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Conway and Kochen have presented a “free will the-

orem” [4, 6] which they claim shows that “if indeed

we humans have free will, then [so do] elementary

particles.” In a more precise fashion, they claim

it shows that for certain quantum experiments in

which the experimenters can choose between sev-

eral options, no deterministic or stochastic model

can account for the observed outcomes without

violating a condition “MIN” motivated by relativis-

tic symmetry. We point out that for stochastic

models this conclusion is not correct, while for

deterministic models it is not new.

In the way the free will theorem is formulated

and proved, it only concerns deterministic models.

But Conway and Kochen have argued [4, 5, 6, 7] that

“randomness can’t help,” meaning that stochastic

models are excluded as well if we insist on the

conditions “SPIN”, “TWIN”, and “MIN”. We point

out a mistake in their argument. Namely, the

theorem is of the form

(1) deterministic model with SPIN & TWIN & MIN

⇒ contradiction ,

and in order to derive the further claim, which is

of the form

(2) stochastic model with SPIN & TWIN & MIN

⇒ contradiction ,
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Conway and Kochen propose a method for con-
verting any stochastic model into a deterministic
one [4]:

let the stochastic element…be a sequence of
random numbers (not all of which need be
used by both particles). Although these might
only be generated as needed, it will plainly
make no difference to let them be given in
advance. [emphasis added]

In this way, (2) would be a corollary of (1) if the
conversion preserved the properties SPIN, TWIN,
and MIN. However, Conway and Kochen have ne-
glected to check whether they are preserved, and
indeed, as we will show, the conversion preserves
only SPIN and TWIN but not MIN. We do so by
exhibiting a simple example of a stochastic model
satisfying SPIN, TWIN, and MIN. As a consequence,
no method of conversion of stochastic models into
deterministic ones can preserve SPIN, TWIN, and
MIN. More directly, our example shows that (2)
is false. Contrary to the emphasized part of the
above quotation, letting the randomness be given
in advance makes a big difference for the purpose
at hand.

The relevant details are as follows. The reasoning
concerns a certain experiment in which, after a
preparation procedure, two experimenters (A and
B), located in space-time regions that are spacelike
separated, can each choose between several options
for running the experiment. We denote by a (resp.,
by b) the choice of A (resp., of B) and by OA
(resp., OB ) the outcome of A (resp., of B). The data
collected from this experiment can be represented
by a joint probability distribution Pab(OA,OB) for
the outcomes (OA,OB) that depends on the choices
(a, b). Experimenter A chooses a = (x, y, z) from
a certain set of forty orthonormal bases of R3, B
chooses b = w from a certain set of thirty-three
unit vectors in R3. SPIN asserts that the outcome
OA obtained by A is always one of the triples
110, 101, or 011, and the outcome OB obtained
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by B is either 0 or 1. TWIN asserts that whenever

w = x (resp., w = y/w = z), OB coincides with

the first (resp., second/third) digit ofOA. Quantum

mechanics predicts data Pab(OA,OB) that satisfy

SPIN and TWIN, given explicitly in Table 1.

Pab OB = 0 OB = 1

OA = 011
1
3
(w · x)2

1
3
[1− (w · x)2]

OA = 101
1

3
(w · y)2

1

3
[1− (w · y)2]

OA = 110
1

3
(w · z)2

1

3
[1− (w · z)2]

Table 1. Joint probability distribution of
outcomes as predicted by quantum mechanics,

with · denoting the scalar product of vectors
in R3.

A stochastic model for the data Pab(OA,OB)

means, for the purpose at hand, a probability

measure PΛ (that does not depend on a and b) on

some measurable space Λ and, for each λ ∈ Λ and

a and b, a probability measure Pab(OA,OB|λ) on the

set {110,101,011} × {0,1} of possible outcomes

such that, when λ is averaged over with P
Λ, the

data Pab(OA,OB) are obtained:

(3) Pab(OA,OB) =

∫

Λ
Pab(OA,OB|λ)dPΛ(λ).

A deterministic model for the data Pab(OA,OB) is a

stochastic model such that each Pab(OA,OB|λ) is

supported by a single outcome, i.e., one for which

there are functions θA and θB such that:

(4) Pab

(
OA = θA(a, b, λ), OB = θB(a, b, λ)|λ

)
= 1,

for all a, b, and λ.

The MIN condition is formulated in a somewhat

vague way [6]:

The MIN Axiom: Assume that the experi-

ments performed by A and B are spacelike

separated. Then experimenter B can freely

choose any one of the thirty-three partic-

ular directions w , and [OA] is independent

of this choice. Similarly and independently,

A can freely choose any one of the forty

triples x, y, z, and [OB ] is independent of that

choice.1

What does MIN mean for a deterministic model?

According to Conway and Kochen [6]:

It is possible to give a more precise form of

MIN by replacing the phrase “[OB ] is indepen-

dent of A’s choice” by “if [OA] is determined

by B’s choice, then its value does not vary

with that choice.”

1Here and in the following quotation, we have adapted

the notation by putting [OA] for “a’s response” and [OB ]

for “b’s response”.

That is, MIN asserts that the function θA does not

depend on b and the function θB does not depend

on a:

(5) θA(a, b, λ) = θA(a, λ) , θB(a, b, λ) = θB(b, λ) .

What does MIN mean for a stochastic model?

Conway and Kochen do not say precisely, as the

above quotation deals only with the case of a

deterministic model (“if [OA] is determined by B’s

choice”), but the most reasonable interpretation

is a condition known as parameter independence

[11, 12]: for any given λ, the distribution of OA does

not depend on b, and the distribution of OB does not

depend on a:

(6)

Pab(OA|λ) = Pa(OA|λ) , Pab(OB|λ) = Pb(OB|λ) .

Note that for deterministic models (6) is the same

as (5).

An example of a stochastic model satisfy-

ing SPIN, TWIN, and MIN (understood as (6)) is

obtained from “rGRWf”, the relativistic Ghirardi–

Rimini–Weber theory with flash ontology [14, 15],

but much simpler examples are possible. As a

second example, one may simply take (Λ,PΛ) to

be the trivial probability space containing just one

element (so thatλ is a constant and can be ignored).

Then, according to the definition of stochastic mod-

els, the data themselves form a stochastic model.

That is, take Pab(OA,OB|λ) = Pab(OA,OB) as given

by Table 1. We know that this stochastic model sat-

isfies SPIN and TWIN, and it also satisfies (6), since,

for all a and b, the marginal distribution of OA is

uniform and the marginal distribution of OB gives

probability 1/3 to 0 and 2/3 to 1. As a third (and

even simpler) example, let us drop the requirement

(3) that the stochastic model agrees with the data

predicted by quantum mechanics and focus just on

satisfying SPIN, TWIN, and MIN. Take (Λ,Pλ) to be

trivial as before. If b = w coincides with coordinate

x (resp., y/z) of a, then let Pab(OA,OB |λ) give prob-

ability 1/3 to each of (110,1), (101,1), (011,0)

(resp., to each of (110,1), (101,0), (011,1)/to each

of (110,0), (101,1), (011,1)) and probability zero

to the other three possible values of (OA,OB). If w

coincides with none ofx, y, z, then letPab(OA,OB|λ)

give probability 1/9 to each of (110,0), (101,0),

(011,0) and probability 2/9 to each of (110,1),

(101,1), (011,1). Then SPIN and TWIN are obvi-

ously true, and (6) is true because the marginal

distributions of OA and OB are the same as in the

previous example.

To illustrate explicitly why (6) breaks down when

putting all randomness in the past, let us consider

a specific conversion method of stochastic models

into deterministic ones that Conway and Kochen

have proposed [6] in response to earlier criticisms

of their claims concerning the viability of rGRWf

[15]:
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we can easily deal with the dependence of

the distribution of flashes on the external
fields FA [= a] and FB [= b], which arise from
the two experimenters’ choices of directions

x, y, z, and w . There are 40 × 33 = 1320
possible fields in question. For each such
choice, we have a distribution X(FA, FB) of

flashes, i.e., we have different distributions
X1, X2, . . . , X1320 . Let us be given “in advance”
all such random sequences, with their differ-

ent weightings as determined by the different
fields. Note that for this to be given, nature
does not have to know in advance the ac-

tual free choices FA (i.e., x, y, z) and FB (i.e.,
w ) of the experimenters. Once the choices

are made, nature need only refer to the rel-
evant random sequence Xk in order to emit
the flashes in accord with rGRWf. [emphasis

added]

The problem here is that the deterministic model
obtained from this method of conversion man-
ifestly violates MIN, because if nature were to

follow the recipe suggested in the emphasized part
of the quotation above, then she would have to use

the value of k = k(x, y, z,w) depending on both
experimenters’ choices, a = (x, y, z), and b = w , in
order to produce any of the outcomes OA, OB .

The conclusion that there are some predictions
of quantum theory that cannot be obtained by a
deterministic model satisfying parameter indepen-

dence is not new. As noted by Jarrett in 1984 [11],
for a stochastic model Bell’s locality condition [1, 2]

(7) Pab(OA,OB|λ) = Pa(OA|λ)Pb(OB|λ)

is (straightforwardly) equivalent to the conjunc-
tion of parameter independence (6) and another
condition known as outcome independence,

(8)
Pab(OA|OB , λ) = Pab(OA|λ) ,

Pab(OB|OA, λ) = Pab(OB|λ) .

For a deterministic model, (8) is always trivially sat-

isfied, as the distributionsPab(OA|λ) andPab(OB|λ)

each assign probability 1 to a single outcome, so any
further information (such as the other outcome)

is redundant. Thus, for a deterministic model,
parameter independence is equivalent to locality,
which Bell showed in 1964 [1] to be incompati-

ble with some predictions of quantum mechanics.
Therefore, deterministic models in agreement with
quantum predictions must violate parameter inde-

pendence. Even from the very same experiment as
considered by Conway and Kochen, this conclusion
was derived before in [13, 10, 3, 8] and [9, Section

4.2.1], in [9] using only SPIN and TWIN.
It has been suggested to one of us (R. T.) by

Simon Kochen that our understanding of MIN is

too weak, that MIN should be regarded as requiring
that the actual outcome itself of A be independent

of B’s choice, and not just its probability distribu-
tion. We are unable to see why this is a reasonable

requirement for a stochastic theory—or even what
exactly it should mean. Be that as it may, the exis-
tence of the examples described here demonstrates
that any such variant of MIN for a stochastic model
would either be unreasonable (or worse) or would
fail to be preserved under conversion of the model
to a deterministic one.
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