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Abstract

Schrödinger’s first proposal for the interpretation of quantum mechanics was
based on a postulate relating the wave function on configuration space to charge
density in physical space. Schrödinger apparently later thought that his proposal
was empirically wrong. We argue here that this is not the case, at least for a
very similar proposal with charge density replaced by mass density. We argue
that when analyzed carefully this theory is seen to be an empirically adequate
many-worlds theory and not an empirically inadequate theory describing a single
world. Moreover, this formulation—Schrödinger’s first quantum theory—can be
regarded as a formulation of the many-worlds view of quantum mechanics that is
ontologically clearer than Everett’s.
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1 Monstrosity

The ‘many world interpretation’ . . . may have something distinctive to say
in connection with the ‘Einstein Podolsky Rosen puzzle’, and it would be
worthwhile, I think, to formulate some precise version of it to see if this is
really so. John S. Bell (1986)

The many-worlds view of quantum mechanics is popular, but also controversial; it is very
radical and eccentric, but also inspiring. It is an incarnation of the desire to abolish the
vague division of the world, introduced by the Copenhagen interpretation, into system
and observer, or quantum and classical, and to obtain a fully precise formulation of
quantum mechanics, in which the axioms do not concern observers and observation but
reality. In the words of Hugh Everett (1957b), the inventor of the many-worlds view:

The Copenhagen Interpretation is hopelessly incomplete because of its a
priori reliance on classical physics . . . as well as a philosophic monstrosity
with a “reality” concept for the macroscopic world and denial of the same
for the microcosm.

We report here on some considerations on the many-worlds view of quantum mechan-
ics inspired by Erwin Schrödinger’s (1926) original interpretation of the wave function
ψ on configuration space as generating a continuous distribution of matter (or charge)
spread out in physical space. As we shall explain, Schrödinger’s original version of quan-
tum mechanics may be regarded as a version of many-worlds—though some adherents of
many-worlds will presumably not regard it as such—that we think is worth considering.
It is a version that, in our opinion, qualifies as a “precise version of” many-worlds such
as Bell called for in the passage quoted above.

2 Duality

Let us describe Schrödinger’s first quantum theory in our own words. Think first about
classical mechanics. Matter consists of particles, moving along trajectories defined by
the equations of the theory. Alternatively, a classical theory could claim that instead of
consisting of particles, matter is continuously distributed in 3-space and mathematically
described by a function m(x, t), where x runs through physical 3-space, providing the
spatial density of matter at time t. We call this ontology the matter density ontology.
Such a theory would involve classical equations governing the m function. In the m
function we can find the macroscopic objects of our experience, such as tables and chairs,
by noting that at a certain time there is a region of space, with the shape of a table or
chair, in which the matter density is significantly higher than in the surroundings. In
such a theory, it would be wrong to say that matter consists of a large number (such as
1023) of particles, since there are no particles in the ontology, just a continuum of stuff.

Now combine the matter density ontology with non-classical equations. Specifically,
suppose that matter is continuously distributed with density m(x, t), but now suppose
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that the m function is given by the following equation:

m(x, t) =
N∑

i=1

mi

∫
d3x1 · · · d3xN δ

3(x− xi)
∣∣ψt(x1, . . . , xN)

∣∣2 . (1)

Here, ψt is a wave function as in quantum mechanics, a function on R3N evolving
according to the usual Schrödinger equation

i~
∂ψ

∂t
= −

N∑
i=1

~2

2mi

∇2
iψ + V ψ , (2)

and mi denotes the mass of particle i, i = 1, . . . , N .
The m function (1) is basically the natural density function in 3-space that one

can obtain from the |ψ|2 distribution in configuration space. The formula means that,
starting from |ψ|2, one integrates out the positions of N−1 particles to obtain a density
in 3-space. Since the number i of the particle that was not integrated out is arbitrary,
it gets averaged over. The weights mi are the masses associated with the variables xi,
which may seem the most natural choice for defining the density of matter.

This provides, in fact, already the complete specification of a physical theory. In
the terminology of (Allori, Goldstein, Tumulka, and Zangh̀ı, 2008), this theory is called
“Sm” (S for the Schrödinger equation and m for the m function). It is closely related
to—if not precisely the same as—the version of quantum mechanics first proposed by
Schrödinger (1926). After all, Schrödinger originally regarded his theory as describing
a continuous distribution of matter (or charge) spread out in physical space in accord
with the wave function on configuration space (Schrödinger, 1927, p. 120):

We had calculated the density of electricity at an arbitrary point in space
as follows. We selected one particle, kept the trio of co-ordinates that de-
scribes its position in ordinary mechanics fixed; integrated ψψ over all the
rest of the co-ordinates of the system and multiplied the result by a certain
constant, the “charge” of the selected particle; we did a similar thing for
each particle (trio of co-ordinates), in each case giving the selected particle
the same position, namely, the position of the point of space at which we
desired to know the electric density. The latter is equal to the algebraic sum
of the partial results.

This is just a verbal description of the formula (1), except with charges instead of
masses.1 Schrödinger soon rejected this theory because he thought that it rather clearly
conflicted with experiment. After all, the spreading of the matter density arising from

1If we replace the masses mi in (1) with the charges ei, as Schrödinger did, then the following
problem arises that is absent when using masses. If the wave function of a macroscopic body (say, a
piece of wood) is such that the Heisenberg position uncertainties of the atomic nuclei are of the order
of an Angstrom, i.e., of the order of the size of an atom, then the positive charge of a nucleus may
be smeared out over the same volume as the negative charge of the electrons, so that they may cancel
each other, leaving only a negligible remainder in the m function. In this case, the macroscopic body
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equation (2) would appear to contradict the familiar localized detection events for quan-
tum particles, such as in the two-slit experiment. Moreover, given that there are no
particles in Sm, but instead matter is really continuous, one might think at first that
Sm is empirically refuted by the evidence for the existence of atoms. Yet, Schrödinger’s
rejection was perhaps a bit hasty, as we will see. Be that as it may, Schrödinger did in
fact create the first many-worlds theory, though he probably was not aware that he had
done so.

It is easy to see that Sm has a certain many-worlds character, since if ψ is the wave
function of Schrödinger’s cat then there will be two contributions to the m function, one
resembling a dead cat and the other a live cat. We will say more about this in Section 3.
For now note the duality: there exist two things, the wave function ψ and the matter
density function m. The latter represents the “primitive ontology” (PO) of the theory
(Allori, Goldstein, Tumulka, and Zangh̀ı, 2008), the elements of the theoretical picture
that correspond to matter in 3-dimensional space; the wave function tells the matter
how to move. The notion of PO is closely connected with what Bell called the “local
beables”:

[I]n the words of Bohr, ‘it is decisive to recognize that, however far the
phenomena transcend the scope of classical physical explanation, the account
of all evidence must be expressed in classical terms’. It is the ambition of
the theory of local beables to bring these ‘classical terms’ into the equations,
and not relegate them entirely to the surrounding talk. (Bell, 1976)

We note that the matter density m(x, t) (1), defined as it is on physical space, is given
by local beables, while the wave function ψ = ψ(x1, . . . , xN), defined on configuration
space, is not.

To introduce a PO for a theory means to be explicit about what space-time entities
the theory is fundamentally about. There are various possibilities for what type of
mathematical objects could represent the elements of the PO, including particle world
lines as in classical or Bohmian mechanics, world sheets as maybe suggested by string
theory, world points as in the GRW theory with the flash ontology (Bell, 1987a; Tumulka,
2004; Allori, Goldstein, Tumulka, and Zangh̀ı, 2008), or, instead of subsets of space-time,
functions on space-time representing a field or a continuous density of matter, as in the
matter-density ontology of Sm (and GRWm (Allori, Goldstein, Tumulka, and Zangh̀ı,
2008)). The wave function also belongs to the ontology of Sm, but not to the PO:
physical objects in Sm are made of m, not of ψ. Rather the role of ψ in this theory
lies in the relation defined by (1) between ψ and m. (That m is primitive and ψ is not
should not be taken to imply that, contrary to (1), ψ should be defined in terms of m.)

∗ ∗ ∗
would hardly be recognizable in the m function, and such an m function would not provide a plausible
image of our world. This problem notwithstanding, replacing the masses mi in (1) with the charges ei,
or with the constant value 1, leads to theories which are empirically equivalent to Sm and similar to
Sm in all relevant respects. In particular, our conclusions about nonlocality (Section 5) and probability
(Section 7) for Sm apply equally to these theories.
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Let us compare Sm to Bohmian mechanics (Bohm, 1952; Bell, 1966; Goldstein, 1998).
The latter is a theory of particles with trajectories Qi(t) ∈ R3, guided by a wave function
ψ. As in classical mechanics, particles are points moving around in space, but the
equation of motion is highly non-classical. In this theory there is a wave–particle duality
in the literal sense: there is a wave, and there are particles. For understanding Bohmian
mechanics it is important to think of these two parts of reality, ψ and the Qi, in a
particular way: When one says, for example, that the pointer of an apparatus points to
the value α then one means that the particles of which the pointer consists are at the
appropriate positions corresponding to α, but one does not mean that the wave function
lies in the subspace of Hilbert space that can be associated with the description that
the pointer is pointing to α. To put this succinctly, one could say that the matter in
Bohmian mechanics consists of the particles, not of the wave function. The role of the
wave function, in contrast, is to tell the particles how to move. Indeed, the wave function
ψ occurs in the equation of motion for the particles,

dQi

dt
=

~
mi

Im
ψ∗∇iψ

ψ∗ψ
(Q1(t), . . . , QN(t)) . (3)

Here, the wave function ψ = ψt evolves according to the Schrödinger equation (2). It
is consistent with these two equations that the configuration Q(t) = (Q1(t), . . . , QN(t))
has probability distribution |ψt|2 at every time t.

Bohmian mechanics thus has the duality in common with Sm: In both theories,
there are mathematical variables specifying the distribution of matter in 3-dimensional
space—and not in 3N -dimensional configuration space. Bohmian mechanics specifies
this distribution by means of the actual configuration Q(t) = (Q1(t), . . . , QN(t)), and
Sm of course by the m(·, t) function. A difference between Bohmian mechanics and Sm
is that the m function is a function of the quantum state ψ, whereas Q is not. Indeed,
in the initial value problem of Bohmian mechanics, we have to choose an initial value
for Q in addition to the initial value of ψ.

∗ ∗ ∗

The many-worlds view is often presented as asserting that there exists only the wave
function, which evolves unitarily, and nothing else. Let us call this view S0, according
to a notation pattern that indicates first how the wave function evolves (Schrödinger
equation) and then what the PO is (nothing). We believe it is useful to clearly distinguish
between S0 and Sm. Doing so affords a clear separation of the main issues for a many-
worlds theory: the issue of whether a theory, in order to make clear sense as a physical
theory, needs to posit a PO in space and time from the issues of whether the existence of
parallel worlds is scientifically plausible, of whether the Bell inequality can be violated
by a local theory, and of whether such a theory can give rise to the appearance of
randomness.

∗ ∗ ∗
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We have defined Sm using the Schrödinger picture, but it can be formulated as well
in the Heisenberg picture. To this end let

M(x) =
N∑

i=1

mi δ
3(x− Q̂i) (4)

be the mass density operator at x ∈ R3, with Q̂i the triple of position operators associ-
ated with the i-th particle. Then (1) can be rewritten as

m(x, t) = 〈ψt|M(x)|ψt〉 , (5)

and this expression can be transferred to the Heisenberg picture in the usual way by
setting

M(x, t) = exp(iHt/~)M(x) exp(−iHt/~) , (6)

so that
m(x, t) = 〈ψ|M(x, t)|ψ〉 . (7)

However, it will be convenient for us to continue using the Schrödinger picture.

3 Parallelity

In Sm, apparatus pointers never point in a specific direction (except when a certain
direction in orthodox quantum theory would have probability more or less one), but
rather all directions are, so to speak, realized at once. As a consequence, it would seem
that its predictions do not agree with those of the quantum formalism. Still, it can be
argued that Sm does not predict any observable deviation from the quantum formalism:
there is, arguably, no conceivable experiment that could help us decide whether our
world is governed by Sm on the one hand or by the quantum formalism on the other.
Let us explain.

Whenever the wave function (as a function on configuration space!) consists of dis-
joint packets ψ1, . . . , ψL ,

ψ =
L∑

`=1

ψ` , (8)

it follows that

m(x) =
L∑

`=1

m`(x) , (9)

where m`(x) is defined in terms of ψ` in the same way as m(x) in terms of ψ by (1).
Suppose further, as we shall henceforth do, that in particular the ψ` represent macro-
scopically different states, as with Schrödinger’s cat. Then it is plausible that also in
the future the ψ` will remain (approximately) disjoint (until Poincaré recurrence times),
so that

m(x, t) =
L∑

`=1

m`(x, t) , (10)
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with m`(·, t) defined in terms of ψ`,t (the time-evolved ψ`), also for t in the future. More-
over, as long as ψ` does not itself become a superposition of macroscopically different
states, m` behaves as expected of the macro-state of ψ` and provides a reasonable and
recognizable story.

For example, for Schrödinger’s cat we have that ψ = ψ1 + ψ2 with ψ1 the wave
function of a live cat and ψ2 the wave function of a dead cat, and m1(x, t) behaves like
the mass density of a live cat (up to an overall factor), while m2(x, t) behaves like that
of a dead cat. Note that, by the linearity of the Schrödinger evolution, the live cat and
the dead cat, that is m1 and m2, do not interact with each other, as they correspond to
ψ1 and ψ2, which would in the usual quantum theory be regarded as alternative states
of the cat. The two cats are, so to speak, reciprocally transparent.

More generally, consider an (evolving) decomposition (8) associated with an orthogo-
nal decomposition H = ⊕`H` of the Hilbert space H into subspaces H` corresponding
to different macrostates (von Neumann, 1932). Then the components of the correspond-
ing decomposition (9) should form independent families of correlated matter density as-
sociated with the terms of the superposition, with no interaction between the families.
The families can indeed be regarded as comprising many parallel worlds, superimposed
on a single space-time. Metaphorically speaking, the universe according to Sm resembles
the situation of a TV set that is not correctly tuned, so that one always sees a mixture
of several channels. In principle, one might watch several movies at the same time in
this way, with each movie conveying its own story composed of temporally and spatially
correlated events. Thus, in Sm reality is very different from what we usually believe
it to be like. It is populated with ghosts we do not perceive, or rather, with what are
like ghosts from our perspective, because the ghosts are as real as we are, and from
their perspective we are the ghosts. Put differently, within the one universe consisting
of matter with distribution m(·, t) in one space-time, there exist parallel worlds, many
of which include separate, somehow different copies of the same person.

So the “many worlds” here are the many contributions m`, and L is the number of
the different worlds. It is important to realize that the concept of a “world” does not
enter in the definition of the theory, which consists merely of the postulate that m(x, t)
means the density of matter together with the laws (2) and (1) for ψ and m. Instead,
the concept of a “world” is just a practical matter, relevant to comparing the m function
provided by the theory to our observations, that may well remain a bit vague. There is
no need for a precise definition of “world,” just as we can get along without a precise
definition of “table.”

While Sm has much in common with Everett’s many-worlds formulation of quan-
tum mechanics (Everett, 1957a), there are some differences. In Sm, the “worlds” are
explicitly realized in the same space-time. Moreover, Sm has a clear PO upon which
the existence and behavior of the macroscopic counterparts of our experience can be
grounded. Thus the “preferred basis problem” does not arise for Sm. Everett’s view
is essentially S0, as his worlds are thought of as corresponding directly to the various
parts ψ` of the wave function, with no intervening matter densities m`.

Since in Sm the wave function evolves according to the Schrödinger equation, it
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never collapses. Let us make explicit that this is not in conflict with the collapse rule
of the quantum formalism (i.e., the algorithm for computing the statistics of outcomes
of quantum experiments) because the formalism talks about wave functions of quantum
objects whereas the ψ in the defining equations (2) and (1) is really a wave function
of the universe. In the quantum formalism, it seems meaningless to talk about a wave
function of the universe since the wave function of a system is only used for statistical
predictions of what an observer outside the system will see. In Sm, in contrast, the
wave function of the universe is not meaningless at all, as it governs the behavior of the
matter.

As a consequence of the relation between the m` and the ψ`, each world m` looks
macroscopically like what most physicists would expect a world with wave function ψ`

to look like macroscopically. This fact makes clear not only that tables and chairs can
be found in m` but also that the possible outcomes of experiments are the same as
in quantum mechanics; for example, particle detectors can only have integer numbers
of clicks. In particular, the empirical evidence for the granular structure of matter
(e.g., the existence of atoms, or the fact that electrons can be counted) is not in logical
contradiction with the continuous nature of matter as postulated in Sm.

Readers may worry that the following problem arises in Sm. Since with every non-
deterministic “quantum measurement,” each world splits into several, the number of
worlds should increase exponentially with time. After adding very many contributions
m`, we may expect that m looks like random noise, or like mush. The worry is that
the separate stories corresponding to the m` then cannot be extracted any more from
an analysis of m. However, when we consider, not just the m function associated
with the present time, but also that in the past and in the future, then the reasonable
possibilities of splitting m into causally disconnected, branching, recognizable worlds m`

are presumably very limited, and should more or less correspond to a splitting (8) of the
wave function based on an orthogonal decomposition of H into macrostates.2 Thus,
while it would be a problem for Sm if m(x, t) were constant as a function of x and t, no
problem need arise if m(x, t) is highly intricate.

∗ ∗ ∗

We wish to address a question that is often raised against the many-worlds view: If
a conscious observer is in a superposition of very different brain states (say, having read
the figure “1” and having read the figure “2”), what is her or his conscious experience
like? Sm entails that there are two persons, i.e., two contributions to the m field, one
behaving like a person who has read “1” and the other like a person who has read “2”.
So far so good, but that is only a statement about the behavior of matter, and does
not strictly imply anything about the conscious experience. Since we cannot solve the
mind–body problem, or get to the bottom of the nature of consciousness, we invoke
an hypothesis of the kind that has always been implicitly used in physics, in particular

2Appeal to causal disconnection and branching in the extraction of “worlds” from the quantum
state and its image on physical space has been discussed in the contemporary literature on the Everett
interpretation (see, e.g., Saunders, 1995b; Wallace, 2003).
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in classical physics: the assumption of a suitable psycho-physical parallelism implying
that a person has a conscious experience of the figure “1” whenever the person, more
precisely the person’s matter, is configured appropriately.

4 Reality

In Sm, the right way to understand the theory is to regard the m function as the basic
reality, and not ψ. The way Sm connects with the world of our experiences is analogous
to the way that Bohmian mechanics does. There, the connection is made through
the particles, not through the wave function. Insofar as a universe governed by Sm is
concerned, the essential nature of the wave function is defined by its evolution and its
relation to the m function.

Sm, but not S0, requires that the causally disconnected entities which constitute
“worlds” are part of or are realized in some precisely-defined, locally specifiable, spatio-
temporal entity of a relatively familiar kind (the PO). And on this we disagree with
contemporary advocates of the Everett interpretation such as Simon Saunders (1995a;
1995b), Hilary Greaves, Max Tegmark (2003), David Deutsch (unpublished), and David
Wallace (2003): we require, and they do not, that worlds be instantiated in such a way.
And this corresponds in turn to a disagreement about whether anything like a PO is
required in a physical theory.

We feel the need for a PO because we do not see how the existence and behavior
of tables and chairs and the like could be accounted for without positing a primitive
ontology—a description of matter in space and time. The aim of a fundamental physical
theory is, we believe, to describe the world around us, and in so doing to explain our
experiences to the extent of providing an account of their macroscopic counterparts, an
account of the behavior of objects in 3-space. Thus it seems that for a fundamental
physical theory to be satisfactory, it must involve, and fundamentally be about, “local
beables,” and not just a beable such as the wave function, which is non-local. In contrast,
if a law is, like Schrödinger’s equation, about an abstract mathematical object, like the
wave function ψ, living in an abstract space, like a Hilbert space, it seems necessary
that the law be supplemented with further rules or axioms in order to make contact
with a description in 3-space. For example, formulations of classical mechanics utilizing
configuration space R3N or phase space R6N (such as Euler–Lagrange’s or Hamilton’s)
are connected to a PO in 3-space (particles with trajectories) by the definitions of
configuration space and phase space.

This, at least, is how the matter seems to us. But to a proponent of S0 the existence
of many worlds is a direct consequence of the Schrödinger equation, and the very same
many worlds exist, for example, in a Bohmian universe, since Bohmian mechanics uses
the same wave function. Not so, however, for a proponent of Sm. In Sm the many-
worlds character arises from the choice of primitive ontology and the law governing it.
A different choice, such as Bohm’s law (3) for a particle ontology, would retain the
single-world character.
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∗ ∗ ∗
We are, in fact, not the first to ask about a PO in space and time for the many-

worlds view. Bell (1981) suggested as a PO for the many-worlds view that each world
consists of particles with actual positions (like a classical or Bohmian world). In a
genuine many-worlds theory based on this ontology, at every time t, every configuration
Q ∈ R3N would be realized in some world, in such a way that the distribution across the
ensemble of all worlds is |ψt|2. However, Bell himself objected that the “other” worlds,
other than the one we are in, serve no purpose and should be discarded. In his words:

[I]t seems to me that this multiplication of universes is extravagant, and
serves no real purpose in the theory, and can simply be dropped without
repercussions.

It is worth noting that this objection does not apply to Sm, as there is no easy, clean,
and precise way of getting rid of all but one world in Sm. Bell, however, can remove
most worlds from his picture, and thus proposes the following for the one remaining
world:

instantaneous classical configurations [Q] are supposed to exist, and to
be distributed . . . with probability |ψ|2. But no pairing of configurations
at different times, as would be effected by the existence of trajectories, is
supposed.

It is not clear what is meant by the last sentence, given that for every time t a config-
uration Q(t) is supposed to exist. What Bell presumably had in mind is that for every
time t the configuration Q(t) is chosen independently with distribution |ψt|2. Let us call
this theory Sip (S for the Schrödinger equation, i for independent, and p for particle
ontology); in (Allori, Goldstein, Tumulka, and Zangh̀ı, 2008) it was called BMW for
“Bell’s version of many-worlds.” So in Sip, the PO consists of particles, as in Bohmian
or classical mechanics, but their positions vary with time in an utterly wild and dis-
continuous way. (Indeed, the path t 7→ Q(t) will typically not even be a measurable
function.)

Notwithstanding the step of removing most worlds, Sip still has a certain many-
worlds character, which manifests itself when one considers a time interval. Within this
interval, the configuration Q(t) will visit all regions of configuration space in which ψ is
nonzero, and those regions more often that contain more of |ψ|2. So in Sip, many worlds
exist, not at the same time, but one after another. For example, if after a quantum
measurement the wave function of the system and the apparatus is a superposition∑

α cαψα of contributions with the apparatus pointer pointing to different outcomes
α, then the actual outcome, the one corresponding to the positions of the particles
constituting the pointer, will be different at different times, and more often be a value
with greater weight |cα|2. Taking into account the occasions in the past at which wave
packets split into several ones, we are led to conclude that there are also moments in
time within every second, according to Sip, in which dinosaurs are still around.
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Against Sip, Bell objects that the history of our world, according to Sip, is unbeliev-
ably eccentric, implying that our memories are completely unreliable, as the past was
nothing like the way we remember it. It is worth noting that also this objection does
not apply to Sm, as the history of every single world in Sm is much like the way we
normally think of the history of our world.

Sip is related to Nelson’s stochastic mechanics (Nelson, 1985; Goldstein, 1987) (in
the variant due to Davidson (1979) with arbitrary diffusion constant); in fact it can be
regarded as the limiting case of stochastic mechanics in which the diffusion constant
tends to infinity. As another drawback of Sip, chances seem low that this theory could
ever be made relativistic, given that it relies explicitly on the concept of simultaneity.

∗ ∗ ∗

Another comparison we should make is between Sm and GRWm, the Ghirardi–
Rimini–Weber (GRW) theory of spontaneous wave function collapse (Ghirardi, Rimini,
and Weber, 1986; Bell, 1987a) in the version with a matter density ontology (Benatti,
Ghirardi, and Grassi, 1995; Goldstein, 1998). GRWm shares with Sm the law (1) for m,
but uses a stochastic and nonlinear modification of the Schrödinger equation, according
to which macroscopic superpositions like Schrödinger’s cat spontaneously “collapse”
within a fraction of a second into one contribution or another, with probabilities very
close to those prescribed by the quantum formalism. As a consequence, only one of the
wave packets corresponding to different “worlds” remains large while the others fade
away, and the m function of GRWm is essentially just one of the m` contributing to
m in Sm. Thus, it seems reasonable to say that GRWm does not share the many-
worlds character of Sm. (On the other hand, one might argue that even in GRWm,
other contributions mk, k 6= `, still exist, however small they may be. Note, though,
that those contributions are not just reduced in size by the GRW collapses, but also
distorted, due to a large relative gradient of the tails of the Gaussian involved in the
collapse, so that their evolution is very much disturbed (Wallace, 2006b).)

5 Nonlocality

Bell’s theorem seems to show that every theory that agrees with the quantum formalism
must be nonlocal (Bell, 1964). But Bell’s argument relies on the assumption that ex-
periments have unambiguous outcomes. That is a very normal kind of assumption, but
one that is inappropriate in theories with a many-worlds character, as Bell concedes in
the passage quoted in the beginning of this article. Because of its ontological clarity, Sm
provides an occasion to analyze the relevance of the many-worlds character to locality.
So is Sm a local theory or not?

We first observe that in the absence of interaction between two disjoint regions A
and B of space, experimenters in A have no way of influencing m|B, the matter density
in B. After all, if

ψ = ψ(q1, . . . , qM , r1, . . . , rN) = ψ(~q, ~r)
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is a wave function for which some variables are confined to A, q1, . . . , qM ∈ A, and some
to B, r1, . . . , rN ∈ B, then m|B depends on ψ only through the reduced density matrix
associated with B, ρB = trA|ψ〉〈ψ|, where trA means the partial trace over the variables
~q = (q1, . . . , qM). Indeed,

ρB(~r;~s) =

∫
d3M~q ψ∗(~q, ~r)ψ(~q, ~s) (11)

and, for x ∈ B,

m(x) =
N∑

j=1

mM+j

∫
d3N~r δ3(x− rj) ρB(~r;~r) . (12)

Since, as is well known, ρB will not depend on any external fields at work in A, fields
that the experimenters may have set up to influence the matter governed by ψ, for as
long as there is no interaction between A and B, it follows that the same thing is true
of m|B. This shows that experimenters in A cannot influence m|B.

And yet, Sm is nonlocal. To see this, consider an Einstein–Podolsky–Rosen (EPR)
experiment, starting with two electrons in the singlet state, one in Alice’s lab A and the
other in Bob’s lab B. While there is no interaction between A and B, Alice and Bob
each perform a Stern–Gerlach experiment in the z direction. Now consider a time t just
after detectors have clicked on both sides. Recall that in ordinary quantum mechanics
the outcome has probability 1

2
to be (up, down) and probability 1

2
to be (down, up).

Hence, in Sm the wave function ψ = ψt of the EPR pair together with the detectors
(and other devices) splits into two macroscopically disjoint packets,

ψ =
∑

`

ψ` = ψ(up,down) + ψ(down,up) , (13)

and correspondingly,

m =
∑

`

m` = m(up,down) +m(down,up) . (14)

Thus the world in which Alice’s result is “up” is the same world as the one in which
Bob’s result is “down,” and it is this fact that is created in a nonlocal way.

To connect, and contrast, this nonlocality with the fact that Alice cannot influence
m|B, we note that the m function alone, while revealing that there are two worlds in A
(corresponding to the results “up” and “down”) and two worlds in B (corresponding to
the results “up” and “down”), does not encode the information conveying which world
in A is the same as which world in B. That is, the pairing of worlds cannot be read off
from m(·, t) even though it is an objective fact of Sm at time t, defined by means of the
wave function ψt.

Moreover, even though Alice cannot influence the PO in B, she can influence other
physical facts pertaining to B as follows. Consider now two options for Alice: she can
carry out a Stern–Gerlach experiment in either the z direction or the x direction (what
is often called measuring σz or σx). Suppose further that t1 is a time at which a detector
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in A has already clicked but the electron in B has not yet reached its Stern–Gerlach
magnet. Then the wave function ψ = ψt1 of the EPR pair and the detectors in A
together is either—if Alice chose the z direction—of the form

ψ = 1√
2

∣∣↑, z = +1
〉

A

∣∣↓, z = 0
〉

B

∣∣“up”
〉

+ 1√
2

∣∣↓, z = −1
〉

A

∣∣↑, z = 0
〉

B

∣∣“down”
〉

(15)

(with the first two factors referring to spin and position of the EPR pair and the third
to the detectors in A), or—if Alice chose the x direction—of the form

ψ = 1√
2

∣∣→, x = +1
〉

A

∣∣←, z = 0
〉

B

∣∣“right”
〉

+ 1√
2

∣∣←, x = −1
〉

A

∣∣→, z = 0
〉

B

∣∣“left”
〉
. (16)

Now suppose that at time t2 > t1, the electron in Bob’s lab has passed through a Stern–
Gerlach magnetic field oriented in the z direction, but not yet reached the detectors.
Then the above expressions for ψ = ψt1 have to be modified as follows for ψ = ψt2 (of
the EPR pair and the detectors in A): using∣∣→〉

= 1√
2

(∣∣↑〉 +
∣∣↓〉) and

∣∣←〉
= 1√

2

(∣∣↑〉− ∣∣↓〉) , (17)

we have that either—if Alice chose the z direction—

ψ = 1√
2

∣∣↑, z = +1
〉

A

∣∣↓, z = −1
〉

B

∣∣“up”
〉

+ 1√
2

∣∣↓, z = −1
〉

A

∣∣↑, z = +1
〉

B

∣∣“down”
〉

(18)

or—if Alice chose the x direction—

ψ = 1
2

∣∣→, x = +1
〉

A

(∣∣↑, z = +1
〉

B
−

∣∣↓, z = −1
〉

B

) ∣∣“right”
〉

+ 1
2

∣∣←, x = −1
〉

A

(∣∣↑, z = +1
〉

B
+

∣∣↓, z = −1
〉

B

) ∣∣“left”
〉
. (19)

As a consequence, at time t2 the decomposition m =
∑
m` = m1+m2 into worlds reads,

on the B side, either—if Alice chose the z direction—

m1|B = 1
2
mz=−1 , m2|B = 1

2
mz=+1 (20)

(with mz=−1 a unit bump centered at z = −1, etc.) or—if Alice chose the x direction—

m1|B = 1
4
mz=−1 + 1

4
mz=+1 , m2|B = 1

4
mz=−1 + 1

4
mz=+1 . (21)

That is, while m(x) for x ∈ B is unaffected by Alice’s choice, each m`(x) is affected.
This is an example of an objective fact pertaining to region B that is influenced by
Alice’s choice, and illustrates that the nonlocality of Sm is even of the kind involving
instantaneous influences.3

3It is interesting that Sm turns out to be nonlocal in situations that do not seem to require nonlocality
in a single-world framework: If both Alice and Bob choose the z direction, then the correlation can of
course be explained locally by means of a “hidden variable” (that was the point of Einstein, Podolsky
and Rosen (1935)). If Alice chooses the x and Bob the z direction then the outcomes of both sides are
independent. So, if Alice can only choose between z and x then the statistics can be explained by two
independent hidden variables associated with the z and x directions.
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The situation of nonlocality in Sm can be compared to that in the “many minds”
picture described by Albert and Loewer (1988). There, the PO is replaced by a collection
of purely mental events; Alice has many minds, some of which see “up” and some
“down,” and so does Bob, but no pairing is assumed that would specify which of Bob’s
minds is in the same world as which of Alice’s. This parallels the absence of pairing
between Bob’s worlds and Alice’s worlds in the m function. The clarity of Sm helps
exemplify that this fact alone does not imply locality: Even if one assumes the absence
of a pairing in the PO (or, for “many minds,” in the mental events replacing the PO), the
non-primitive ontology (i.e., the wave function) may define such a pairing nonetheless.
For the same reason, also “many minds” should be regarded as nonlocal. Of course, the
nonlocality of Sm is already suggested by the facts that Sm cannot be formulated purely
in terms of local variables (but needs the nonlocal variable ψ), and that EPR (or Bell)
correlations in Sm do not propagate through space at finite speed.

6 Relativity

Even though Sm is nonlocal, it can easily be made relativistic, at least formally, neglect-
ing cut-offs and renormalization. We acknowledge that to go beyond a formal theory
such as sketched below to one that is well defined and physically adequate would of
course be a formidable challenge.

For any relativistic quantum theory, consider the Heisenberg picture with fixed state
vector ψ, let Tµν(x, t) be the stress-energy tensor operator for the space-time point (x, t),
and set

mµν(x, t) = 〈ψ|Tµν(x, t)|ψ〉 . (22)

This tensor field on space-time is arguably the most obvious relativistic analog of the
formula (1), for what could in ordinary quantum mechanics be called the average mass
distribution. Indeed, in the nonrelativistic limit, mµν(x, t) should have time-time com-
ponent

m00(x, t) = m(x, t) c2 (23)

with m(x, t) as in (1), and all other components negligible. The theory with PO given
by (22) is relativistically invariant because of the relativistic invariance of the underlying
quantum theory and that of the operator-valued tensor field Tµν(x, t).

Other relativistic laws than (22) are conceivable. In fact, the concept of matter
density per se does not even select whether the relativistic analog of the m(·) function
should be a scalar, vector, or tensor field; the above choice of tensor field was inspired
by the relativistic concept of mass-energy, but, as mentioned before, the matter density
function need not be linked to masses.

7 Probability

In ordinary quantum mechanics, the outcome of a “quantum measurement” (say, a
Stern–Gerlach experiment) is regarded as random with certain probabilities. In Sm,
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though, all possible outcomes are realized in different worlds, so it is not obvious how
it can make sense to talk of probabilities at all. What are these probabilities the prob-
abilities of ?

This problem is often called the “incoherence problem,” applying to any many-worlds
interpretation of quantum mechanics, be it in the form originally put forward by Everett
(1955, 1957a) or in other formulations (see, e.g., Deutsch, 1985). Moreover, most authors
agree that once this problem is solved, there is still the quantitative problem of showing
that the probabilities agree with the quantum-mechanical ones (see, e.g., Greaves, 2004).
In recent years various proposals have been put forward to solve these problems. David
Deutsch (1999) has suggested that probabilities can be understood in terms of rational
action and that one should prove, via decision theory, that a “rational” agent who
believes himself to be in a many-worlds universe, should nevertheless make decisions as
if the quantum probabilities gave the chances for the results of experiments in the usual
way; in this regard, see also the contribution of David Wallace (2007). Lev Vaidman
(1998; 2008) has put forward his “sleeping pill” argument to support the validity of the
ignorance interpretation of probability. Recently, Simon Saunders and Wallace (2008)
have considered a “semantic turn” in order to ensure the truth of utterances typically
made about quantum mechanical contingencies, including statements of uncertainty, by
speakers living in a many-worlds universe (Wallace, 2006a). See also (Tappenden, 2000;
Greaves, 2004; Lewis, 2007; Baker, 2007).

Since Sm is a many-worlds formulation of quantum mechanics—albeit with a pre-
cise primitive ontology—any of the proposals mentioned above about the meaning of
probabilities in a many-worlds setting can equally well be considered in Sm. We prefer,
however, Everett’s approach (Everett, 1955, 1957a), that of denying that the incoher-
ence problem is a genuine problem (for more on this see Section 9) and appealing to
typicality for the quantitative problem. Typicality is a notion that goes back at least to
Ludwig Boltzmann’s mechanical analysis of the second law of thermodynamics (Gold-
stein, 2001), and that, in recent years, has been used for explaining the emergence
of quantum randomness in Bohmian mechanics (Dürr, Goldstein, and Zangh̀ı, 1992).4

4In Bohmian mechanics different histories of the world, corresponding to different initial configura-
tions, are possible for the same wave function Ψ of the universe, and the observed frequencies may agree
with quantum mechanics in some histories but not in others. Thus a concept of “typical history” is
needed. The only known candidate for this concept that is time translation invariant is the one given by
the |Ψ|2 measure. This measure is equivariant (Dürr, Goldstein, and Zangh̀ı, 1992), a property which
expresses the mutual compatibility of the Schrödinger evolution of the wave function and the Bohmian
motion of the configuration. This measure is used in the following way: A property P is typical if
it holds true for the overwhelming majority of histories Q(t) of a Bohmian universe. More precisely,
suppose that Ψt is the wave function of a universe governed by Bohmian mechanics; a property P ,
which a solution Q(t) of the guiding equation for the entire universe can have or not have, is called
typical if the set S0(P ) of all initial configurations Q(0) leading to a history Q(t) with the property P
has size very close to one, ∫

S0(P )

|Ψ0(q)|2dq = 1− ε , 0 ≤ ε� 1 , (24)

with “size” understood relative to the |Ψ0|2 distribution on the configuration space of the universe. For
instance, think of P as the property that a particular sequence of experiments yields results that look
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According to Everett (1957a):

We wish to make quantitative statements about the relative frequencies of
the different possible results . . . for a typical observer state; but to accom-
plish this we must have a method for selecting a typical element from a
superposition of orthogonal states. . . .

The situation here is fully analogous to that of classical statistical mechanics,
where one puts a measure on trajectories of systems in the phase space by
placing a measure on the phase space itself, and then making assertions which
hold for “almost all” trajectories (such as ergodicity, quasi-ergodicity, etc).
This notion of “almost all” depends here also upon the choice of measure,
which is in this case taken to be Lebesgue measure on the phase space.
. . . [T]he choice of Lebesgue measure on the phase space can be justified by
the fact that it is the only choice for which the “conservation of probability”
holds, (Liouville’s theorem) and hence the only choice which makes possible
any reasonable statistical deductions at all.

In our case, we wish to make statements about “trajectories” of observers.
However, for us a trajectory is constantly branching (transforming from state
to superposition) with each successive measurement.

Let us explain how that works in Sm. It is useful to focus on the following statement:

The relative frequencies for the results of experiments that a typical observer
sees agree, within appropriate limits, with the probabilities specified by the
quantum formalism.

(25)

We elaborate on this statement below. The idea is that a derivation of this statement
amounts to a justification of our use of the quantum probabilities. For a discussion of
the idea of a typical observer in a different context see (Gott, 1993, 2001, Chap. 5),
where the rule that we humans should see what a typical observer sees was called the
“Copernican principle.”

By what a “typical observer sees,” be it relative frequencies or any other sort of
behavior corresponding to some property P , we mean that P occurs in “most” worlds.
When this is true, we often also say that the behavior is typical, or that P typically
holds, or that P is typical. It is, of course, crucial here to specify exactly what is meant
by “most”—what is meant by saying that P is typical.

The sense of typical we have in mind is given by assigning to each world ml a weight

µ` =

∫
d3xm`(x, t) . (26)

random (accepted by a suitable statistical test), governed by the appropriate quantum distribution.
One can show, using the law of large numbers, that P is typical (see Dürr, Goldstein, and Zangh̀ı, 1992,
for a thorough discussion).
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We say that

A property P holds typically (or, for most worlds) if and only if the sum
of the weights µ`, given by (26), of those worlds for which P holds is very
near the sum of the weights of all worlds.

(27)

In the next section we will discuss why we believe that this is a reasonable notion of
typicality, one such that we should expect to see what is typical. Let us now explore its
mathematical consequences.5

In terms of the decomposition (8) of the wave function ψ into macroscopically differ-
ent contributions ψ`, the weight can be expressed as follows, according to the definition
(1) of the m function:

µ` =

∫
d3xm`(x, t) = ‖ψ`‖2

N∑
i=1

mi (28)

(recall that mi are the mass parameters associated with the N “particles”). That is, the
weights we associate with different worlds are the same weights, up to a factor

∑
mi,

as would usually be associated with different worlds in a many-worlds framework. We
can also rephrase the typicality of P in terms of the ψ`: Let L be the set of all indices
`, L = {1, . . . ,L }, and L(P ) the set of those indices ` such that the world with index
` has the property P . By (27), the property P holds typically if and only if∑

`∈L(P )

µ`∑̀
∈L

µ`

= 1− ε , 0 ≤ ε� 1 . (29)

Since the ψ` do not overlap, and assuming ‖ψ‖ = 1 as usual, we have that∑
`∈L

µ` = ‖ψ‖2
∑

i

mi =
∑

i

mi .

Thus, P holds typically if and only if6∑
`∈L(P )

‖ψ`‖2 = 1− ε , 0 ≤ ε� 1 . (30)

Everett showed that with the sense of typicality provided by the weights (26,28) the
law of large numbers yields (25). A simple example should suffice here. Consider an
observer performing a large number n of independent Stern–Gerlach experiments for
which quantum mechanics predicts “spin up” with probability p and “spin down” with

5One might be tempted to think that some of the worlds, those represented with less weight µ`, are
somehow less real, corresponding perhaps to a lesser degree of existence (a “measure of existence” was
considered by Vaidman (2008)). But we do not think that there can be different degrees of existence,
and we certainly see no basis for such a position in Sm.

6Note the similarity between (24) and (30).
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probability q = 1− p. Let this n-part experiment begin at time t0 and end at time t; let
us focus on just one world at time t0. Assume that the sequence of outcomes, such as

↑↓↓↑ . . . ↓↑↑↑ , (31)

gets recorded macroscopically, and thus in m`(·, t). The one world at time t0 splits into
L ≥ 2n worlds at time t,

ψ = ψ(t) =
L∑

`=1

ψ`(t) , m(x, t) =
L∑

`=1

m`(x, t) . (32)

Now some of the worlds at time t feature a sequence in which the relative frequencies of
the outcomes agree, within appropriate limits, with the quantum probabilities p and q.
However, this is true only of some worlds, but not all. It is a property P that a world
may have or not have.

Is P typical? Let L(k) be the set of those ` such that the world m` features a
sequence of k spins up and n− k spins down; taken together, these worlds have weight∑

`∈L(k)

µ` =
(∑

i

mi

) ∑
`∈L(k)

‖ψ`‖2 =
(∑

i

mi

)(
n

k

)
pkqn−k . (33)

Since n is large, the weight is overwhelmingly concentrated on those worlds for which the
relative frequency k/n of “up” is close to p. This follows from the law of large numbers,
which ensures that, if we generated a sequence of n independent random outcomes, each
“up” with probability p or “down” with probability q, then the relative frequency of
“up” will be close to p with probability close to 1. Thus the total weight of the worlds
with k/n ≈ p is close to the total weight. This illustrates how (27) yields (25). The
upshot is that Sm is empirically equivalent to both orthodox quantum mechanics and
Bohmian mechanics.7

In both Sm and Bohmian mechanics, typicality is used for two purposes: prediction
and explanation. Namely, when deriving predictions from Bohmian mechanics we claim

7We note the following subtlety about the empirical equivalence between Sm and Bohmian mechan-
ics. Even though there is no experiment that could distinguish them, there exist contrived situations
in which Sm does not make the same empirical prediction as Bohmian mechanics, but rather makes
no empirical prediction at all. Namely, there exist contrived situations in which Sm provides no rec-
ognizable macroscopic objects, while any experimental test would, of course, require the existence of
such objects, in particular of pointers to register the outcome and of humans or other beings as experi-
menters. For example, suppose that 3-space is not R3 but a 3-torus (S1)3, where S1 denotes a circle (of
some large perimeter). Then some wave functions on configuration space (S1)3N are invariant under
translations of (S1)3. Such wave functions can be obtained from any ψ by superposing all translates of
ψ. They would appear completely acceptable in Bohmian mechanics but would lead to a profoundly
problematical state of the PO in Sm, namely a constant m function. To see this, note that if two wave
functions are translates of each other then the m functions they give rise to are translates of each other
as well; as a consequence, a translation invariant wave function ψ (which may be very nontrivial) gives
rise to a translation invariant m function (which must be constant). Of course, this fact is not fatal to
the viability of Sm, as the wave function of the universe need not be translation invariant.
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that the typical behavior will occur, even if there are possible universes in which different
behavior occurs. For explanation of why the world looks the way it does, we say that
it is typical for a Bohmian world to look that way. Likewise in Sm: When we want
to make predictions, we know that a property like P will hold in some worlds m` and
not in others, so what we predict is the typical behavior—the one that occurs in most
worlds (with the weighted notion of “most”); and the explanation for why we see a
certain behavior is that it occurs in most worlds. Insofar as the typicality reasoning is
concerned, in Sm the world we are in plays the same role as the actual world in Bohmian
mechanics.8

8 Typicality

In this section, we address the following two questions: Should not the concept of
typicality (or that of “most” worlds) be based on the number of worlds, disregarding
the weights µ`? And, which reasons select (26) as the rule for determining the weights?

It would seem that counting would provide a better measure of typicality, maybe
even the only acceptable one. And counting would also seem to lead to rather different
predictions. After all, in the example above involving n� 1 Stern–Gerlach experiments,
if the worlds are taken to be in one-to-one correspondence with the possible outcomes
(i.e., the sequences of ups and downs) then, by the law of large numbers, the worlds in
which the relative frequency k/n of “up” is approximately 1/2 far outnumber those in
which k/n ≈ p (provided p is sufficiently different from 1/2).

But counting worlds is not well defined; there is no fact of the matter as to how
many worlds have some property P . In this respect, “worlds” are not like beans (that
can be counted) but more like clouds. The decomposition ψ =

∑
ψ` is associated with

an orthogonal decomposition H = ⊕`H` of the Hilbert space H into subspaces H`

corresponding to different macrostates (von Neumann, 1932), a decomposition that is
inevitably arbitrary, due to the vagueness of the notion of “macroscopic” or, in other
words, due to the arbitrariness of the boundaries between macrostates.9 Concretely, it
is often unclear whether two wave packets φ1 and φ2 should be regarded as “macro-
scopically different” or not; as a consequence, it is then unclear whether ψ = φ1 + φ2

should be regarded as two worlds, ψ1 = φ1 and ψ2 = φ2, or as one world, ψ1 = φ1 + φ2.
Indeed, the decomposition of ψ into “its macroscopically different contributions” ψ` will
usually depend on our interpretation of “macroscopically different.” For example, if ψ
as a function of the center-of-mass coordinate of a meter pointer is smeared out, into

8What is different about the use of typicality in the two theories is that while in Bohmian mechanics
typicality is used for explaining physical facts, in Sm it is used for explaining indexical facts. Indexical
statements are statements referring to concepts like “here,” “now,” or “I.” A simple example of an
indexical statement is “there are five coins in my pocket.” In physics, once I am told all physical facts
about my universe, I may still need to be told where I am in this picture: which space-time location
corresponds to here-now, and furthermore, for any theory with many-worlds character, in which of the
worlds to find me. Those are indexical facts. The indexical fact to be explained here is that I find
myself in a world with property P .

9The suggestion that world count is ill-defined has been discussed recently in (Wallace, 2007).
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how many “macroscopically different” parts should we divide it? And in the example
above of n Stern–Gerlach experiments, should we regard the worlds as corresponding
to different outcomes (given as sequences of ups and downs), or should we choose a
finer decomposition by taking into account the times when detectors clicked, and regard
contributions to ψ that correspond to different times (but the same sequence of ups and
downs) as different worlds? For many purposes, the ambiguity inherent in the notion
“macroscopically different” is not a problem, but for the purpose of counting worlds it
is.

However, if we use the weights µ` (or, equivalently, ‖ψ`‖2) then, while there is still
the same amount of arbitrariness in the decomposition ψ =

∑
ψ`, the weight associated

with the property P ,

µ(P ) =
∑

`∈L(P )

µ` ,

is unambiguous, as a consequence of what Everett (1955, 1957a) called the additivity of
the weights: When we further decompose a contribution ψ` into

∑
`′ ψ`,`′ then the norm

squares add according to

‖ψ`‖2 =
∑

`′

‖ψ`,`′‖2 . (34)

This follows if the ψ`,`′ have disjoint supports in configuration space. (In fact, Everett
showed that the weights must be equal, up to an overall factor, to ‖ψ`‖2 if they are
given by some fixed function f(‖ψ`‖) and additive, f(‖ψ`‖) =

∑
`′ f(‖ψ`,`′‖), where ψ`,`′

are mutually orthogonal. However, he did not make explicit the connection between
additivity and the ambiguity of the notion of the macroscopically different.)

Thus, counting the worlds is not an option. But even in theories in which the
concept of world is precisely defined and thus allows us to count worlds, weights may
arise naturally in the form of multiplicities, associated with representing several worlds
with the same configuration by one world with multiplicity.

Another factor supporting the use of the weights µ` (26) for the measure of typicality
is their quasi-equivariance, i.e., the two facts, analogous to the equivariance of the |ψ|2
distribution in Bohmian mechanics, that the weight µ` of a world does not change
under the unitary time evolution unless it splits, and that when a world splits then
the sum of the weights after splitting is the same as the weight before splitting. The
former is a consequence of unitarity and the fact that µ` is proportional to ‖ψ`‖2, and
the latter follows from the additivity mentioned above. Quasi-equivariance is relevant
since, as Everett says in the passage quoted above, “we wish to make statements about
“trajectories” of observers.” As a consequence of quasi-equivariance, memories and
records obey the following type of consistency: If it is typical at time t1 that, say,
between 33% and 34% of the outcomes of a certain experiment are “up” then it is
typical at time t2 > t1 that between 33% and 34% of the records of those outcomes are
records of “up.”

The notions of typicality and quasi-equivariance we have considered are just what
Everett considered after the passage quoted above:
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To have a requirement analogous to the “conservation of probability” in the
classical case, we demand that the measure assigned to a trajectory at one
time shall equal the sum of the measures of its separate branches at a later
time. This is precisely the additivity requirement which we imposed and
which leads uniquely to the choice of square-amplitude measure. Our proce-
dure is therefore quite as justified as that of classical statistical mechanics.

In other words, Everett’s assessment is that the most natural measure is indeed the one
using ‖ψ`‖2 weights, and we agree. In addition, owing to Sm’s greater ontological clarity,
we believe that Everett’s analysis, when applied to Sm, becomes even more transparent
and compelling than for more standard versions of the many-worlds interpretation.

9 Uncertainty

Probabilities are often regarded as expressions of our lack of knowledge, of ignorance
and uncertainty; the typicality approach, however, does not directly involve uncertainty.
So let us make some remarks about the status of uncertainty in Sm.

Since Bohmian mechanics is a deterministic theory, it also gives rise to the question
about the meaning of probabilities. But in Bohmian mechanics this question is much
less problematical than in Sm; in a Stern–Gerlach experiment, for example, the outcome
depends on the initial wave function and the initial position of the particle, and while we
may know the wave function, we cannot know the position with sufficient precision to
infer the outcome (except when the initial wave function is an eigenstate of the relevant
spin operator). But in Sm we cannot be uncertain about what “the” outcome of a
Stern–Gerlach experiment will be, since we know that both outcomes will be realized.
If we believe we are living in a many-worlds universe, we should regard our feelings of
uncertainty about the future as sheer illusion.

As shocking as this may seem, however, it should not be held against many-worlds
theories. After all, modern physics has accustomed us to the illusory character of many
of our experiences; for example, according to the standard understanding of relativity
(at least among physicists), our feeling of the passage of time is also a sheer illusion
(“however persistent,” as Albert Einstein wrote to the widow of Michele Besso). Like-
wise, the fact that in Sm (as in any physical theory with a many-worlds character) there
is a severe gap between metaphysics and experiences—i.e., the fact that the reality is
very different from what our experiences suggest, in that the future is not as uncer-
tain as we normally imagine and that there are other worlds we do not see—need not
conflict with the goal of explaining our experiences. It seems not at all impossible to
explain why observers who believe in a many-worlds universe nevertheless behave as
if they were uncertain about the future; some approaches are presented in, e.g., (Wal-
lace, 2006a; Tappenden, 2000; Greaves, 2004; Lewis, 2007; Baker, 2007; Saunders and
Wallace, 2008). (In fact, we would presumably often feel uncertain in a many-worlds
theory for the same evolutionary reasons as for a single-world theory.) However, this
problem should not be confused with the problem of explaining the origin of physical
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probabilities, i.e., of explaining the relative frequencies we see, a problem resolved by
the typicality analysis.

10 Summary

We have shown that Schrödinger’s first interpretation of quantum mechanics, in which
the wave function is regarded as describing a continuous distribution of matter in space
and arguably the most naively obvious interpretation of quantum mechanics, has a
surprising many-worlds character. We have also shown that insofar as this theory makes
any consistent predictions at all, these are the usual predictions of textbook quantum
mechanics.
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