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Abstract

A major disagreement between different views about the foundations of quan-
tum mechanics concerns whether for a theory to be intelligible as a fundamental
physical theory it must involve a “primitive ontology” (PO), i.e., variables de-
scribing the distribution of matter in 4-dimensional space-time. In this paper,
we illustrate the value of having a PO. We do so by focussing on the role that
the PO plays for extracting predictions from a given theory and discuss valid and
invalid derivations of predictions. To this end, we investigate a number of exam-
ples based on toy models built from the elements of familiar interpretations of
quantum theory.
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1 Introduction

This paper is based on the view that any viable interpretation of quantum mechanics, or
more generally any fundamental physical theory, must involve variables describing the
distribution of matter in space and time. Such variables describe the primitive ontology
(PO) of the theory [3]. Examples of theories with a PO, examples very relevant to this
paper, include Bohmian mechanics [21, 12, 20] (with the PO given by the particles),
Schrödinger’s first quantum theory [42, 4] (with the PO given by the mass or charge
density), as well as GRWm and GRWf, two versions of the Ghirardi–Rimini–Weber
(GRW) theory [32, 15] of spontaneous wave function collapse corresponding to two
choices of PO: the matter density ontology (GRWm) and the flash ontology (GRWf). We
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recall the definitions of GRWm and GRWf in Section 2 and that of Bohmian mechanics
in Section 4.1.

This paper concerns derivations of empirical predictions, i.e., of predictions that can
be tested empirically. We believe that, for a theory with a PO, a derivation of empirical
predictions should be based on the PO. To elucidate this statement is the goal of this
paper. We describe how a valid derivation of empirical predictions should work and
where it should use the PO and the laws governing it. We do so mainly by means of
examples. Some of the examples (Section 3) are valid derivations found in the literature
concerning GRW or other serious theories, but most of them (Section 4) are novel and
concern toy theories that we have concocted for the purposes of this paper. Some of
these toy theories make completely wrong predictions; but that does not preclude them
from exemplifying valid derivations of predictions (which just happen to disagree with
empirical findings). For a more systematic analysis of why a fundamental physical
theory needs to explicitly involve a PO (describing the distribution of matter in space
and time), see [3, 38].

In the following we simply say “predictions” for “empirical predictions,” and “em-
pirical content” for the sum of all empirical predictions of a theory. We do not, in this
paper, compute any specific predictions for specific experiments. For simplicity, we limit
our considerations to the non-relativistic quantum mechanics of N spinless particles; the
models we describe can easily be modified so as to incorporate spin.

2 The GRWm and GRWf Theories

For introductory presentations of the idea behind theories of spontaneous wave function
collapse, such as GRW theory, see [15, 33, 41, 30, 3]. Detailed introductions to the
GRWm and GRWf theories have been given recently in [3, 46, 34]. Here we give only a
brief description.

2.1 The GRW Process

In both GRWm and GRWf the evolution of the wave function follows, instead of the
Schrödinger equation, a stochastic jump process in Hilbert space, called the GRW pro-
cess. Consider a quantum system of (what would normally be called) N “particles,”
described by a wave function ψ = ψ(q1, . . . , qN), qi ∈ R3, i = 1, . . . , N . The GRW
process behaves as if an “observer” outside the universe made unsharp “quantum mea-
surements” of the position observable of a randomly selected particle at random times
T1, T2, . . . that occur with constant rate Nλ, where λ is a new constant of nature of
order of 10−16 s−1, called the collapse rate per particle. The wave function “collapses”
at every time T = Tk, i.e., it changes discontinuously and randomly as follows. The
post-collapse wave function ψT+ = limt↘T ψt is obtained from the pre-collapse wave
function ψT− = limt↗T ψt by multiplication by a Gaussian function,

ψT+(q1, . . . , qN) =
1

Z
g(qI −X)1/2 ψT−(q1, . . . , qN) , (1)
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where

g(x) =
1

(2πσ2)3/2
e−

x2

2σ2 (2)

is the 3-dimensional Gaussian function of width σ, I is chosen randomly from 1, . . . , N ,
and

Z = Z(X) =

(∫
R3N

dq1 · · · dqN g(qI −X) |ψT−(q1, . . . , qN)|2
)1/2

(3)

is a normalization factor. The width σ is another new constant of nature of order of
10−7 m, while the center X = Xk is chosen randomly with probability density ρ(x) =
Z(x)2. We will refer to (Xk, Tk) as the space-time location of the collapse.

Between the collapses, the wave function evolves according to the Schrödinger equa-
tion corresponding to the standard Hamiltonian H governing the system, e.g., given, for
N spinless particles, by

H = −
N∑
k=1

~2

2mk

∇2
qk

+ V, (4)

where mk, k = 1, . . . , N , are the masses of the particles, and V is the potential energy
function of the system. Due to the stochastic evolution, the wave function ψt at time t
is random.

This completes our description of the GRW law for the evolution of the wave function.
According to GRW theory, the wave function ψ of the universe evolves according to this
stochastic law, starting from the initial time (say, the big bang). As a consequence
[7, 34], a subsystem of the universe (comprising M < N “particles”) will have a wave
function ϕ of its own that evolves according to the appropriate M -particle version of
the GRW process during the time interval [t1, t2], provided that ψ(t1) = ϕ(t1) ⊗ χ(t1)
and that the system is isolated from its environment during that interval.

Another remark concerns density matrices. It is a standard fact that with every
probability distribution µ(dψ) on the unit sphere

S(H ) =
{
ψ ∈H : ‖ψ‖ = 1

}
(5)

of a Hilbert space H there is associated a density matrix

ρµ = Eµ|ψ〉〈ψ| =
∫

S(H )

µ(dψ) |ψ〉〈ψ| , (6)

where E means expectation. Since the GRW process is stochastic, ψt is random, and
with its distribution µt there is associated a density matrix ρt = ρµt . It turns out
that ρt evolves according to an autonomous equation (i.e., one that depends on µt only
through ρt), the “master equation.” This equation is of a type known as a Lindblad
equation, or quantum dynamical semigroup, and tends to evolve pure states into mixed
states. Although the mathematical details play no role in this paper, we give the master
equation for the sake of completeness:

dρt
dt

= − i
~ [H, ρt] + λ

N∑
k=1

∫
d3x g

1/2
k,x ρt g

1/2
k,x −Nλρt . (7)
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Here, g
1/2
k,x is the multiplication operator by the function g(qk − x)1/2 with g the 3-

dimensional Gaussian function as in (2).

We now turn to the primitive ontology (PO). In the subsections below we present two
versions of the GRW theory, based on two different choices of the PO, namely the matter
density ontology (GRWm in Section 2.2) and the flash ontology (GRWf in Section 2.3).

2.2 GRWm

GRWm postulates that, at every time t, matter is continuously distributed in space with
density function m(x, t) for every location x ∈ R3, given by

m(x, t) =
N∑
i=1

mi

∫
R3N

dq1 · · · dqN δ3(qi − x)
∣∣ψt(q1, . . . , qN)

∣∣2 (8)

=
N∑
i=1

mi

∫
R3(N−1)

dq1 · · · dqi−1 dqi+1 · · · dqN
∣∣ψt(q1, . . . , qi−1, x, qi+1, . . . , qN)

∣∣2 . (9)

In words, one starts with the |ψ|2–distribution in configuration space R3N , then obtains
the marginal distribution of the i-th degree of freedom qi ∈ R3 by integrating out all
other variables qj, j 6= i, multiplies by the mass associated with qi, and sums over i.
Alternatively, (8) can be rewritten as

m(x, t) = 〈ψt|M̂(x)|ψt〉 (10)

with M̂(x) =
∑

imi δ
3(Q̂i−x) the mass density operator, defined in terms of the position

operators Q̂iψ(q1, . . . , qN) = qi ψ(q1, . . . , qN).

2.3 GRWf

According to GRWf, the PO is given by “events” in space-time called flashes, mathe-
matically described by points in space-time. What this means is that in GRWf matter
is neither made of particles following world lines, nor of a continuous distribution of
matter such as in GRWm, but rather of discrete points in space-time, in fact finitely
many points in every bounded space-time region.

In the GRWf theory, the space-time locations of the flashes can be read off from the
history of the wave function: every flash corresponds to one of the spontaneous collapses
of the wave function, and its space-time location is just the space-time location of that
collapse. The flashes form the set

F = {(X1, T1), . . . , (Xk, Tk), . . .} (11)

(with T1 < T2 < . . .). Alternatively, we may postulate that flashes can be of N different
types (“colors”), corresponding to the mathematical description

F = {(X1, T1, I1), . . . , (Xk, Tk, Ik), . . .} , (12)
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with Ik the number of the particle affected by the k-th collapse.
Note that if the number N of degrees of freedom in the wave function is large, as in

the case of a macroscopic object, the number of flashes is also large (if λ = 10−15 s−1 and
N = 1023, we obtain 108 flashes per second). Therefore, for a reasonable choice of the
parameters of the GRWf theory, a cubic centimeter of solid matter contains more than
108 flashes per second. That is to say that large numbers of flashes can form macroscopic
shapes, such as tables and chairs. That is how we find an image of our world in GRWf.

We should remark that the word “particle” can be misleading. According to GRWf,
there are no particles in the world, just flashes and a wave function. According to
GRWm, there are no particles, just continuously distributed matter and a wave function.
The word “particle” should thus not be taken literally (just like, e.g., the word “sunrise”);
we use it only because it is common terminology in quantum mechanics.

3 Predictions and Primitive Ontology

In the PO view, a satisfactory theory should have a PO. In this view, the PO also
permits the derivation of predictions. For example, if we want to derive that in a
certain experiment the pointer of the apparatus will end up pointing to the value z
with a certain probability then, according to the PO view, we need to derive that the
configuration of the PO will be such that the matter of the pointer is in a configuration
corresponding to the pointer pointing to z. In contrast, it would not be appropriate in
this view to merely show that the wave function lies (approximately) in a subspace of
Hilbert space corresponding to the pointer pointing to z.

For example, a number of empirical predictions of GRW theory have been derived
in [32, 40, 36, 35, 1]. It was found that the predictions deviate from those of quantum
mechanics but only so slightly that no experimental test has been possible so far [1, 29].
However, the logical clarity of the derivations in [32, 40, 36, 35, 1] leaves something to
be desired, as they do not refer to the PO but limit themselves to analyses of the wave
function. While we do not dispute that the claimed predictions are indeed predictions
of GRWm and GRWf, we do see a gap in the derivation. The situation is similar to
that of a calculation that yields the correct result but is not mathematically rigorous.
Here, the problem is not one of mathematical rigor but of clarity—philosophical, onto-
logical, conceptual, and physical clarity. We will describe in this chapter, particularly
in Section 3.4, how to close this gap.

3.1 Calibration Functions

Given an experiment E , its outcome Z is a function of the (configuration of the) PO,

Z = ζ(PO) . (13)

That is, in GRWf Z = ζGRWf(F ), and in GRWm Z = ζGRWm(m). Similarly, the PO
plays a key role for the claim of empirical equivalence between two theories (for which
there will be several examples in this paper).
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Let us elaborate a bit on what the function ζ should look like. In GRWm, it is
natural that Z should be a functional of m(·, t), the distribution of matter at the time
t when the experiment is completed. What the ζ function does is essentially to read off
the outcome from the display of the apparatus. For example, if the outcome is displayed
by means of the position of a needle on a scale, ζ should read off from m the position of
the needle, and may concretely be the following: Suppose the experiment is so arranged
that the region R ⊆ R3, for simplicity a cuboid R = [a1, b1]× [a2, b2]× [a3, b3], contains
no other matter than the needle, and suppose the scale is along the x1-axis between a1

and b1. Then the mean x1 coordinate of the matter distribution at time t inside R is
given by

〈x1〉 =

∫
R
dx1 dx2 dx3 x1m(x1, x2, x3, t)∫
R
dx1 dx2 dx3m(x1, x2, x3, t)

, (14)

and a typical choice of calibration function would be

ζ(m) = z0 + α〈x1〉 (15)

with suitable proportionality constant α. Note that ζ is a functional of m(·, t). If we
require that Z be a discrete variable, we may replace (15) with a suitable step function,
such as

ζ(m) = z0 + [α〈x1〉] , (16)

where [z] denotes the nearest integer to the real number z.
In GRWf, Z must depend on the history in an entire time interval, say [t, t + ∆t]

with t the time when the experiment is completed and ∆t, say, a millisecond. In the
example of the needle pointing to the outcome, ζ needs to read off the position of the
needle from the flashes and rescale it appropriately. As a concrete example, suppose
again the region R contains no other matter than the needle, and suppose the scale is
along the x1-axis between a1 and b1. Then the mean x1 coordinate of the flashes during
[t, t+ ∆t] in R is given by

〈x1〉 =

∑
k 1t≤Tk≤t+∆t 1Xk∈R (Xk)1∑

k 1t≤Tk≤t+∆t 1Xk∈R
, (17)

where 1C is 1 when the condition C is satisfied and 0 otherwise. A typical choice of
calibration function would be given in terms of this 〈x1〉 by (15) or (16).

3.2 Taking the PO Seriously

As a consequence of the view that the PO represents matter, we are forced to take the
PO seriously.

Here is a simple example: In a relativistic context, the PO is not allowed to change
in an arbitrary way when changing the Lorentz frame. If the PO consists of flashes, then
the flashes have to transform like space-time points under Lorentz transformations. If
the PO consists of particle world lines, then they have to transform like world lines,
i.e., by transforming every space-time point on the world line. Put differently, a world
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line must be an unambiguous set of space-time points, independently of the choice of
coordinates. In contrast, the wave function is more flexible. For example, in a collapse
theory the spin state of a particle belonging to an EPR pair at a space-time point x could
very well change dramatically with a slight change of Lorentz frame, viz., if a collapse
occurs at another space-time point x′ and the temporal order of x and x′ changes; see
[3, 11] for further discussion of this point.

As another example for what it means to take the PO seriously, we look at a difficulty
that arose in [6] with an over-simplified discussion of how to derive in GRWm that, in
a suitable situation, a pointer is pointing to z. The coordinates x1, . . . , xN ∈ R3 of the
configuration space R3N of a pointer consisting of N “particles” were decomposed into
the center of mass xcm =

∑
imixi/

∑
jmj ∈ R3 and relative coordinates r1, . . . , r3N−3,

and it was derived that in this decomposition the wave function, in a suitable situation, is
approximately a product ψcm(xcm)ψrel(r1, . . . , r3N−3), where the first factor, the center-
of-mass wave function ψcm, is a very narrow wave packet. Therefore, it was suggested,
the matter density associated with the center-of-mass, mcm(x, t) = |ψcm(x, t)|2, is very
narrow, too (thus making the position of the pointer sufficiently precisely defined). The
difficulty with this argument is that mcm is not the right quantity to look at: It is not
the PO, not the matter, not real; it is just a mathematical quantity. What counts is
whether m as defined in (8) is concentrated in the right location, and there is no simple
relation between m and mcm. For example, the width of mcm is, in realistic examples,
10−13 m whereas that of m is 10−3 m (= the width of the pointer). So this argument
did not take the PO seriously. Rather, it still treated ψ in a more or less conventional
way as providing probabilities for configurations of particles, as that is the situation in
which the extreme narrowness of ψcm can be relevant.

The issue of taking the PO seriously also arises in the context of studying the limita-
tions on knowledge in GRWm and GRWf, a topic we plan to discuss in detail in a future
work [24] (and that we have outlined in [34]): Inhabitants of a GRWf or GRWm world
cannot measure the times and locations of the collapses, although these values are well
defined according to these theories. That is, some things that are real cannot always be
measured with arbitrary accuracy. But if something cannot be measured, one may be
tempted to not take it seriously. So, if there are limitations to measuring the variables
representing the PO, one may be tempted not to take the PO seriously. Needless to
say, we recommend resisting this temptation. The conclusion “unobservable, therefore
unreal” is, of course, not a good one.

Another remark concerns the fine difference between the names “matter density”
and “mass density” for the m function. The fact that its definition (8) involves the
quantity mi usually called “the mass of particle i” suggests the name “mass density” for
m, which, as we shall argue, can be misleading. We prefer the name “matter density”
because it reflects the fundamental meaning of the m function. Let us explain.

Suppose we had postulated, instead of (8), the following formula for the m function:

m(x, t) =
N∑
i=1

ei

∫
R3N

dq1 · · · dqN δ(qi − x)
∣∣ψt(q1, . . . , qN)

∣∣2 . (18)
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This is the same equation as (8), but with mi, the “mass of particle i,” replaced by
ei, the “charge of particle i.” In this case, it would evidently not be appropriate any
more to call the m function the mass density; rather “charge density” would seem more
appropriate. At the same time, the meaning of the m function would not have changed in
any way—we would only have changed the law governing it. That is why this meaning
is better conveyed by the name “matter density.” In particular, the matter that we
postulate in GRWm and whose density is given by the m function does not ipso facto
have any such properties as mass or charge; it can only assume various levels of density.
For example, the m function is not a source of an electromagnetic field.

In addition, it is a disadvantage of the terms “mass density” and “charge density”
that they may easily suggest that both quantities physically coexist: Is it not natural
to expect that an extended object possesses both a mass density and a charge density
(different from each other)? But in GRWm, depending on whether we postulate (8) or
(18), only one of the two functions represents something real (more precisely, represents
the PO), whereas the other is a pure mathematical fiction. In other words, in GRWm
with (8) as the law of m, the formula on the right hand side of (18) lacks any physical
significance, just as it does in GRWf.

3.3 Examples From the Literature

We now look at earlier arguments based on the connection we are discussing between
empirical predictions and PO. These are also examples of valid derivations of empirical
predictions that do not not suffer from the gap we complained about (in the second
paragraph of this chapter).

1. The first example is a proof of no-signaling (i.e., the impossibility of transmitting
messages faster than light between two distant observers, each acting on and ob-
serving one of two entangled quantum objects) in GRWf due to Bell [15]. The
proof shows that for two non-interacting systems (here, the system can be taken
to be one object together with a nearby apparatus), the marginal distribution of
the flashes pertaining to system 1 depends on the entangled wave function only
through its reduced density matrix (with system 2 traced out); nor does it depend
on the Hamiltonian of system 2. Thus, it does not depend upon any message
that observer 2 may wish to transmit. Now, since outcomes of experiments are
functions of the flashes, the outcome that observer 1 sees cannot depend on the
message observer 2 may have wished to transmit, qed. In Bell’s words [15],

Events in one system, considered separately, allow no inference about
[. . . ] external fields at work in the other, . . . nor even about the very
existence of the other system. There are no “messages” in one system
from the other. The inexplicable correlations of quantum mechanics do
not give rise to signalling between noninteracting systems.

A similar proof was given in [43, 45] for a relativistic version of GRWf.
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2. The second example is provided by derivations of empirical predictions from Bohmian
mechanics, which can be found in many papers, e.g., [21, 13, 28, 2]. The PO of
Bohmian mechanics consists of particles and their trajectories, and the outcomes
of experiments are read off from the particle trajectories, and not directly from
the wave function. The empirical content of Bohmian mechanics agrees exactly
with that of the quantum formalism “whenever the latter is unambiguous.”

3. The third example is taken from the study of superselection rules by Colin et
al. [22]. For superselection rules it is crucial that some self-adjoint operators are
not observables. In the terminology of Colin et al., a “weak superselection rule”
means that no experiment can distinguish between a superposition of vectors from
different superselection sectors in Hilbert space and a suitable mixture thereof.
This occurs only if all observables commute with all projections to superselection
sectors, because otherwise a quantum measurement of such an observable would
distinguish between them. Colin et al. proved certain weak superselection rules for
Bohmian mechanics (and Bohmian versions of quantum field theory) as well as for
GRWm and GRWf, and the proof uses that the outcome of any experiment is a
function of the PO (and not of the wave function). Indeed, while the PO does not
permit us to distinguish between a superposition and a mixture of contributions
from different sectors, the wave function would trivially permit this.

In more detail, Colin et al. first showed that (in certain situations) the distribution
of the flashes in GRWf does not distinguish between a superposition and a suitable
mixture (“strong superselection”), and concluded from this that the distribution
of outcomes of experiments does not distinguish between them either. Due to the
empirical equivalence between GRWf and GRWm, the same experiment does not
distinguish between them in GRWm. To sum up, the proof that some operators
are not observables used that results of observations must be read off from the
PO, and then proceeded with a suitable analysis of the PO.

4. Colin and Struyve discussed in [23] whether their Dirac sea model is empirically
equivalent with orthodox quantum field theory. They suggested an unusual PO
containing a huge (or even infinite) number of particles with trajectories, one for
every electron in the Dirac sea. For the theory to make the right predictions, we
need that macroscopic facts such as outcomes of experiments can be read off from
this PO—and that is what Colin and Struyve analyzed.

5. In [34] we have shown (and outlined before in [3]) that GRWm and GRWf are
empirically equivalent. This is a non-trivial statement if and only if the PO is
taken seriously.

6. Feldmann and Tumulka [29] considered other values for σ and λ than suggested
originally [32] (σ = 10−7 m, λ = 10−16 s−1) and evaluated for which points in
the σλ-plane the GRWm and GRWf theories are empirically adequate, and for
which they are philosophically satisfactory. Their criterion for being philosophi-
cally satisfactory is that the PO looks macroscopically like what humans normally
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imagine reality to be like. As a consequence, for determining the philosophically
satisfactory region they need to pay attention to the behavior of the PO.

7. In [34] we have derived a GRW formalism, the analog of the quantum formalism
for GRWm and GRWf and the general scheme of the predictions of GRWm and
GRWf. To a high degree of accuracy, the predictions of GRWm and GRWf agree
with those of the quantum formalism. The GRW formalism is what the quantum
formalism needs to be replaced with if we pay attention to the small deviations
from the quantum formalism. The derivation of the GRW formalism in [34] takes
the PO seriously. We discuss it to some extent in the next two subsections.

3.4 The Main Theorem About Operators in The GRW For-
malism

Before talking about the full GRW formalism, we begin with a statement that is part
of the GRW formalism, the main theorem about operators: With every experiment E on
a system and every possible outcome z of E there is associated an operator Pz acting
on the Hilbert space Hsys of the system. When E is performed on a system with wave
function ψ, the outcome Z is random with probability distribution

P(Z = z) = 〈ψ|Pz|ψ〉 . (19)

This statement is actually true in both the quantum formalism and the GRW formalism;
however, to the same experiment, the GRW formalism may assign operators PGRW

z

different from the PQu
z assigned by the quantum formalism. Formulas for PQu

z and
PGRW
z are given in [34].

The operator Pz in (19) may be a projection, but in general it is merely a positive
operator (even in the quantum formalism). If the Pz are projections for all z, and if
the z are real numbers, then the family {Pz} corresponds to the self-adjoint operator
A =

∑
z z Pz, usually (but misleadingly) called “the observable measured” by E . The z

are the eigenvalues of A, and the Pz the projections to the eigenspaces. When the Pz are
not projections, the family {Pz} is called a positive-operator-valued measure (POVM),
a concept well known in quantum information theory.1

As an example of a valid derivation of predictions that takes the PO seriously, we
now outline the derivation of the main theorem about operators from GRWf, following
[34]. The key point is that we take the outcome Z of the experiment to be a function
of the pattern F = {(X1, T1, I1), . . . , (Xk, Tk, Ik), . . .} of flashes,

Z = ζ(F ) . (20)

(It would even be realistic to assume that Z depends only on the flashes of the apparatus
during a short time interval appropriate for reading off the outcome, and not those of

1On a discrete space, a POVM is a family of positive operators Pz such that
∑

z Pz = I, the identity
operator.
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the system or of the rest of the world, and not those at earlier or later times; but this
restriction is not needed here.)

It is a known fact [47] that the joint distribution of all flashes after time t, conditional
on all flashes up to t, depends quadratically on Ψt, the wave function of the universe at
time t. Explicitly, it is given by

P(F>t ∈ S|F≤t) = 〈Ψt|Gt(S)|Ψt〉 (21)

with S any set of flash histories after t and Gt(·) a suitable POVM on the space of all
flash histories.2

Let t be the time at which the experiment begins. Consider splitting the universe
into a system (the object of the experiment) and its environment (the rest of the world,
including all relevant apparatuses of the experiment), corresponding to a splitting of the
Hilbert space into H = Hsys ⊗Henv. We assume independence between the system
and the environment immediately before t, so that

Ψt = ψ ⊗ φ . (22)

Here we regard φ as fixed, while ψ, the initial state of the system upon which the
experiment is performed, is allowed to vary in the system Hilbert space Hsys. We may
think of φ as part of the characterization of the experiment, although in practice a
repetition of the experiment will not begin with exactly the same wave function φ of the
apparatus.

Therefore, the distribution of the random outcome Z is given by

P(Z = z) = P
(
F ∈ ζ−1(z)

)
= 〈Ψt|Gt

(
ζ−1(z)

)
|Ψt〉 = 〈ψ|PGRW

z |ψ〉 , (23)

where the first scalar product is taken in the Hilbert space of the universe and the second
in Hsys, and PGRW

z is the POVM given by

PGRW
z = 〈φ|Gf

(
ζ−1(z)

)
|φ〉 , (24)

where the scalar product is a partial scalar product in the Hilbert space of the environ-
ment. Thus, for every experiment in GRWf, the distribution of outcomes is given by a
POVM PGRW

z , which is what we wanted to show.

3.5 The GRW Formalism

The full GRW formalism is best formulated in terms of density matrices.3 Perhaps
the most remarkable fact about the GRW formalism is that its abstract structure is

2On a continuous space Ω, a POVM associates by definition a positive operator G(S) with every
(measurable) subset S ⊆ Ω in such a way that G(Ω) = I and G(S1 ∪ S2) = G(S1) + G(S2) when
S1 ∩ S2 = ∅ (and likewise for countable families of pairwise disjoint sets). For discrete Ω, G(S) can be
expressed as

∑
z∈S Pz with Pz = G({z}).

3That is because we allow the system under study, system 1, to be entangled with another system,
system 2, which does not interact with either system 1 or the apparatus of the experiment; thus,
ρ = tr2|ψ〉〈ψ|, where tr2 denotes the partial trace and ψ the joint wave function of systems 1 and
2. Since ψ is usually not precisely known, it is also often convenient to take it to be random; then
ρ = E tr2|ψ〉〈ψ|.
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identical to that of the quantum formalism. It consists of three rules, the first saying
how the density matrix ρt of a system evolves when the system is isolated (or, when “the
observer” is not “taking measurements”); the second (a form of the main theorem about
operators) saying that with every experiment (or “measurement”) there are associated
operators, and that the probability for obtaining a particular outcome is given by a
trace formula involving ρt; and the third saying how ρt should be changed after the
experiment, depending on the outcome. Here are the three rules, in both the quantum
and the GRW version:

(i) A system isolated from its environment has at every time t a density matrix ρt
which evolves in the quantum formalism according to the unitary (Schrödinger)
evolution, which for a density matrix reads

dρt
dt

= − i
~ [H, ρt] (25)

with H the system’s Hamiltonian, and in the GRW formalism according to the
master equation (7).

(ii) With every experiment E on a system and every possible outcome z of E there is
associated a positive operator Pz acting on the Hilbert space Hsys of the system.
When E is performed on a system that has density matrix ρ at the beginning of
E , the outcome Z is random with probability distribution

P(Z = z) = tr
(
ρPz

)
. (26)

(iii) When the outcome Z = z, the density matrix ρ of the system gets replaced by

ρ′ =
Cz(ρ)

tr Cz(ρ)
. (27)

with Cz a (completely positive) linear operation on density matrices.

In the quantum formalism for an ideal quantum measurement, the Pz are projec-
tions, and

Cz(ρ) = Pz ρPz . (28)

Again, the operations C Qu
z provided by quantum formalism and C GRW

z by the
GRW formalism may differ. Formulas for C Qu

z and C GRW
z are given in [34].

4 A Set of Examples

A new and useful perspective on GRW theories arises from contrasting them with other
theories, even unreasonable ones. For this purpose we develop in this section a set of
example theories which we obtain by combining elements of the known theories GRWm,
GRWf, and Bohmian mechanics in new, sometimes playful, ways. Some of the theories
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obtained in this way make completely wrong predictions but are instructive nonetheless
since they illustrate the way in which predictions follow from a theory. Others make
predictions in agreement with known empirical facts, yet nobody would seriously propose
them as fundamental physical theories; still, they allow for illuminating comparisons
with GRWm and GRWf.

Here is a “theory construction kit.” Choose one of the three primitive ontologies of
GRWm, GRWf, and Bohmian mechanics: continuous matter density, flashes, or particles
with trajectories. Choose whether the laws governing the PO should involve a wave
function ψ or a density matrix ρ. Then choose an evolution law for ψ or ρ, e.g., the
unitary Schrödinger evolution, the stochastic GRW evolution for ψ, or the GRW master
equation (7) for ρ. Then consider simple laws for how ψ (or ρ, respectively) may govern
the PO. In this way we arrive at about ten new theories.

4.1 Bohmian mechanics

To review the elements used in the theory construction kit, let us briefly recall the laws
of Bohmian mechanics. Bohmian mechanics is a (non-relativistic) theory of particles in
motion. The motion of a system of N particles is provided by their world lines t 7→ Qi(t),
i = 1, . . . , N , where Qi(t) denotes the position in R3 of the i-th particle at time t. These
world lines are determined by Bohm’s law of motion [21, 12, 20],

dQi

dt
= vψi (Q1, . . . , QN) =

~
mi

Im
ψ∗∇iψ

ψ∗ψ
(Q1 . . . , QN), (29)

where the wave function ψ evolves according to Schrödinger’s equation

i~
∂ψ

∂t
= Hψ , (30)

with H the usual nonrelativistic Schrödinger Hamiltonian; for spinless particles it is of
the form (4).

An important probability distribution in Bohmian mechanics is the quantum equi-
librium distribution

pψ(q) = |ψ(q)|2 . (31)

(While the distribution density is usually denoted ρ, we write p here in order to reserve
the letter ρ for density matrices.) As a consequence of Bohm’s law of motion (29) and
Schrödinger’s equation (30), |ψ|2 is equivariant. This means that if the configuration
Q(t) = (Q1(t), . . . , QN(t)) of a system is random with distribution |ψt|2 at some time
t, then this will be true also for any other time t. Because of equivariance, Bohmian
mechanics reproduces the predictions of the quantum formalism for typical initial con-
ditions of the universe, as discussed in detail in [27, 28].

4.2 Bohmian Trajectories and GRW Collapses

We begin with the particle ontology, with the particle trajectories governed by Bohm’s
law of motion. We consider several ways of combining this with the GRW evolution of
the wave function or a similar one.
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4.2.1 Bohm’s Law and GRW’s Law

First, suppose simply that the particles move according to the usual Bohmian law of mo-
tion (29), but that ψ = ψt is the GRW wave function, so that the GRW process replaces
the unitary evolution. In this theory, which we denote GRWp1, the |ψ|2 distribution for
the configuration is not equivariant.

A world governed by this theory GRWp1 has little resemblance with our world:
It behaves in a very unstable way. For example, a system with the wave function
of Schrödinger’s cat has, even before the collapse into either |dead〉 or |alive〉, a con-
figuration of either a dead or a live cat—but the collapse need not agree with that
configuration. The cat could be alive before the collapse (i.e., its particle configuration
is that of a live cat), and still the collapse could reduce ψ to a state vector close to
|dead〉—with however no immediate change in the particle configuration of the cat.

At this point, the reader may feel unsure whether to conclude that just after collapse
the cat is really alive or that the cat is really dead. That is, partly, what makes this
theory philosophically useful, despite its empirical inadequacy: It nicely illustrates the
role of the PO. Taking the PO seriously, we must conclude that the cat is really alive;
after all, the PO in this theory consists of particles, and the particle configuration is one
of a live cat. This illustrates that the mere fact that the wave function is one of a dead
cat does not, in and of itself, mean that there is a dead cat.

From that fateful collapse onwards, the configuration is guided, in the sense of
Bohm’s law of motion (29), by that tiny part of ψ that remains of |alive〉 after the
collapse, and who knows what happens then. For sure, the further behavior of the
configuration will be catastrophic. The further evolution of the configuration is not
simply that of a live cat, but will be disturbed by two factors: first, by the fact that the
Gaussian collapse factor will change the shape of |alive〉, and second, by the fact that
tails of |dead〉, which reach the support of |alive〉 under the Schrödinger evolution, will
dominate over the contribution from |alive〉.

What this example illustrates: First and foremost, this example illustrates how the
same wave function—the GRW wave function—can be combined with a different PO
than usual, and thus helps us to get used to the distinction between the wave function
and the PO. Second, it illustrates how the particle ontology can be combined with dif-
ferent laws for the wave function—the GRW law instead of the Schrödinger equation
as in Bohmian mechanics. Third, the example illustrates what it means to derive pre-
dictions from the PO rather than from the wave function, as the wave function is well
behaved but the particle configuration is not. In particular, GRWp1 forces us to face
the question: Do the predictions follow from the wave function or from the PO? Fourth
and finally, GRWp1 shows that the GRW wave function can be part of a theory making
completely different predictions than GRWm and GRWf.

Another observation: GRWp1 is presumably an example of a theory without a for-
malism. Note first that the |ψ|2 distribution is not equivariant in GRWp1, in fact there is
no equivariant density formula at all. This undercuts the reasons for assuming the initial
configuration was |ψ|2 distributed, so that we lose the basis for deriving predictions at
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all. But even if we postulated the |ψ|2 distribution at some point in time (e.g., the big
bang), so that the theory would make unambiguous predictions, the distribution of the
outcome Z of an experiment will not be given by a POVM on Hsys, presumably not even
approximately, and we see no reason why the empirical contents could be summarized
by a formalism at all.

4.2.2 Bohm’s Law and a Modified GRW Law

To improve GRWp1, one may think of modifying it a bit: Instead of choosing the collapse
center X at random, as prescribed by the GRW process, one could take

X = QI(T ) , (32)

so that the collapse is centered at the actual position of the corresponding particle at
the time of the collapse. In other words, for every collapse the time T and the label I
are chosen at random as in the GRW process, but the position of the (center of the)
collapse is not, but is taken from the particle configuration instead.

Let us call this model GRWp2; it was called GRWp in [3]. The behavior of a GRWp2

world is less catastrophic than that of a GRWp1 world, but still the |ψ|2 distribution
is not equivariant, and so probabilities cannot be expected to agree with |ψ|2. As with
GRWp1, one could consider GRWp2 with |ψ|2 distribution at the big bang, but as with
GRWp1, one presumably obtains no POVM, and no formalism.

What this example illustrates: The particle ontology can be combined with a mul-
titude of possible laws for the wave function, each of which is simple and respects the
symmetries of the GRW process (invariance under rotations, translations, time transla-
tions, and Galilean boosts).

With a little modification in its defining equations, GRWp2 becomes a better behaved
theory GRWp3 [10, 48]: Instead of (32), take the collapse center X to be

X = QI(T ) + Z , (33)

where Z is a random 3-vector that is chosen independently of the past with a Gaussian
distribution with mean 0 and covariance matrix diag(σ2, σ2, σ2). It then follows [48]
that the conditional distribution of Q(t), given the X, I, T for all collapses up to time t
(or given ψt), equals |ψt|2; that the joint distribution of the ψt for all t ≥ 0 is the same
as for the GRW process; and that this theory is empirically equivalent to GRWm and
GRWf.

What this example illustrates: The empirical content (i.e., the sum of the empirical
predictions) of the GRWf and GRWm theories can as well be obtained with the particle
ontology, not only with the flash and matter density ontologies.
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4.2.3 Trajectories From the GRW Wave Function

For the next theory, GRWp4, let us return to the GRW law for ψt, and consider a particle
ontology with positions given by the wave function by means of the law

Qi(t) = 〈ψt|Q̂i|ψt〉 , (34)

where Q̂i is the position operator of particle number i. That is, the actual position Qi(t)
is what would in orthodox quantum mechanics be the average position of particle i (if
measured). In contrast to GRWp1 and GRWp2 (and Bohmian mechanics), this theory
does not require any initial data about the particle configuration, as the configuration
is a function of ψt. Like GRWp1 and GRWp2, this theory GRWp4 is not empirically
adequate. To see this, consider a system of identical particles, whose wave function obeys
permutation symmetry or anti-symmetry. (The GRW process as we have defined it in
Section 2.1 above does not preserve permutation symmetry. Thus, for identical particles
the GRW process needs to be defined differently [44].) For such a wave function, (34)
would imply that all particles (of the same species) have the same position. However,
it is empirically incorrect that all electrons have the same position.

What this example illustrates: Apart from being an example of the multitude of
possible laws for the PO, an interesting trait of this theory is that the configuration
of the PO supervenes on the wave function by means of the law (34), as it does in
GRWm and GRWf. GRWp4 shows that among the many ways in which a configuration
of matter (be it a particle configuration, a continuous matter distribution, or flashes)
can supervene on the wave function, different possibilities may strongly disagree about
the empirical predictions.

4.2.4 Configuration Jumps and GRW Law

Another theory, GRWp5, has the following laws: The wave function ψt follows the GRW
process, and the configuration moves according to Bohm’s law of motion (29) between
the GRW collapses. However, at the time T when ψ collapses around X ∈ R3 with label
I, also the configuration Q jumps; more precisely, only the I-th particle jumps, and it
jumps to the random center X of the GRW collapse:

QI(T+) = X . (35)

Again, |ψ|2 is not equivariant, and indeed, the behavior of the particles is quite
catastrophic: If ψ(T−) is the wave function of Schrödinger’s cat, the configuration
Q(T−) is that of a live cat, and the wave function collapses to that of a dead cat, it
may do so with just a few collapses connected to a few particle labels, corresponding to
particles that would have to be in different positions depending on whether the cat is
dead or alive. As a consequence, the configuration after these few collapses will be one
of a live cat, with a few particles moved to where they would have to be if the cat were
dead. So, this configuration is very different from what one would normally associate
with |dead〉. Also, this configuration may be well outside the support of both |dead〉 and

17



|alive〉; it may be a configuration for which |ψ|2 is literally zero, or much smaller than
even the remains of |alive〉 after the collapse. And the behavior of such configurations
should be expected to be catastrophic.

What this example illustrates: One normally thinks that when ψ = |dead〉 then there
is a dead cat. However, as GRWp5 illustrates, in the PO view this cannot be taken for
granted but must be checked.

4.2.5 Another Way of Configuration Jumps and GRW Law

Within the framework that ψt follows the GRW process and the configuration moves
according to Bohm’s law of motion (29) between the GRW collapses, further options
besides GRWp5 come to mind. Instead of (35), we may postulate that at the time T
when ψ collapses around X ∈ R3 with label I, the I-th particle jumps to a random
position distributed with density

P(QI(T+) ∈ dx)

dx
=

∣∣ψT+

(
Q1(T ) . . . QI−1(T ), x,QI+1(T ) . . . QN(T )

)∣∣2∫
dx′
∣∣ψT+

(
Q1(T ) . . . QI−1(T ), x′, QI+1(T ) . . . QN(T )

)∣∣2 , (36)

which is the |ψT+|2 distribution conditionalized on the configuration of the other parti-
cles.

Another possibility, which we call GRWp6, is that not just the I-th particle (the one
associated with the collapse) jumps, but all particles jump. Specifically, choose Q(T+)
at random with distribution |ψT+|2.

In GRWp6, the |ψ|2 distribution is indeed equivariant, in the sense that the con-
figuration Q(t) will always have distribution |ψt|2. As a consequence, this theory is
presumably empirically equivalent to GRWm and GRWf (in the sense that there is no
experiment that could distinguish GRWp6 from GRWm and GRWf). However, the par-
ticles in GRWp6 do not necessarily behave in a reasonable way: For example, consider
an agglomerate of N = 1011 particles and arrange a superposition of two well-separated
locations, ψ = 1√

2

(
|here〉⊗N + |there〉⊗N

)
. Suppose the particles are all “here” (this

happens with probability 1/2) and that the first collapse, which occurs after about 1
day, reduces ψ to |there〉⊗N (this happens independently with probability 1/2). In this
case all particles jump from “here” to “there.”

What this example illustrates: Even if a theory is empirically equivalent to a reason-
able theory (such as GRWm and GRWf) it need not itself be a reasonable theory.4

4.3 MBM: Bohm-Like Trajectories From the Master Equation

The most interesting example in our list of toy theories is perhaps MBM; the abbre-
viation stands for “master equation Bohmian mechanics.” MBM resembles Bohmian

4This point is also illustrated by the following theory [14] that is empirically equivalent to Bohmian
mechanics: Using a Schrödinger (i.e., non-collapsing) wave function ψt and a particle ontology, let the
configuration Q(t) be random with distribution |ψ|2, independently of the past.
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mechanics in that it is deterministic and that its PO consists of particles, but at the
same time it is empirically equivalent to GRWf and GRWm, as we will show in Sec-
tion 4.3.1.

The law of motion (29) is replaced by the following equation (considered already in
[13, 26]) using, in the role of the wave function, a density matrix ρ:

dQk

dt
= vρk(Q1, . . . , QN) =

~
mk

Im
∇qk〈q|ρ|q′〉
〈q|ρ|q′〉

∣∣∣
q=q′=(Q1,...,QN )

. (37)

The density matrix ρ evolves according to (7), which we repeat here for convenience:

dρt
dt

= − i
~ [H, ρt] + λ

N∑
k=1

∫
d3x g

1/2
k,x ρt g

1/2
k,x −Nλρt . (7)

We make a few comments on how these equations are to be understood.
Eq. (37) is the natural generalization of Bohmian mechanics to density matrices, and

reduces to (29) in case of a pure state ρ = |ψ〉〈ψ|. However, it is important to notice
that the density matrix considered here is not the one that is normally regarded as the
density matrix of a system, which arises by averaging |ψ〉〈ψ| (in case the wave function
ψ is random) or by tracing out the environment of the system. The density matrix in
(37), in contrast, does not arise from averaging or partial traces but is assumed to be
one of the fundamental variables of the theory. The complete description of the state
is, instead of the pair (Q,ψ) in Bohmian mechanics, the pair (Q, ρ).

The master equation (7) is, in the GRW theories, a consequence of the GRW evo-
lution of the wave function. This is different in MBM. In MBM there is no random
wave function. In MBM, (7) holds by fiat, not as a theorem. The defining equations of
MBM—its postulates—are (7) and (37).

What this example illustrates: MBM shows that the empirical content of GRWm and
GRWf is compatible with a deterministic theory, and in particular does not imply wave
function collapse: after all, MBM involves the master equation (7) but not literal wave
function collapse as in (1). If experiments will confirm the GRW deviations from quan-
tum mechanics, then Bohmian mechanics can be modified so as to reproduce the GRW
predictions. MBM also illustrates how it can make sense to speak of the density matrix
of the entire universe and, more specifically, how a density matrix can be a fundamental
object and part of the ontology, rather than just encoding statistical information.

4.3.1 Empirical Equivalence of MBM with GRWm and GRWf

We now prove the empirical equivalence. The derivation of predictions from MBM is
analogous to that from Bohmian mechanics. The analogue in MBM of the quantum
equilibrium distribution pψ described in (31) is the distribution

pρ(q) = 〈q|ρ|q〉 . (38)
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Note that pρ(q) ≥ 0, and
∫
Q p

ρ(q) dq = tr ρ = 1. As we show in Appendix A, this
distribution is equivariant in MBM as a consequence of (37) and (7). It is therefore
consistent to assume, as we do, that the configuration Qt of the world has distribution
pρt at every time t. And therefore, the probability at time t of a certain macroscopic
configuration is

p(S) =

∫
S

dq 〈q|ρt|q〉 = tr
(
ρtP (S)

)
(39)

where S is the set of all microscopic configurations consistent with that macroscopic
configuration, and P (S) the projection operator corresponding to the set S, defined by

P (S) =

∫
S

dq |q〉〈q| . (40)

In GRW theories, p(S) can be written in terms of the GRW wave function ψt as

tr
(
ρt P (S)

)
=

∫
H

P(ψt ∈ dφ) ‖P (S)φ‖2 . (41)

Since ψt is typically concentrated on a single macro-configuration, the probability dis-
tribution P(ψt ∈ dφ) is typically concentrated on those φ with either ‖P (S)φ‖ ≈ 0 or
‖P (S)φ‖ ≈ 1; thus, p(S) equals the probability that ψt is (nearly) concentrated on S.
And in this case, either the flashes of GRWf or the matter density of GRWm gives rise
to the same macroscopic appearance as configurations from S. In other words, at any
fixed time the MBM, GRWf, and GRWm worlds have the same probability distribution
over the possible macro-states.

Now empirical equivalence follows immediately: If there were an experiment which
had (probably) one outcome Z = z1 in MBM and another one, Z = z2 in GRWm and
GRWf, then at the time when the experiment is finished, the probability distribution
over the macro-states would have to be different in MBM than in GRWm and GRWf,
but it is not.

As a consequence of the empirical equivalence between MBM, GRWm, and GRWf,
the empirical content of MBM is summarized by the GRW formalism [34]. (In fact, the
GRW formalism was first discovered starting from MBM.) Our argument concerning
empirical equivalence also exemplifies that empirical equivalence is a statement about
the PO, as discussed in Section 3.

4.4 Master Equation and Matter Density

If one can consider a version of Bohmian mechanics in which the density matrix plays
exactly the role of the wave function, then why not do the same trick with the matter
density and flash ontologies?

For the matter density ontology, this would mean to postulate, in analogy to and
replacing (10),

m(x, t) = tr
(
ρt M̂(x)

)
(42)
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with M̂(x) =
∑

imi δ(Q̂i − x) the mass density operator, as before. Here, ρt is taken
to evolve according to the master equation (7). We thus obtain a theory that could
be called Mm, in which the fundamental objects are a density matrix (which, as in
MBM, does not represent an ensemble, or the observer’s limited knowledge, but is, by
postulate, a fundamental object) and the continuous matter with density m(x, t). This
theory, though, is very different from GRWm! It has a many-worlds character. For
example, if at some initial time ρ = |ψ〉〈ψ| with |ψ〉 = (|dead〉 + |alive〉)/

√
2 being the

wave function of Schrödinger’s cat, then after a short while the GRW function ψt will be
either |dead〉 or |alive〉, but ρt will be |dead〉〈dead|+ |alive〉〈alive|, up to a factor 1

2
. As a

consequence, the m field of GRWm will be either mdead or malive, but the m field of Mm
will be mdead + malive, up to a factor 1

2
. Both cats are there at once, but with reduced

mass (which the cats, however, do not notice). A very similar theory “Sm”, with the
unitary Schrödinger evolution instead of the master equation (7), has been described
in some detail in [3, 4]. It seems possible, perhaps even likely, that Sm is empirically
equivalent to standard quantum mechanics [4]; if so, then for the same reasons Mm
should be empirically equivalent to GRWm and GRWf.

What this example illustrates: Foremost, this example illustrates the big difference,
for quantum theories without observers, between a density matrix and a random wave
function. Since with every probability distribution over wave functions there is asso-
ciated a density matrix, and since for the purpose of computing predictions only the
density matrix is relevant, it is common practice in quantum mechanics to immediately
replace every probability distribution over wave functions by the density matrix. Here,
however, the distinction is crucial: The deterministic m function obtained from the
density matrix provides a many-worlds picture of reality, whereas the random m func-
tion obtained from a random wave function that is either |dead〉 or |alive〉 provides a
single-world picture.

4.5 Master Equation and Flashes

What happens to GRWf when we replace the wave function by a density matrix? Two
versions of what this might mean come to mind:

MGRWf: Postulate that the universe has, at every time t, a density matrix ρt, whose
evolution will be described below. Postulate further that flashes occur, as in GRWf, at
random times T with constant rate Nλ, and for a random I ∈ {1, . . . , N}. In contrast
to GRWf, the probability density of the flash location X is given by

p(x) =
P(X ∈ dx)

dx
= tr

(
ρT− gI,x

)
(43)

instead of ‖ψT− g1/2
I,x ‖2 in GRWf. Postulate further that when a flash occurs at time T ,

the density matrix ρT− changes to

ρT+ =
1

C
g

1/2
I,X ρT− g

1/2
I,X (44)
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with C a normalizing constant. Between collapses, ρt evolves unitarily as usual. Note
that if ρ0 = |ψ0〉〈ψ0| is a pure state then it will remain pure and in fact evolve according
to the usual GRW dynamics.

It follows that the joint distribution of all flashes is given by the probability measure

PMGRWf(F ∈ S) = tr
(
ρ0G0(S)

)
(45)

with S any set of flash histories and G0(·) the POVM governing the distribution of the
flashes in GRWf, see (21). As a consequence of (45), the theory MGRWf, although
formulated in terms of a density matrix, is physically equivalent to GRWf!

Before justifying this claim, let us elucidate the notion of “physical equivalence,”
which can be given a clear definition in the framework of PO [3]: Consider a theory
T (e.g., GRWf with a particular choice of λ, σ, N , and potential V ) and initial data
D0 for T (e.g., for GRWf, an initial wave function ψ0); together, T and D0 define a
probability distribution P over histories of the PO after the initial time (e.g., for GRWf,
a distribution over flash patterns in space-time). Now we say that the pair (T ′, D′0) is
physically equivalent to (T,D0) if it defines the same distribution P as (T,D0). That is,
two descriptions of a universe are physically equivalent if they provide the same history
of the PO, or (if appropriate) the same probability distribution thereof; variables (such
as ψ) that are not part of the PO may be different in the two descriptions.

For the purpose of comparison with MGRWf, suppose that, as the initial data D0 for
GRWf, we do not specify the initial wave function but instead a probability distribution
µ over initial wave functions. That still defines a distribution P over the PO histories:
Since the joint distribution of all flashes, given ψ0, is 〈ψ0|G0(·)|ψ0〉, the unconditional
joint distribution of all flashes is

PGRWf(F ∈ S) =

∫
S(H )

µ(dψ) 〈ψ0|G0(S)|ψ0〉 = tr
(
ρ0G0(S)

)
, (46)

with ρ0 the density matrix of the ensemble µ. Since this is the same formula as (45),
we obtain the physical equivalence. That is, the further possibilities of initial data ρ0 in
MGRWf do not lead to new flash histories.

How is MGRWf related to the master equation (7)? Since ρt is random, it does not
evolve according to (7). However, there is another density matrix, namely

ρ̃t = Eρt , (47)

where E means the expectation over the random flashes; ρ̃t does evolve deterministically
according to the master equation (7).

What this example illustrates: First, it illustrates the concept of physical equivalence:
There is no physical difference between GRWf with a random initial wave function of the
universe and MGRWf, as the distribution of the PO is the same. Second, it illustrates
the different roles that a density matrix can play: On the one hand, it can be part
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of the ontology as one of the fundamental objects, such as the random density matrix
ρt. On the other hand, the other density matrix ρ̃t is a mathematical object encoding
information about the probability distribution of ρt. Thus, finally, it also illustrates
that it is not necessarily appropriate to speak of “the” density matrix.

Mf: Another way of replacing the wave function in GRWf by a density matrix is to
retain (43) for the distribution of the flash location X but not adopt the collapse rule
(44). Instead, let ρt evolve deterministically according to the master equation (7). In
other words, Mf arises from MGRWf by replacing ρt in (43) by ρ̃t.

This theory, too, has a many-worlds character, as the set F of flashes will be the
union F = Fdead ∪ Falive of a set of flashes of a live cat and a set of flashes of a dead cat
(similar to the model “Sf” considered in [4]). For the same reasons as for Mm, Mf is
presumably empirically equivalent to GRWf and GRWm.

What this example illustrates: By way of contrast with MGRWf, it illustrates the
difference between the “collapsing” density matrix of MGRWf and the deterministic one
arising from the master equation (7). It thus illustrates why it is important that the
law governing the PO be precisely formulated (since in particular, it specifies precisely
which density matrix to use).

5 Conclusions

In this paper we have elaborated on our view that fundamental physical theories should
have a PO (primitive ontology, i.e., variables describing the distribution of matter in
space and time). We have illustrated the notion of PO and its usefulness for a clean
derivation of empirical predictions. We have done so by (i) describing several toy exam-
ples of theories with a PO (Section 4), (ii) studying their predictions (Section 4), (iii)
reviewing known theories with a PO (Sections 2 and 4.1), and (iv) reviewing known
derivations of predictions (Section 3). In so doing we have illustrated the different roles
that the PO, the wave function, and the density matrix have in such theories.

The view that a fundamental physical theory should have a PO is, we believe, not
spectacular but rather naively obvious. Remarkable it is, therefore, that it is so common
in contemporary physics to make considerable efforts in order to reject this view.

A Proof of Equivariance in MBM

We show that equivariance of pρ(q) = 〈q|ρ|q〉 follows from (7) for the Hamiltonian (4)
and (37). Before we give the formal proof, we note that the essential reason is that the
non-unitary (diffusive) terms in (7) (i.e., the second and third term on the right hand
side), do not contribute to the continuity equation for pρ. This can be understood by
noting that a GRW collapse does not change the diagonal entries 〈q|ρt|q〉 of the density
matrix in the position representation.
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Here is the equivariance proof.

∂

∂t
pρt(q) = − i

~〈q|[H, ρt]|q〉 −Nλ〈q|ρt|q〉+ λ
N∑
k=1

∫
d3x 〈q|g1/2

k,x ρt g
1/2
k,x |q〉 (48)

=
n∑
k=1

i~
2mk
〈q|[∇2

qk
, ρt]|q〉 −Nλ〈q|ρt|q〉+ λ

N∑
k=1

∫
d3x 〈q|ρt|q〉

e−
(qk−x)

2

2σ2

(2πσ2)3/2
(49)

=
n∑
k=1

i~
2mk

[
(∇2

xk
−∇2

yk
)〈x|ρt|y〉

]
x=y=q

−Nλ〈q|ρt|q〉+Nλ〈q|ρt|q〉 (50)

=
n∑
k=1

i~
2mk

[
(∇xk +∇yk) · (∇xk −∇yk)〈x|ρt|y〉

]
x=y=q

(51)

=
n∑
k=1

i~
2mk
∇qk ·

[
(∇xk −∇yk)〈x|ρt|y〉

]
x=y=q

(52)

= −
n∑
k=1

~
mk
∇qk · Im

[
∇xk〈x|ρt|y〉

]
x=y=q

(53)

= −
n∑
k=1

∇qk · (pρt v
ρt
k ) . (54)

Note that the potential V in H does not contribute in (49) because

〈q|V ρt|q〉 =

∫
dq′ 〈q|V |q′〉︸ ︷︷ ︸

=δ(q−q′)V (q)

〈q′|ρt|q〉 = V (q)〈q|ρt|q〉 = 〈q|ρtV |q〉 . (55)

Since any probability distribution p on configuration space will be transported, under
the flow (37), according to the continuity equation

∂p

∂t
= −

N∑
k=1

∇qk · (p v
ρ
k) , (56)

we have that pt = pρt satisfies (56), which is equivariance.

Acknowledgments. S. Goldstein and R. Tumulka are supported in part by grant no. 37433
from the John Templeton Foundation. R. Tumulka is supported in part by NSF Grant
SES-0957568 and by the Trustees Research Fellowship Program at Rutgers, the State
University of New Jersey. N. Zangh̀ı is supported in part by INFN.

References

[1] Adler, S. L.: Lower and Upper Bounds on CSL Parameters from Latent Image
Formation and IGM Heating. Journal of Physics A: Mathematical and Theoretical
40: 2935–2957 (2007). arXiv:quant-ph/0605072.

24



[2] Allori, V., Dorato, M., Laudisa, F., Zangh̀ı, N.: La natura delle cose, introduzione
ai fondamenti e alla filosofia della fisica. Rome: Carocci (2005).

[3] Allori, V., Goldstein, S., Tumulka, R., Zangh̀ı, N.: On the Common Structure of
Bohmian Mechanics and the Ghirardi–Rimini–Weber Theory. British Journal for
the Philosophy of Science 59: 353–389 (2008). arXiv:quant-ph/0603027.

[4] Allori, V., Goldstein, S., Tumulka, R., Zangh̀ı, N.: Many-Worlds and Schrödinger’s
First Theory. British Journal for the Philosophy of Science 62(1): 1–27 (2011).
arXiv:0903.2211

[5] Bassi, A.: Collapse models: analysis of the free particle dynamics. Journal of
Physics A: Mathematical and General 38: 3173 (2005). arXiv:quant-ph/0410222

[6] Bassi, A.: Dynamical Reduction Models: Present Status and Future Developments.
Journal of Physics: Conference Series 67: 012013 (2007). arXiv:quant-ph/0701014

[7] Bassi, A., Ghirardi, G.C.: Dynamical Reduction Models. Physics Reports 379:
257–426 (2003). arXiv:quant-ph/0302164.

[8] Bassi, A., Ghirardi, G.C., Salvetti, D. G. M.: The Hilbert-Space Operator Formal-
ism within Dynamical Reduction Models. Journal of Physics A: Mathematical and
Theoretical 40: 13755–13772 (2007). arXiv:0707.2940

[9] Bassi, A., Salvetti, D. G. M.: The Quantum Theory of Measurement Within Dy-
namical Reduction Models. Journal of Physics A: Mathematical and Theoretical
40: 9859–9876 (2007). arXiv:quant-ph/0702011

[10] Bedingham, D. J.: Hidden variable interpretation of spontaneous localization
theory. Journal of Physics A: Mathematical and Theoretical 44: 275303 (2011).
arXiv:1104.1938
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Zangh̀ı (editors), Quantum Mechanics: Are there Quantum Jumps? and On the
Present Status of Quantum Mechanics, AIP Conference Proceedings 844, 340–352.
American Institute of Physics (2006). arXiv:quant-ph/0602208.

[46] Tumulka, R.: The ‘unromantic pictures’ of quantum theory. Journal of Physics A:
Mathematical and Theoretical 40: 3245–3273 (2007). arXiv:quant-ph/0607124.

[47] Tumulka, R.: The Point Processes of the GRW Theory of Wave Function Collapse.
Reviews in Mathematical Physics 21: 155–227 (2009). arXiv:0711.0035.

[48] Tumulka, R.: Comment on “Hidden variable interpretation of spontaneous local-
ization theory.” Journal of Physics A: Mathematical and Theoretical 44: 478001
(2011). arXiv:1108.1520

28


