitrarily
strong positive repulsive potentials. (b)H0-form bounded potentials with relative bound
a < 1. This class, with arbitrarily small relative bound a, includes for example R+L∞

2From time reversal invariance, Pψ0(τ <∞) = 0 implies Pψ0(τ− <∞) = 0, when (τ−, τ) denotes
the existence interval of the maximal solution. Therefore it is sufficient to consider the positive time
direction.
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or L3/2 + L∞ on IR3, where R is the Rollnik class. (For details, see for example [5].)
Therefore H0-form bounded potentials include power law interaction 1/rα with α < 2
and thus the physically most relevant potential of N -particle Coulomb interaction with
arbitrary charges and masses. (The class of H0-form bounded potentials contains the
more familiar class of H0-operator bounded potentials, which already includes the N -
particle Coulomb interaction.)

We remark that also from the point of view of establishing only self-adjointness of
the Hamiltonian, these classes of potentials are particularly well understood, in the
sense that much is known about cores, lower bounds, etc. [5].

At this point we shall emphasize that on the one hand, this result of global existence
of Bohmian mechanics should not be too surprising because the “bad sets” are either
very small—the set of nodes has “generically” codimension 2, and the set of singularities
has codimension at least 3—or infinitely far away. But on the other hand, especially
when compared with the N -body problem in Newtonian mechanics, where general re-
sults for systems of more than 4 particles are still missing, the generality of the result
of existence of dynamics for Bohmian mechanics and also the essential simplicity of the
proof should be quite surprising. Taking now this result for Bohmian mechanics and
also the general emergence of the quantum formalism [2, 3] into account, we maintain
that the failure of Newtonian mechanics both to describe the physics in the nonrela-
tivistic domain correctly and to be mathematically well understood on the most basic
level of existence and uniqueness is not due to its having point particles as fundamental
elements; rather it is due to its having the “wrong” dynamics.

4 Basic idea of the proof: flux estimates

Consider the random trajectory (G0, P = Pψ0 , Q̃t), where for t ≥ 0, q0 ∈ G0, the process
Q̃t(q0) = Qt(q0) for t < τ(q0) and Q̃t(q0) = † for t ≥ τ(q0). The image density of Q̃t on
Bt := RanQ̃t ∩ Gt will be denoted by ρt. ρt is bounded by |ψt|2 on Gt, t ≥ 0 [4].

Consider now a smooth surface Σ in G. Reflecting on the probabilistic significance
of the flux Jt(q) := (ρt(q)v

ψt(q), ρt(q)), we obtain that the expected number of crossings
of Σ by the random trajectory Q̃t is given by∫

Σ
|Jt(q) · U | dσ,

where U denotes the local unit normal vector. (
∫
Σ J · U dσ is the expected number of

signed crossings of Σ.) The probability of crossing Σ (at least once) is hence bounded
by

∫
Σ |Jt(q) · U | dσ, which in turn from

|Jt(q) · U | ≤ |(|ψt(q)|2vψt(q), |ψt(q)|2) · U | = |(jψt , |ψt|2) · U | = |Jψt · U |

is bounded by

Pψ0(Q̃t crosses Σ) ≤
∫
Σ
|Jψt(q) · U | dσ.

This insight can be applied to prove (almost sure) global existence by choosing a se-
quence of surfaces around the “bad points:” consider the surface of Gεδn, the set of
“ε-δ-n-good” points in configuration-space-time:

Gεδn := (Kn × IR) \ (N ε ∪ (Sδ × IR)),

where (Kn)n∈IN is a sequence of balls with radius n in configuration space (that serves
as cutoff at infinity), N ε and Sδ are neighborhoods of N (in configuration-space-time)
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resp. S (in configuration space) (that take care of the nodes resp. the singularities). We
further denote Gεδn0 := Kn \ (N ε

0 ∪ Sδ).
Then we arrive at: for all T > 0, ε > 0, δ > 0, n <∞

Pψ0(τ < T ) ≤ Pψ0(G0 \ Gεδn0 ) + Pψ0(Q̃t crosses ∂Gεδn ∩ (IR3N × (0, T )))

≤ Pψ0(G0 \ Gεδn0 ) +
∫
∂N ε∩((Kn\Sδ)×(0,T ))

|Jψt(q) · U | dσ +∫
∂Sδ×(0,T )

|Jψt(q) · U | dσ +
∫
(∂Kn∩Ω)×(0,T )

|Jψt(q) · U | dσ

= Pψ0(G0 \ Gεδn0 ) + N + S + I.

Moreover, (almost sure) global existence follows if the right hand side goes to 0. It
is heuristically now rather clear that all the flux integrals should vanish as the limit
ε→ 0, δ → 0, and n→∞ is suitably approached: For the “nodal integral” N it seems
fairly obvious that this term vanishes as ε → 0 because Jψt is zero at the nodes, and,
moreover, one expects that N has codimension 2, so ∂N ε should have small area. The
“singularity integral” S should vanish in the limit δ → 0 since the set S of singular
points of the potential has codimension greater than 1 for potentials that are normally
considered. Finally, the “infinity integral” I should tend to zero as n→∞ since ψt(q)
and hence Jψt(q) should rapidly go to zero as |q| → ∞.

The main difficulty in making these considerations rigorous lies in controlling the
area of the surface of the nodal set and the behavior of the flux at the singularities and
at infinity. This is done in [4].

5 Summary and perspective: Bohmian mechanics

and self-adjointness of the Hamiltonian

In this final section we shall comment on the connection between the global existence
of Bohmian mechanics and the self-adjointness of the Hamiltonian, as mediated by the
quantum flux J = (j, |ψ|2):

Bohmian mechanics
1←→ J—the quantum flux

2←→ self-adjointness of H

“
1−→” Bohmian mechanics gives meaning to the quantum flux as a flux of particles. In-

deed, the quantum current j is a current of particles moving along deterministic
trajectories with a velocity given by a functional of the wave function ψ.

“
2−→” In standard quantum theory, the unitarity of the time evolution Ut of ψ or

equivalently the self-adjointness of its generator H is taken as one of the axioms.
For a concrete physical problem, the generator is given by (1). There is, how-
ever, no general rule yielding the domain on which this operator should be
considered. One first has to find a dense set of vectors where the Hamiltonian
is definable by (1) and is symmetric. C∞

0 (IR3N), C∞
0 (Ω), or Schwartz space are

good and usual candidates. Then one has to analyse whether the Hamiltonian
is essentially self-adjoint on that domain, so that the unitary time evolution is
uniquely determined. If this is not the case, there are (infinitely many) different
self-adjoint extensions, giving rise to different unitary evolutions. It is now a
matter of the physics of the system being described to choose the right one.
As an example, consider a free particle on (0,∞): there is a one-parameter
family of self-adjoint extensionsHa ofH0|C∞

0 (0,∞), characterized by the boundary
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condition ψ′(0) = aψ(0) with a ∈ IR or ψ(0) = 0 (“a = ∞”) defining the
respective domain. a determines the law of reflection of the ψ-function at 0 [5].

In Bohmian mechanics, there is a priori no reason to demand self-adjointness of
the Hamiltonian: Any solution ψ of Schrödinger’s equation (4) for which global
trajectories Qt solving (3) exist is fine. Rather, the axiom of self-adjointness
experiences an a posteriori justification in Bohmian mechanics. Consider the
above mentioned example of a free particle on (0,∞): To have the Bohmian
particle motion well defined on (0,∞) it seems inevitable to demand jt(0) = 0,

i.e., ψt(0) = 0 or vψt(0) = 0 which in view of (2) yields ∇ψt(0)
ψt(0)

∈ IR. In this way,

by immediately suggesting j(0) = 0, Bohmian mechanics leads directly to the
necessary boundary condition for self-adjointness in terms of the current. For a
more detailed discussion see [4].

“
2←−” We have proven that self-adjointness of the Hamiltonian (together with “finite

integrated kinetic energy”) guarantees the right behavior of the quantum flux
at the bad points—“No flux into the bad points”—and thereby

“
1←−” global existence of Bohmian mechanics.
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