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Abstract

Non-relativistic de Broglie-Bohm theory describes particles moving under the guid-
ance of the wave function. In deBroglie’s original formulation, the particle dy-
namics is given by a first-order differential equation. In Bohm’s reformulation, it
is given by Newton’s law of motion with an extra potential that depends on the
wave function—the quantum potential—together with a constraint on the possible
velocities. It was recently argued, mainly by numerical simulations, that relaxing
this velocity constraint leads to a physically untenable theory. We provide further
evidence for this by showing that for various wave functions the particles tend to
escape the wave packet. In particular, we show that for a central classical potential
and bound energy eigenstates the particle motion is often unbounded. This work
seems particularly relevant for ways of simulating wave function evolution based
on Bohm’s formulation of the de Broglie-Bohm theory. Namely, the simulations
may become unstable due to deviations from the velocity constraint.

Non-relativistic de Broglie-Bohm theory (also called Bohmian mechanics) [1–3] de-
scribes point-particles moving under the guidance of the wave function. In the case of
spinless particles, with positions Xk, k = 1, . . . , n, and configuration X = (X1, . . . ,XN),
the equations of motion are given by

dXk(t)

dt
=

1

mk

∇kS(X(t), t) , (1)

where the wave function ψ = |ψ(x, t)|eiS(x,t)/~, with x = (x1, . . . ,xn), satisfies the non-
relativistic Schrödinger equation

i~∂tψ =

(
−

n∑

k=1

~2

2mk

∇2
k + V

)
ψ . (2)
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The theory reproduces the standard quantum predictions provided that for an ensemble
of systems all with the same wave function ψ the particle distribution is given by |ψ|2.
This distribution—the quantum equilibrium distribution—is preserved by the particle
dynamics, i.e., it does not change its form as a function of ψ.

This theory was originally discovered by de Broglie in the late 20’s [4] and redis-
covered by Bohm in the early 50’s [5, 6]. Unlike de Broglie, Bohm did not regard the
equation of motion (1) as fundamental. Instead, he proposed the second-order differen-
tial equation

mk
d2Xk(t)

dt2
= −∇k(V +Q)(X(t), t), (3)

which is Newton’s law of motion with an extra ψ-dependent potential Q—the quantum
potential—given by

Q = −
N∑

k=1

~2

2mk

∇2
k|ψ|
|ψ| . (4)

The equation (3) is referred to as Bohm’s dynamics in [7]. We prefer to call it the quan-
tum potential dynamics or QPD for short. In addition, Bohm assumed the constraint

dXk

dt
(0) =

1

mk

∇kS(X(0), 0) (5)

on the initial velocities. The QPD implies that this constraint is preserved in time, i.e.,
if (5) holds then dXk(t)/dt = ∇kS(X(t), t)/mk for all times t.

Bohm thought modifications of his theory might be required in order to understand
phenomena over distances smaller than 10−13cm. In particular, he entertained the idea of
relaxing the constraint on the velocities [5]. However, he did not suggest this relaxation
without further modifications of the theory. Rather, he considered either modifying
the Schrödinger equation or the Newtonian equation in order to ensure that over time
arbitrary initial velocities would tend to those given by the de Broglie-Bohm theory.
Thus his modified QPD could reasonably be expected to yield predictions in at least
approximate agreement with those of standard quantum mechanics. (And while we are
here ignoring spin, it should be noted that the formulation of the QPD for particles with
spin is problematical [1].)

In [7] the possibility was considered of relaxing the constraint on the initial velocities
without additional modifications to the equations of motion. Numerical simulations
were performed for the one-dimensional harmonic oscillator and for the non-relativistic
hydrogen atom, for particular superpositions of energy eigenstates. In the case of the
harmonic oscillator it was found that for initial positions outside the bulk of the wave
packet (i.e., where |ψ|2 is appreciably different from zero) and for sufficiently large
initial velocities the particles seem to escape to infinity. In addition, an example was
provided of a phase-space distribution corresponding to initial momenta larger than
those of the de Broglie-Bohm theory for which the particles seem to be escaping. It was
further argued analytically that for initial positions x→∞ and for large enough initial
velocities the particles escape to infinity. (However, unless the particles can move so
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far outside the bulk of the packet, in which case the theory seems no good in the first
place, it seems that one can ignore such initial conditions.) In the case of the hydrogen
atom, a couple of trajectories were simulated and it was found that the more the initial
velocity deviates from (5), the more the particle seems to escape from the packet.

Here we provide further evidence, in the form of analytical results, that relaxing the
constraint on the velocities is untenable. We consider some potentials V and quantum
states for a single particle for which the QPD can be easily analysed. In particular,
we consider the case of central potentials and bound energy eigenstates (for which |ψ|2
is appreciably different from zero only in a certain region of space) and show that the
particle motion is often unbounded, so that particles escape to infinity. This implies that
the QPD is empirically inadequate. Perhaps more importantly, this work also seems to
reveal a potential source of instabilities in particular ways of simulating wave function
evolution. We will explain this further near the end of the paper.

Let us first consider some properties of energy eigenstates. For a single particle, the
Schrödinger equation implies

∂tS +
1

2m
∇S ·∇S + V +Q = 0 . (6)

Hence for an energy eigenstate ψ = φ(x)e−iEt/~ we have

E =
1

2m
∇S ·∇S + V +Q (7)

and the total force in the QPD is given by

−∇(V +Q) = − 1

2m
∇ (∇S ·∇S) . (8)

In the special case that the phase S does not depend on x, for example for non-degenerate
energy eigenstates, the total force is zero, so that the particle is free. In that case, par-
ticles will move to infinity unless their velocity is zero, which is the case for a trajectory
of the de Broglie-Bohm theory.

We can define the energy of a particle as

Ẽ =
m|Ẋ|2

2
+ V +Q , (9)

where we have used the tilde to distinguish it from E, the energy of the wave function.
We have that dẼ/dt = ∂Q/∂t, so that in general dẼ/dt 6= 0. However, in the case of

an energy eigenstate, for which Q does not depend on t, we have that dẼ/dt = 0. For a
trajectory given by the de Broglie-Bohm theory (i.e., corresponding to an initial velocity

given by (5)), we have moreover that Ẽ = E. (But Ẽ = E does not guarantee that the
trajectory is given by the de Broglie-Bohm theory.)

From (7), it follows that the total potential V +Q 6 E. Hence, no matter how much
the classical potential V would confine the particles, the total potential is bounded form
above. As such, it would seem that if the energy Ẽ of the particle were large enough, it
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would escape to infinity. Indeed, in the case of one spatial dimension, we have that when
Ẽ > E(> V +Q), then the particle will escape to infinity, because there are no turning
points. Actually, for a bound state in one dimension, we even have that ∂xS = 0, so
that E = V +Q and the particle is free.

Let us now turn to explicit examples.1 We start with one spatial dimension. First
consider a free particle. For a Gaussian wave function centered around the origin (we
assume ~ = 2m = σ = 1, where σ is the width of the packet)

ψ(x, t) =

(
1

2π(1 + it)2

)1/4

e−x2/4(1+it) , (10)

the QPD reads Ẍ = X/(1 + t2)2, so that the possible trajectories are

X(t) =
√

1 + t2(X0 + V0 arctan t) , (11)

whereX0 and V0 are respectively the initial position and velocity. The velocity constraint
(5) corresponds to V0 = 0. The standard deviation of the density |ψ|2 is given by
σ(t) =

√
1 + t2. Hence, if the initial speed |V0| of the particle is large enough, it will

escape the bulk of the packet. For example, a particle with 0 6 X0 < σ(0) = 1
will have a position X(t) > σ(t) for t > tan((1 − X0)/V0) if V0 > 2(1 − X0)/π. In
the case of an ensemble of particles with initial position and (independent) velocity
distribution respectively given by |ψ(x, 0)|2 = e−x2/2/

√
2π and e−(v−vo)2/2σ̃2

/
√

2πσ̃2 (i.e.,
the initial velocity distribution is Gaussian with mean v0 and standard deviation σ̃), the
position distribution ρv0(x, t) at later times t is Gaussian with mean v0

√
1 + t2 arctan t

and standard deviation
√

(1 + t2)(1 + σ̃2 arctan2 t). Hence, if v0 6= 0 the center of
ρv0(x, t) moves away from that of the distribution |ψ(x, t)|2 = ρv0=0(x, t), up to a distance
v0π/2 (after rescaling by 1/σ(t)). ρv0 also spreads more than |ψ|2, by up to a factor√

1 + σ̃2π2/4.
In the case of a potential step of height V for x > 0 (we assume ~ = 2m = 1), the

energy eigenstates ψ(x, t) = φ(x) exp(−iEt) for E < V are given by

φ(x) =

{
cos(kx− α/2) x < 0
cos(α/2)e−κx x > 0

, (12)

where k =
√
E, κ =

√
V − E and α = 2 tan−1(−κ/k). Since the phase of the wave

function does not depend on the spatial coordinate, we have (as mentioned above)
that the particle is free; it is not confined by the potential. (Actually, in this case,
also the de Broglie-Bohm motion is unphysical, since particles will just stand still. A
more realistic treatment should consider an approximately localized packet that moves
towards the potential step.)

Consider now the harmonic oscillator, with V = x2/2 (we assume ~ = m = ω = 1).
The energy eigenstates are bound states and hence, as mentioned before, the particle is
free. Other states of interest are coherent states

ψ(x, t) = π−1/4 exp

[
−1

2
(x− a cos t)2 − i

2

(
t+ +2xa sin t− a2

2
sin 2t

)]
. (13)

1For the de Broglie-Bohm treatment of all the systems considered here, see [2].
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Figure 1: Tractories for the QPD in the case of the coherent state (13) (with a = 1).

The density |ψ|2 is represented by the shaded area. One de Broglie-Bohm trajectory

is plotted, which follows the center of the density |ψ|2. It is a trajectory with initial

velocity V0 = 0. The trajectories respectively moving to the right and left have initial

velocities V0 = ±0.25 and escape the wave packet.

The corresponding density

|ψ(x, t)|2 = π−1/2 exp
[−(x− a cos t)2

]
(14)

is a Gaussian function whose center oscillates between the points x = ±a. The QPD
reads Ẍ = −a cos t, so that the possible trajectories are

X(t) = X0 + V0t+ a(cos t− 1) . (15)

Since ∂S(x, 0)/∂x = 0, the constraint (5) implies that V0 = 0, so that the particle in
the de Broglie-Bohm theory performs a harmonic oscillation around the point X0 − a.
However, if V0 6= 0 then the particle will escape to infinity, oscillating aroundX0+V0t−a.
Some trajectories are plotted in figure 1.

We now turn to three spatial dimensions and a central potential V = V (r). En-
ergy eigenstates with energy E, orbital angular momentum number l and the magnetic
quantum number m (here we denote the mass by m0) are of the form

ψElm(r, θ, φ, t) = REl(r)Ylm(θ, φ)e−iEt/~ , (16)

where (r, θ, φ) are spherical coordinates determined by

x = r sin θ cosφ, y = r sin θ sinφ, z = r cosφ . (17)
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The functions Ylm are the spherical harmonics and REl are real functions that are so-
lutions to the radial Schrödinger equation. Due to the spherical symmetry there is a
(2l + 1)-fold degeneracy: for given E and l all values of m obeying −l 6 m 6 l are
possible. For bound states there is usually no further degeneracy so that general energy
eigenstates are of the form

ψ(r, θ, φ, t) =
l∑

m=−l

cmψElm(r, θ, φ, t) = REl(r)
l∑

m=−l

cmYlm(θ, φ)e−iEt/~ , (18)

where the cm are arbitrary complex coefficients. In the case of the harmonic potential
and the Coulomb potential additional symmetries imply further degeneracy. In the
following, we restrict our attention to states of the form (18). Using (7) and the fact
that the phase of ψ does not depend on r, we find that for such a state the total potential
is of the form

V +Q = E − 1

2m0

∇S ·∇S = E +
1

r2
f(θ, φ) , (19)

with f = −r2∇S ·∇S/2m0 a function of the angular variables only. So, dropping the
constant E, the effective potential is the form f(θ, φ)/r2. This potential was considered
in detail in [8]. The corresponding Lagrangian is

L =
m0

2
(ṙ2 + r2θ̇2 + r2 sin2 θφ̇2)− f

r2
, (20)

with corresponding equations of motion

m0r̈ = m0r(θ̇
2 + sin2 θφ̇2) + 2

f

r3
, (21)

d

dt
(m0r

2θ̇) = m0r
2 sin θ cos θφ̇2 − 1

r2

∂f

∂θ
, (22)

d

dt
(m0r

2 sin2 θφ̇) = − 1

r2

∂f

∂φ
. (23)

The energy Ẽ is a constant of the motion and reads (dropping again the constant E):

Ẽ =
m0

2
(ṙ2 + r2θ̇2 + r2 sin2 θφ̇2) +

f

r2
. (24)

In the case of a trajectory given by the de Broglie-Bohm theory we have that Ẽ = 0. (We
then also have that ṙ = 0, so that the particle moves on a sphere.) Another constant of
the motion is

C =
1

2m0

|L|2 + f , (25)

where |L|2 = m2
0r

4(θ̇2 +sin2 θφ̇2) with L the angular momentum. We can use it to write
the energy as

Ẽ =
m0

2
ṙ2 +

C

r2
. (26)
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Figure 2: The shape of the potential Vr = C/r2 for C = ±1, 0.

This shows that the coordinate r moves under an effective potential Vr = C/r2, which
is plotted in figure 3.

We can now qualitatively analyze the QPD. In the case C = 0, we have that Ẽ =
m0ṙ

2/2. Hence, for strictly positive energy the particle flies off to infinity with a constant
radial speed. For zero energy (as in the case of a de Broglie-Bohm-trajectory), the

particle’s trajectory is confined to the surface of a sphere. If C > 0, we have Ẽ > 0.
The particle motion is then unbounded, with r > (C/Ẽ)1/2, and the particle eventually

flies off to infinity. If C < 0, the particle motion is unbounded for Ẽ > 0. For Ẽ < 0
the particle motion is bounded, with r 6 (C/Ẽ)1/2. Examples of radial trajectories are
presented in figure 3.

The situation is summarized in figure 4. If the energy of the particle is greater than
the energy in the de Broglie-Bohm theory, i.e., Ẽ > 0, then its motion is unbounded and
it flies off to infinity, even for initial conditions arbitrarily close to those of a trajectory
of the de Broglie-Bohm theory. If Ẽ < 0, then the particle motion will be bounded with
radial motion oscillating between 0 and the turning point r = (C/Ẽ)1/2, which may still
be far from the center of the packet.

In conclusion, we have seen that according to the QPD particles often escape from the
bulk of the wave packet, even for bound states. In the case of the hydrogen atom (which
is described by the Coulomb potential), this means that the electron will not be bound
to its nucleus. More generally we expect that molecules and atoms will not be stable but
will tend to disintegrate. Of course we have only considered energy eigenstates here, but
there seems to be no hope that the total potential will bind the particles in the case of

7



 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.5  1  1.5  2  2.5  3  3.5  4

t

r

E
~

 = -1, C  = -1

E
~

 = 0, C = 0
E
~

 = 1, C = 1

E
~

 = 1, C = -1
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Figure 4: Types of trajectories in terms of the constants of motion Ẽ and C. For points

on the coordinate axes we have the following situation. For the origin, the motion is

bounded. For C > 0 (and Ẽ = 0) or Ẽ < 0 (and C = 0) we have no trajectories. For

C < 0 (and Ẽ = 0) the motion is unbounded.
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a superposition (as was illustrated in [7]).2 Neither is there any hope that a relativistic
or quantum field theoretical treatment will help. And, of course, even if this were not
true, there would still seem to be no reason whatsoever to expect the predictions of
QPD to be governed by Born probabilities and hence no reason whatsoever that they
should have anything to do with those of quantum mechanics.

This work might also be of relevance for particular techniques for simulating the
wave function evolution using de Broglie-Bohm trajectories. For example, one technique
is roughly as follows [9–12]. The Newtonian equation (3) is considered with |ψ| replaced
by
√
ρ, where ρ an actual density of a large but finite number of configurations. Given an

initial wave function ψ0, the equation is numerically integrated starting with the initial
distribution ρ0 given by |ψ0|2 (up to some accuracy) and with the initial velocity of each
configuration satisfying the constraint (5). From the trajectories one can then obtain a
time-dependent wave function ψ. But since ρ equals |ψ|2 only up to some accuracy, the
simulation will entail small deviations of the velocities from ∇S/m. As is illustrated by
our results, this might cause trajectories to deviate significantly from trajectories in the
de Broglie-Bohm theory and hence this may potentially lead to an inaccurate simulation
of the wave function. (It may also be that the difference between the force determined
by ρ and the quantum force determined by |ψ|2 induces corrections to the velocity which
brings them closer to ∇S/m.)

Recently, this particular way of numerically simulating the wave function formed the
basis of a new approach to quantum mechanics [13, 14]. In this approach, there is a large
but finite number of configurations, each representing a different world, which evolve
according to a dynamics similar to that used in the wave function simulations. There
is no wave function on the fundamental level. But given appropriate initial conditions
on the velocities, the configurations may (approximately) determine a wave function.
However, it is not clear whether such wave functions obey some Schrödinger dynamics.
One potential source of trouble may be the instabilities caused by deviations of the
velocities from ∇S/m.
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