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Abstract

We describe the extremal translation invariant stationary (ETIS)
states of the facilitated exclusion process on Z. In this model all
particles on sites with one occupied and one empty neighbor jump
at each integer time to the empty neighbor site, and if two particles
attempt to jump into the same empty site we choose one randomly
to succeed. The ETIS states are qualitatively different for densities
ρ < 1/2, ρ = 1/2, and 1/2 < ρ < 1, but in each density region we find
states which may be grouped into families, each of which is in natural
correspondence with the set of all ergodic measures on {0, 1}Z. For
ρ < 1/2 there is one such family, containing all the ergodic states
in which the probability of two adjacent occupied sites is zero. For
ρ = 1/2 there are two families, in which configurations translate to
the left and right, respectively, with constant speed 2. For the high
density case there is a continuum of families. We show that all ETIS
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states at densities ρ ≤ 1/2 belong to these families, and conjecture
that also at high density there are no other ETIS states. We also
study the possible ETIS states which might occur if the conjecture
fails.

1 Introduction

The facilitated symmetric simple exclusion process (F-SSEP) is a model of
particles moving on a lattice, in which a particle can jump to a neighbor-
ing (empty) site only if another of its neighboring sites is occupied (by a
facilitating particle). In this paper we consider only the case of synchronous
discrete-time dynamics on the one-dimensional lattice Z, except that in Re-
mark 1.1 below we discuss briefly the situation for one-dimensional contin-
uous time dynamics. For further results on the one-dimensional case, see
[1, 2, 3, 4, 5, 6, 12, 9, 10, 17, 19]; for results of simulations of the continuouis-
time model in higher dimensions see [14, 16, 18].

The configuration space of the model is X = {0, 1}Z; if η is a configuration
in X then we say that a site i with η(i) = 1 is occupied by a particle, and
a site with η(i) = 0 is unoccupied or empty. The (stochastic) dynamics is
defined as follows: if ηt is the configuration at time t, t ∈ Z, then each
particle in ηt with exactly one occupied neighboring site attempts to jump
to its unoccupied neighboring site; the jump takes place unless two particles
attempt to jump on the same site, in which case one of them is chosen at
random to succeed, with each choice equally likely. ηt+1 is the resulting
configuration.

Our goal is to classify the states—probability measures on X—which are
translation invariant (TI) and stationary for the F-SSEP dynamics, the TIS
states. Every TIS state is a convex combination of the extremal TIS (ETIS)
states, that is, of the TIS states which are not proper convex combinations
of others, so it suffices to find the ETIS states. The ETIS states need not be
extremal TI (ETI)—i.e., ergodic under translations—but since particles are
neither created nor destroyed, extremality in the class of TIS states suffices
to guarantee (see Lemma 2.4) that each ETIS state will be supported on the
set Xρ of configurations having particle density ρ for some ρ with 0 ≤ ρ ≤ 1,
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that is, satisfying

lim
N→∞

1

N

N∑

i=1

ηi = lim
N→∞

1

N

−1∑

i=−N

ηi = ρ. (1.1)

We will say that a TI state has density ρ if it is supported on Xρ. (Note that
this condition implies that for each i ∈ Z the expected value of η(i) is ρ, but
is in fact a stronger statement.)

It is convenient to consider also a second particle system on Z, again
evolving in discrete time: the symmetric stack model (SSM). In this model
there are no restrictions on the number of particles at any site, so that the
configuration space is X̂ = ZZ

+, where Z+ = {0, 1, 2, . . .}. We denote stack
configurations by boldface letters, and to distinguish explicit stack configura-
tions from F-SSEP particle configurations we will use italics for the former,
so that for n ∈ X̂ we might have n(0) = 2 . To specify the evolution of the
SSM, let us say that the stack at site i is short if n(i) ≤ 1 and tall otherwise.
Then in the transition from nt to nt+1 either zero or one particle moves along
each bond 〈k, k + 1〉, either to the left or to the right: if the stacks at k and
k + 1 are both short then no particle moves on the bond; if one is short and
one tall then a particle moves from the tall to the short stack, and if both
are tall then a particle moves from one to the other in a randomly chosen
direction, with each direction equally likely.

For the SSM we again speak of TIS and ETIS states and, for ρ̂ < ∞,
of states of density ρ̂, where the latter are those supported on X̂ρ̂, the set
of SSM configurations of density ρ̂, defined in parallel with (1.1). If the

expected value of n(0) is finite in a TI state on X̂ then we say that the state
is regular. A TI state on X is called regular if it gives zero probability to the
configuration η for which η(i) = 1 for all i.

The SSM is connected with the F-SSEP through a substitution map φ :
X̂ → X: if n ∈ X̂ then φ(n) is obtained by replacing each n(i) with a zero
followed by n(i) ones. (Such a mapping has also been used to relate exclusion
and zero range processes; see, e.g., [7, 8].) In Appendix A we show that this
substitution, and members of a large class of similar substitutions, give rise
to a bijection of the regular TI or ETI states of the models related by the
substitution. Moreover, we show there that, for the particular substitution
φ above, the bijection Φφ of the regular TI states is also a bijection from the
regular TIS or ETIS states of the SSM to those of the F-SSEP. Thus for the
question of interest here—the nature and classification of the TIS states—the
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F-SSEP and SSM are essentially equivalent, and we can and will pass freely
from one to the other. Note that if n has density ρ̂ then φ(n) has density
ρ = ρ̂/(1 + ρ̂); correspondingly, Φφ carries regular SSM states of density ρ̂ to
regular F-SSEP states of density ρ.

Recall now that each regular ETIS state is associated with some density
ρ in the F-SSEP or equivalently ρ̂ = ρ/(1− ρ) in the SSM. The classification
of the ETIS states of the models is qualitatively different in the three density
regions 0 ≤ ρ ≤ 1/2, ρ = 1/2, and 1/2 ≤ ρ < 1, or equivalently 0 ≤ ρ̂ ≤ 1,
ρ̂ = 1, and 1 ≤ ρ̂ < ∞. The states in the first two of these regions are of
course all regular.

Consider first the low density region. The set of ETIS states of the SSM
with 0 ≤ ρ̂ ≤ 1 is precisely the set of ETI states supported on F̂ ⊂ X̂, the
set of frozen SSM configurations for which every stack has height zero or one
(note that in fact F̂ = X). For the F-SSEP the corresponding result is that
the ETIS states are the ETI states supported on the set F of frozen F-SSEP
configurations: those in which no two adjacent sites are occupied and hence
no particle jumps are possible.

When ρ̂ = 1 in the SSM (ρ = 1/2 in the F-SSEP) there are two families
of ETIS states in each model; these describe patterns moving to the left or to
the right, respectively, with speed 1 in the SSM and speed 2 in the F-SSEP.
In the SSM the left-moving family consists of all ETI states supported on
X̂left, the set of configurations in which no stack has height more than 2,
a stack of height 2 can be followed only by one of height 0, and a stack
of height 0 can be preceded only by one of height 2. Similarly, the right-
moving family consists of the ETI states on X̂right, the spatial reflection of

X̂left. Two states belong to both families: the state µ̂(1) (which is also one
of the low-density states of the previous paragraph) supported on the single
configuration in which all stacks have height 1 , and the state µ̂(2) supported
with equal probability on the two configurations in which stacks of height
0 and 2 alternate. The left- and right-moving families in the F-SSEP are
obtained from those of the SSM via the map Φφ.

All TIS states in the high density region of the SSM, 1 ≤ ρ̂, are supported
on X̂∗ ⊂ X̂, the set of configurations for which no two adjacent sites both
have short stacks. On X̂∗ the dynamics preserves the parity of each stack
height, so that if for σ ∈ X we let X̂∗σ ⊂ X̂∗ be the set of configurations n

for which n(i) has parity (−1)σ(i) then each X̂∗σ is invariant for the dynamics.
(In these circumstances we call σ a parity sequence.)
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Let e be the parity sequence with e(i) = 0 for all i, so that X̂∗e is the
set of configurations for which each stack height is even and there are no
adjacent zeros. For each ρ̂e ≥ 1 we find an ETIS state µ̂

(ρ̂e)
e on X̂∗e of density

ρ̂e, which we conjecture to be unique: if ρ̂e = 1 then µ̂
(ρ̂e)
e is the state µ̂(2)

described above, while if ρ̂e > 1 then µ̂
(ρ̂e)
e is a Gibbs state for an interaction

which is simply a one-body potential together with the constraints—hard-
core and evenness—implicit in X̂∗e . Further, for each such ρ̂e we obtain from

µ̂
(ρ̂e)
e a family of regular ETIS states on X̂∗, and show that if the conjecture

mentioned above holds then these are all such states. Specifically, for each
ρ̂e ≥ 1 and each ETI state λ on X there is an ETIS state µ̂(ρ̂e,λ) for the
SSM; µ̂(ρ̂e,λ) has the distribution of η + σ (pointwise addition), where η has

distribution µ̂
(ρ̂e)
e , σ has distribution λ, and η and σ are independent. Note

that if λ has density κ then µ̂
(ρ̂e,λ)
e has density ρ̂e + κ. The corresponding

families for the F-SSEP are obtained via the map Φφ.

Remark 1.1 A discussion of the TIS states of the continuous-time version
of the model, generalized to include an asymmetry in the jumps, was given
in [1]. The asymmetry is controlled by a parameter p ∈ [0, 1]: a particle at
site i ∈ Z jumps to site i + 1 (respectively i − 1) with rate p (resp. 1 − p),
provided that site i− 1 (resp. i+ 1) is occupied and site i+ 1 (resp. i− 1) is
empty. For ρ < 1/2 the TIS states are, as for the current model, just the TI
states supported on F , but for the continuous-time model it was possible to
determine the limiting state µ when the initial state µ0 is Bernoulli; rather
surprisingly, µ is independent of p. (µ is also [11, 12] the limiting state,
with initial state µ0, under totally asymmetric discrete-time dynamics.) For
ρ = 1/2, the unique TIS state is supported with equal probability on the
two configurations in which occupied and empty sites alternate. For each
ρ > 1/2 there is again a unique TIS state, the Gibbs state for a particle
system in which the only interaction is an exclusion rule forbidding adjacent
empty sites; the uniqueness was established via a coupling of the model with
the usual asymmetric simple exclusion process.

2 Preliminary considerations

We here introduce some further notation and provide some simple results for
the F-SSEP and SSM models, often speaking in terms of the F-SSEP with
the understanding that parallel notation will be used, and similar results
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hold, for the SSM. Let us mention several pieces of general notation: for
any sets A and B, function f : A → B, and measure λ on A we let f∗λ be
the measure on B with (f∗λ)(C) = λ(f−1(C)); moreover, if B = R we let
λ(f) =

∫
A
f dλ denote the expected value of f under λ. When C ⊂ B we let

1C : B → {0, 1} denote the indicator function of the set C. If S is a finite
set then |S| denotes the size of S.

Recall from Section 1 that the configuration spaces for these models are
X := {0, 1}Z and X̂ := ZZ

+, respectively, with η ∈ X and n ∈ X̂ denoting
configurations. For η ∈ X and j, k ∈ Z with j ≤ k we let η(j :k) = (η(i))j≤i≤k
denote the portion of the configuration η lying between sites j and k (inclu-
sive). We will occasionally use string notation for configurations or partial
configurations, writing for example η(0 :4) = η(0) · · · η(4) = 01101 = 01201.

τ : X → X (or τ̂ : X̂ → X̂) denotes the translation operator: if η ∈ X then
(τη)(i) = η(i− 1), if f is any function on X then τf(η) = f(τ−1η), and if µ
is a (Borel) measure on X then τ acts on µ via τ∗.

It will sometimes be convenient to associate to each F-SSEP configuration
η ∈ X a height profile hη : Z → Z, which, in the usual convention, rises by
one unit when η(i) = 0 and sinks by one unit when η(i) = 1. Specifically,

hη(k) =





0, if k = 0,∑k
i=1(−1)η(i), if k > 0,

−∑0
i=k+1(−1)η(i), if k < 0.

We do not introduce height profiles for SSM configurations.
From the somewhat informal description of the dynamics of the models

given in Section 1 it is straightforward but tedious to specify, for a configu-
ration η ∈ X and a measurable subset A ⊂ X, the transition kernel Q(η, A)

of the F-SSEP Markov process, or similarly the kernel Q̂(n, B) for the SSM
model. We omit the details. A measure µ on X is stationary if µ = µQ; here
(µQ)(A) =

∫
X
Q(·, A) dµ (we also write µQn := (µQn−1)Q for n ≥ 2).

In the remainder of the paper we will consider primarily regular (see

Section 1) states on X and X̂; the sets of regular TI, ETI, TIS, and ETIS
states for the F-SSEP are denoted by M(X), M(X), Ms(X), and Ms(X),

respectively. We write similarly M(X̂), etc., as well as M(A), M(Â), etc.,

for A ⊂ X or Â ⊂ X̂ TI sets. As a consequence of the results of Appendix A
(see also the discussion of Section 1) we have immediately:
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Theorem 2.1 There exists a bijection Φφ : M(X̂) → M(X), arising from

the substitution map φ defined in Section 1, which satisfies Φφ(M(X̂)) =

M(X), Φφ(Ms(X̂)) = Ms(X), and Φφ(Ms(X̂)) = Ms(X). Φφ carries

states of density ρ̂ to states of density ρ̂/(1 + ρ̂). Moreover, if Â ⊂ X̂ is TI

then there is a similarly defined bijection from M(Â) to M(A), etc., where

A is the minimal TI subset of X containing φ(Â).

Remark 2.2 It is clear that one may also define, in a straightforward way,
models with a fixed number of particles moving on a finite ring under either
the F-SSEP or SSM dynamics. These models will play a role in Sections 4
and 5.2.

Since we are studying stationary states it is natural to introduce the set
of space-time F-SSEP configurations X2 = {0, 1}Z2

= {(ξt(i))(t,i)∈Z2}; a state
µ ∈ M(X) which is stationary for the dynamics induces a “path measure”

on X2, invariant under vertical translation, which we denote Pµ. X̂2 and P̂µ̂
denote the corresponding SSM quantities.

In Sections 3–5 we will describe all ETIS states for the two models. As
indicated in Section 1, these fall into certain natural groups, which we will
call λ-families. In this context we write L for the set of ergodic TI measures
on X (in fact, L = M(X), but the special role that this space plays here
motivates a special symbol).

Definition 2.3 A λ-family is a collection of ETIS states, for either the SSM
or the F-SSEP, which is bijectively equivalent (with a “natural” bijection)
to L. We think of L as indexing the λ-family and let λ ∈ L denote a typical
index. We will typically write F̂∗ and F∗ for λ-families for the SSM and
F-SSEP, respectively, with ∗ a subscript distinguishing the various families
and with F∗ = Φφ(F̂∗). Ψ̂∗ : L → F̂∗ and Ψ∗ = Φφ ◦ Ψ̂∗ : L → F∗ are the
corresponding indexing bijections.

Certain simple spatially-periodic configurations and related states, some
already mentioned in Section 1, will play a special role in our discussions. Let
n(1),n(2) ∈ X̂ be the configurations with n(1)(i) = 1 and n(2)(i) = (1 +(−1 )i)

for all i; in Section 1 we introduced the states µ̂(1), µ̂(2) ∈ M(X̂) defined by
µ̂(1) = δn(1) , µ̂(2) = (δn(2)+δτn(2))/2. The corresponding states µ(1) = Φφ(µ(1)),
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µ(2) = Φφ(µ(2)) are given by

µ(1) =
1

2

1∑

j=0

δτ jη(1) and µ(2) =
1

4

3∑

j=0

δτ jη(2) , (2.1)

where η(1) ∈ X is the period-two configuration with η(1)(1:2) = 10 and
η(2) ∈ X is the period-four configuration with η(2)(1:4) = 1100. It is easy to
check directly that µ̂(1) and µ̂(2) are ETIS states for the SSM, as are µ(1) and
µ(2) for the F-SSEP.

We conclude this section with three general results; we state these for
the F-SSEP, but the obvious translations to the SSM also hold. Recall from
Section 1 that we say that a state µ ∈M(X) has density ρ if it is supported
on the space Xρ (see (1.1)).

Lemma 2.4 Every ETIS state µ ∈ Ms(X) has a definite density ρ and
satisfies either µ(F ) = 0 or µ(F ) = 1.

Proof: Take µ ∈Ms(X); it suffices to show that µ is a convex combination
of states inMs(X) with a definite density ρ and for which F has probability
0 or 1. Let ν = r∗µ; here r : X → R, r(η) := limN→∞(2N + 1)−1

∑N
i=−N η(i),

is defined µ-a.e. by the ergodic theorem. ν is just the distribution of the
density with respect to µ. Then [15] there exists a unique regular conditional
probability distribution (µρ)ρ∈[0,1] for µ such that µρ has density ρ and for
any measurable A ⊂ X,

µ(A) =

∫

0≤ρ≤1
µρ(A)dν(ρ). (2.2)

Since F is invariant under the dynamics, i.e., Q(η, F ) = 1 for η ∈ F , we see
that if we further write µρ = µρ

∣∣
F

+ µρ
∣∣
X\F we obtain, after normalization

of µρ
∣∣
F

and µρ
∣∣
X\F , the desired representation. More details are given in [1].

�

We next give a lemma which shows that a connected portion of an F-
SSEP configuration, other than possibly a single 1 at some site, cannot be
frozen unless the entire configuration is.

Lemma 2.5 Let µ ∈ Ms(X) satisfy µ(F ) = 0. Suppose that I ⊂ Z is an
interval, that θ ∈ {0, 1}I , and that either |I| ≥ 2 or I = {i} and θ(i) = 0.
Then Pµ({ξ ∈ X2 | for all t, ξt

∣∣
I

= θ}) = 0.
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We remark that the possibility I = Z, θ(i) = 1 for all i, an apparent
counterexample to Lemma 2.5, is forbidden by the regularity of µ.

Proof of Lemma 2.5: Let A,B,C ⊂ X2 denote the sets of space-time
histories ξ such that, respectively, ξt(0) = 0 for all t (we write ξt(0) ≡ 0),
ξt(−1:0) ≡ 01, and ξt(−1:0) ≡ 11, and such that in each case ξt(1) changes
infinitely often as t↗∞. We show that Pµ(A) = Pµ(B) = Pµ(C) = 0; using
the translation invariance of µ, translation invariance in time of Pµ, and
reflection invariance of the system (although the latter is not really needed),
one sees easily that this implies the result.

First, we observe that if ξ ∈ X2 satisfies ξt(0) ≡ 0 and s is such that
ξs(1) = 1 then, Pµ-a.s., ξt(1) = 1 for all t ≥ s and so ξ /∈ A. Thus Pµ(A) = 0.
Next, suppose that ξt(−1:0) ≡ 01; if ξs(1) = 1 for some s then, Pµ-a.s.,
ξs+1(−1) = 1, a contradiction. Thus Pµ(ξ ∈ B) = 0. Finally, if ξ ∈ C
we define (τk)k∈Z+ , with 0 ≤ τ0 < τ1 < · · · , to be the nonnegative times
satisfying ξτk(1) = 0; the τk are well defined on C. Now ξ ∈ C implies that
ξτk+1(0) = 1, and this is possible only if ξτk(−1:3) = 11011 and, moreover,
Lk occurs, where Lk is the event that when two particles attempt at time τk
to jump to site 1, it is the leftward jump which succeeds. Given C, the Lk
are independent events, each with probability 1/2, so that Pµ(C) = 0. �

Finally, we give a result showing that non-frozen TIS states cannot have
too large a local density of 0’s.

Lemma 2.6 Suppose that µ ∈Ms(X) satisfies µ(F ) = 0. Then:

(a) µ-a.s., no configuration contains three consecutive 0’s.

(b) µ-a.s., the height profile hη of the configuration η does not increase by
more than two units over any interval.

Proof: (a) Elementary analysis of the dynamics shows that, Pµ-a.s., if
ξ ∈ X2 satisfies ξt(i) = ξt(i + 1) = ξt(i + 2) = 0 for some t, i ∈ Z, then also
ξt−1(i) = ξt−1(i+1) = ξt−1(i+2) = 0. But then ξs(i) = ξs(i+1) = ξs(i+2) = 0
for all s ≤ t and, by the invariance of Pµ under time translations, for all s.
The conclusion follows from Lemma 2.5.

(b) Suppose that the conclusion is false. By translation invariance we may
assume that for some (necessarily odd) positive integer j, µ(Aj) > 0, where
Aj = {η | hη(j) = 3}. We take j to be the minimal value for which this
holds. By (a), j > 3, and minimality of j implies that if η ∈ Aj then
a.s. η(1 :j) = 00(10)(j−3)/20. Now by Lemma 2.5 (as in (a)), Pµ(B) > 0,
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where B = {ξ ∈ X2 | ξ0 ∈ Aj, ξ−1 /∈ Aj}. On the other hand, if ξ ∈ B
then elementary analysis shows that, Pµ-a.s., some translate of ξ−1 belongs
to Aj′ for some j′ < j (for example, if j = 9 then ξ−1(1 :j) must be one
of 1100(10)20, 00(10)2011, 110010011, or 000111000). This contradicts the
minimality of j. �

3 Low density

In this section we describe all TIS states of low density (ρ < 1/2 for the F-
SSEP, ρ̂ < 1 for the SSM). We first show that all ETIS states for the F-SSEP
are frozen.

Lemma 3.1 Let µ ∈Ms(X) have density ρ < 1/2. Then µ(F ) = 1.

Proof: By Lemma 2.4 it suffices to show that µ(F ) > 0. But if µ(F ) = 0
then for any k > 0,

2ρ− 1 =
1

k
µ

(
k∑

i=1

(2η(i)− 1)

)
= −1

k
µ
(
h(k)

)
≥ −2

k
, (3.1)

by Lemma 2.6(b). Since k is arbitrary, 2ρ− 1 ≥ 0. �

To describe all low-density states we introduce Flow := M(F ), the set

of ETI states supported on F , and F̂low := M(F̂ ). Since F̂ = X, F̂low =

M(X) = L, and thus F̂low is indeed a λ-family (see Definition 2.3), with

indexing map Ψ̂low the identity. One checks easily that Φφ(F̂low) = Flow,
so that Flow is also a λ-family, with indexing map Ψlow = Φφ. Note that

µ̂(1) ∈ F̂low has density 1 and µ(1) = Φφ(µ̂(1)) ∈ Flow has density 1/2, but

that otherwise the states in F̂low and Flow have densities less than 1 or less
than 1/2, respectively.

Theorem 3.2 (a) The set of ETIS states for the F-SSEP with density ρ <
1/2 is Flow \ {µ(1)}, and (b) the set of ETIS states for the SSM with density

ρ̂ < 1 is F̂low \ {µ̂(1)}.
Proof: For (a), note that the inclusion Flow ⊂ Ms(X) is trivial;, while
conversely every state in Ms(X) with density less than 1/2 belongs to Flow

by Lemma 3.1. By virtue of Theorem 2.1, (b) is an immediate consequence
of (a). �
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Finally we ask the question: if the F-SSEP is started in an initial state µ0

which is a Bernoulli measure with density ρ < 1/2, what is the final distri-
bution of frozen configurations? As discussed in Remark 1.1, in earlier work
we answered this question for several other facilitated exclusion processes,
finding a common limiting distribution µ. For the current model the limit is
different (see below), but beyond that we have only a partial description.

Let µt = µt−1Q, t = 1, 2, . . ., be the state at time t, with µ0 as above, and
for η ∈ X let Sη = {i ∈ Z | η(i− 2: i) = 000}.

Theorem 3.3 The limiting measure µ∞ = limt→∞ µt exists and satisfies
µ∞({0 ∈ Sη}) > 0. Under the conditional measure µ∞(· | 0 ∈ Sη), S is a
renewal process.

Proof: Let P̃ be the path measure on X̃2 = {0, 1}Z+×Z obtained from the
initial state µ0 and the F-SSEP dynamics. Elementary analysis shows that
if ξ ∈ X2 satisfies ξt(i− 2: i) = 000 then P̃ -a.s. also ξs(i− 2: i) = 000 for
0 ≤ s ≤ t. But then for all i ∈ Z,

Bi := {ξ | ξt(i− 2: i) = 000 for all t ≥ 0}
= {ξ | ξt(i− 2: i) = 000 for all sufficiently large t}. (3.2)

Moreover, P̃ (Bi) = q2(1 − ρ)3, with q the probability that, for an initial
measure under which the configuration on N := {i ∈ Z | i > 0} is distributed
as a Bernoulli measure with density ρ but all other sites are empty, no particle
crosses the 〈0, 1〉 bond at any time during the evolution.

Next we show that q > 0. Let At be the event that for all L ≥ 1 there are
in the configuration ξt at most L/2 particles on sites 1, 2, . . . , L. A standard
gambler’s ruin computation [13] shows that µ0(A0) = (1− 2ρ)/(1− ρ). Now
when At holds no particle can cross the bond 〈0, 1〉 at the next time step,
from the L = 1 condition. Moreover, At ⊂ At+1. Thus q ≥ µ0(A0) > 0.

To establish the existence of µ∞, and in fact a stronger result, the P̃ -
almost sure existence of η∞ := limt→∞ ξt, one shows from P̃ (Bi) > 0 that for

any L > 0, P̃
(⋃

k,l≥LB−k ∩Bl

)
= 1. For ξ ∈ B−k ∩Bl, simple considerations

of the system in a finite region then imply that limt→∞ ξt
∣∣
[−k+1,l−3] exists,

P̃ -a.s. For more details see the proof of Lemma 3.6 of [1].

Since µ∞ is the distribution of η∞ under P̃ we must show that Sη∞ is a

renewal process under the conditional measure P̃ (· | 0 ∈ Sη∞). Now from
(3.2) we have that i ∈ Sη∞ iff ξ ∈ Bi, and if we condition on 0 ∈ Sη∞ , that
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is, on B0, then what happens to the left of site −2 is independent of what
happens to the right of site 0. Thus if, under this conditioning, we label the
points of Sη∞ sequentially as (sk)k∈Z, with s0 = 0, so that ξt(sk − 2:sk) = 000
for all t and k, the differences sk − sk−1 are independent. �

Let us condition on 0 ∈ Sη∞ and adopt the notation of the previous
proof. Then either s1 = 1, an event with (conditional) probability 1− ρ, or
s1 ≥ 4; in the latter case η∞(−2:s1) = 000σ 000, with σ any string which
begins and ends with 1 and contains no substrings 11 or 000. To complete
the description of µ∞ one would need to find the distribution of these σ (and
hence of s1− s0); we have only partial results in this direction. However, one
finds easily that, for example, µ∞(η(1 :6) = 101000 | 0 ∈ Sη) = ρ2(1 − ρ)4;
on the other hand, with µ as introduced in Remark 1.1, µ(η(1 :6) = 101000 |
0 ∈ Sη) = 2ρ2(1− ρ)4 [1, 11, 12], establishing the difference of µ∞ and µ.

4 Densities ρ = 1/2 and ρ̂ = 1

In this section we describe all ETIS states of density 1/2 for the F-SSEP or
density 1 for the SSM. We first show that, for such a state in the F-SSEP,
the height profile hη (see (2)) is a.s. confined to a strip of height at most two.
For η ∈ X we let ∆(η) = supi<j |hη(j)− hη(i)|.

Lemma 4.1 If µ ∈Ms(X) has density ρ = 1/2 then, µ-a.s., ∆(η) ≤ 2.

Proof: By Lemma 2.4 we may assume that either µ(F ) = 0 or µ(F ) =
1. Now µ(1) is the only TI state of density 1/2 supported on F , and it
satisfies the conclusion of the lemma. Consider then the case µ(F ) = 0. By
Lemma 2.6(b), hη(j) − hη(i) ≤ 2 for i < j, so by translation invariance it
suffices to show that for any j > 0, hη(j) ≥ −2 µ-a.s.; moreover, it suffices
to verify the result for each ergodic component of µ.

Suppose then that µ is ergodic but that for some j > 0, which we take
to be minimal, µ

(
{η | hη(j) ≤ −3}

)
> 0. Then from Lemma 2.6(b) and

the minimality of j, also µ
(
{η | η(0) > supi>0 hη(i)}

)
> 0, and with ergod-

icity this implies that, µ-a.s., hη has a negative overall slope. But this is
inconsistent with µ having density 1/2. �

We can now classify the states in Ms(X) with density 1/2. Consider a
general η with ∆(η) ≤ 2; a portion of a typical height profile (with ∆(η) = 2)
is shown in Figure 1. As indicated there, we may partition η into left-moving
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(L), right-moving (R), and transition (T) regions, where T denotes a maximal
region in which pairs of 0’s alternate with pairs of 1’s, L a region between
two T regions having the form (10)k for some k ≥ 1, and R a region between
two T regions having the form (01)k, k ≥ 1.
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Figure 1: Portion of a typical height profile, showing Left-moving, Right-
moving, and Transition regions.

The naming of these regions reflects the fact that a configuration in which
only L and T (respectively R and T ) regions appear translates to the left
(respectively right) at velocity 2 under the dynamics: if ηt is such a config-
uration, then ηt+1 = τ−2ηt (respectively ηt+1 = τ 2η). We will see below that
all TIS states are supported on such configurations. The two simplest exam-
ples of such states, µ(1) and µ(2), were defined in (2.1); µ(1) may be viewed
as supported on configurations with a single L, or equivalently a single R,
region, and µ(2) is supported on configurations consisting of a single T region.

It is straightforward to work out further rules for the evolution of the con-
figurations with ∆(η) ≤ 2. Such configurations cannot contain the pattern
11011, and hence the evolution is deterministic. Boundaries between regions
usually move with velocity 2, L|T and T|L boundaries to the left and R|T
and T|R boundaries to the right. However, if R and L regions are separated
by a T region which is a single pair of 0’s, R|00|L, then both boundaries are
stationary. If in the resulting T|R|00|L|T situation the L region is shorter
than the R region then the (left-moving) L|T boundary will eventually reach
the 00|L boundary, at which time the L region will disappear and the 00 and
T regions amalgamate into a single T region; the situation is similar when
the R region is shorter, or the two regions are the same length.

Following these ideas one easily sees that, on a ring, any initial configu-
ration evolves to one in which either no L region, or no R region, occurs. No
such conclusion is possible when the ring is replaced by Z, but similar con-
siderations do imply the following: For any configuration η with ∆(η) ≤ 2,
the minimum size δ = δ(η) of a maximal uniform block—a maximal right
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block, a region of the form T |R|T | · · · |T |R|T preceded and followed by L
regions, or a maximal left block, defined in a parallel way—must increase,
if δ < ∞, within a time proportional to δ. From this it follows that any
TI stationary state for ρ = 1/2 must be supported on configurations with
δ =∞, i.e., on configurations consisting of a single maximal uniform block or
of a maximal right block adjacent to a maximal left block. However, the set
of configurations of the latter sort must have probability 0 in any TI state.

Rather than filling in the straightforward details of the argument just
sketched, we now give a different and shorter (though perhaps less intuitive)
argument. Let Xleft (respectively Xright) denote the set of configurations
η ∈ X with ∆(η) = 2 which contain no R (respectively no L) region. By
convention we suppose that Xleft and Xright contain η(1) and τη(1) (see Sec-
tion 2); then Xleft ∩ Xright consists of η(1), η(2), and their translates. Recall

also the spaces Xρ, X̂ρ̂, X̂left and X̂right, defined in Section 1.

Theorem 4.2 (a) When ρ = 1/2, Ms(Xρ) =M(Xleft) ∪M(Xright).

(b) When ρ̂ = 1, Ms(X̂ρ̂) =M(X̂left) ∪M(X̂right).

Before giving the proof we explain how the ETIS states of the theorem
are organized into the λ-families of Definition 2.3. Consider first Ms(X̂) =

M(X̂left) ∪ M(X̂right); here M(X̂left) and M(X̂right) are λ-families which

we denote respectively F̂left and F̂right. The substitution map φleft : X → X̂

given by 1→ 20 , 0→ 1 gives rise to an indexing bijection Ψ̂left = Φφleft : L →
F̂left, and similarly we obtain Ψ̂right : L → F̂right from φright, the substitution
map sending 1 → 02 , 0 → 1 . The indexing maps for Fleft = M(Xleft) and

Fright = M(Xright) are Ψleft = Φφ ◦ Ψ̂left and Ψright = Φφ ◦ Ψ̂right, or can
be obtained directly from the substitution maps 1 → 1100, 0 → 10 and
1 → 0011, 0 → 01, respectively. Note that F̂left ∩ F̂right = {µ̂(1), µ̂(2)} and
Fleft ∩ Fright = {µ(1), µ(2)}.
Proof of Theorem 4.2: (a) Since the F-SSEP dynamics on Xleft or Xright is
simply left or right translation, respectively, clearly M(Xleft) ∪M(Xright) ⊂
Ms(X). Suppose conversely that µ ∈ Ms(X). Since µ is an ETIS state
and Xleft and Xright are invariant under the dynamics, it suffices to prove
that µ(Xleft ∪ Xright) = 1, i.e., that the set of configurations η which have
∆(η) = 2, and contain both L and T regions, has measure zero.

We first show that, µ-a.s., no configuration contains the string 010010
(corresponding to regions R|T|L with T having just two sites). For let E be
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the event that sites 1 and 2 both belong to an R region and that η(1:2) = 01.
Then from the dynamical rules,

Pµ(ξt+1 ∈ E) = Pµ(ξt ∈ E)− Pµ(ξt(−1:2) = 1101) + Pµ(ξt(−1:4) = 010011)

= Pµ(ξt ∈ E)− Pµ(ξt(−1:2) = 1101) + Pµ(ξt(−1:2) = 0100)

− Pµ(ξt(−1:4) = 010010). (4.1)

But µ
(
η(−1:2) = 1101) = µ

(
η(−1:2) = 0100

)
, since the density of left and

right ends of R regions must be the same, so that, with the stationarity of
µ, (4.1) implies that µ

(
η(−1:4) = 010010

)
= 0, as claimed.

Now if µ(Xleft∪Xright) < 1 then there is a minimal k such that µ
(
η(1:4k+

6) = 0100(1100)k10
)
> 0. From the claim above, k > 0. But if ξt(1:4k+6) =

0100(1100)k10
)

then ξt+1(3:4k + 4) = 0100(1100)k−110
)
, contradicting the

minimality of k.

(b) By (a) and Theorem 2.1 (using Â = X̂left and Â = X̂right) we have

Ms(X̂1) = Φ−1φ
(
Ms(X1/2)

)
= Φ−1φ

(
M(Xleft)

)
∪ Φ−1φ

(
M(Xright)

)

=M(X̂left) ∪M(X̂right). (4.2)

�

5 High density

Most of our discussion of the high density region, ρ > 1/2 for the F-SSEP
or ρ̂ > 1 for the SSM, will be carried our for the SSM. We first obtain a
reduction of the configuration space of the model to the space X̂∗ ⊂ X̂, the
set of configurations for which no two adjacent sites both have short stacks
(see Section 1). Note that any extremal TI state in X̂∗e must have density

ρ̂e satisfying ρ̂e ≥ 1. For future reference we also note that H := φ(X̂∗) is
the set of F-SSEP configurations which do not contain any of the substrings
000, 0100, 0010, and 01010.

Theorem 5.1 Every TIS state for the stack dynamics with density ρ̂ > 1
is supported on X̂∗; equivalently, every TIS state for the F-SSEP dynamics
with density ρ > 1/2 is supported on H.
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Proof: It is convenient to work primarily in the stack model. We observe
first that, since 00 in the stack model corresponds to 000 in the F-SSEP
model, Lemma 2.6 implies that every µ̂ ∈Ms(X̂) with density ρ̂ > 1 assigns
zero probability to the set of all configurations containing the substring 00 .

Now we suppose that µ̂ ∈ Ms(X̂) has density ρ̂ > 1 and is such that
configurations containing the string 10 occur with nonzero probability under
µ̂, and derive a contradiction; we may assume that µ̂ is ergodic. For (t, i) ∈ Z2

let Et,i ⊂ X̂2 be the event that m ∈ X̂2 satisfies mt(i : i+ 1)) = 10 ; then for
m ∈ Et,i we know from Lemma 2.5 that there must a.s. exist times t0 and
t1, with t0 ≤ t < t1, such that m ∈ Es,i for t0 ≤ s < t1 but m /∈ Et0−1,i
and m /∈ Et1,i. Then elementary consideration of the dynamics, using the
fact the 00 does not occur, shows that necessarily mt0−1(i− 1: i) = 10 ,
i.e., the 10 string cannot be “created” at sites (i, i + 1) but rather “moves”
there from sites (i − 1, i). But then such a string cannot vanish, since µ̂
is stationary and hence the density of 10 strings is constant in time, and
again simple considerations show that necessarily mt1−1(i : i+ 2)) = 102 and

mt1(i+ 1: i+ 2) = 10 . The conclusion is that, P̂µ̂-a.s., 10 substrings persist
throughout time, moving to the right in the sense that there exist times
t0 < t1 < t2 < · · · such that mt(i+ k : i+ k + 1) = 10 for tk ≤ t < tk+1.

A similar analysis applies to 01 strings, except that these move to the
left. But we claim that µ̂ cannot give positive density to both 10 and 01
strings. For if it did, both would occur with positive frequency in the same
configuration, by the ergodicity of µ̂, and would then “collide”, that is, the
configuration 101 would occur with positive frequency (1001 is ruled out
because 00 is), and then neither could continue to move without the de-
struction of the other, a contradiction. Thus we may assume, without loss
of generality, that µ̂ supports a positive density of 10 substrings but that,
µ̂-a.s., 01 strings do not occur.

Now let k be the minimal positive integer such that µ̂(Ak) > 0, where

Ak := {n ∈ X̂ | n(1 :2) = 10 and
∑k

i=1 n(i) > k}; such a k exists because
ρ̂ > 1 and we have assumed that µ̂(n(1 :2)) = 10 ) > 0. From the fact that
00 and 01 do not occur it follows that if nt ∈ Ak then nt(1 :k) has one of two
forms: (i) nt(1 :k) = 102 (02 )p1 qx, with x ≥ 2, or (ii) nt(1 :k) = 10 (20 )py,
with y ≥ 3; here p and q are nonnegative integers. We show that each of
these cases leads to a contradiction.

If (i) holds then one checks, by considering various special cases, that with
probability at least 1/2 either (i.a) neither nt+1(1 :2) = 10 nor nt+1(2 :3) =
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10 , contradicting the possible evolution of a 10 pair as discussed above, or
(i.b) τ−1nt+1 lies in case (i) of Ak−2, contradicting the minimality of k. For
example, if p = q = 0, so that k = 4 and nt(1 :4) = 102x, then nt(2 : 3) =
12 with probability 1/2 (case 1.a)), while if q ≥ 2 then nt+1(2 :k − 2) =
102 (02 )p1 q−22, so that τ−1nt+1 ∈ Ak−2 (case (1.b)).

Suppose then that (ii) holds. If p = 0 then, as in case (i.a), the 10
disappears, and if p ≥ 1 and y ≥ 4 then τ−1nt+1 ∈ Ak−1; each of these
outcomes contradicts our assumptions. If p ≥ 1 and y = 3 then we must
consider an additional site, and so write nt(k + 1) = z. If z ≥ 2 then, with
probability 1/2, nt+1(2 :k) = 102 (02 )p−13 and so τ−1nt+1 ∈ Ak−1. Finally, if
z = 1 or z = 0 then nt+1(2 :k) = 102 (02 )p−11z′ with z′ ≥ 2, so that τ−1nt+1

lies in Ak but falls under case (i), and this is a contradiction by the analysis
of the previous paragraph. For this last step we need to observe that if z = 0
then necessarily nt(k + 2) ≥ 2, since neither 00 nor 01 can occur in nt.

To complete the proof we must show that, µ̂-a.s., the string 11 cannot
occur in n. But, as for the initial analysis of 10 above, if m ∈ X̂2 sat-
isfies mt(i : i+ 1) = 11 then, P̂µ̂-a.s., there must be a time t0 ≤ t with
mt0(i : i+ 1) = 11 but mt0−1(i : i+ 1) 6= 11 , and it is easy to see by consid-
ering various possible values of nt0−1(i− 1: i+ 1) that this cannot happen.
�

In the remainder of Section 5 we study the ETIS states of the SSM con-
sidered as a process with state space X̂∗. Theorem 5.1 justifies this choice for
states with density ρ̂ > 1. Moreover, the state µ̂(2) introduced in Section 1
was shown in Section 4 to be an ETIS state of density ρ̂ = 1 for the SSM; µ̂(2)

is supported on X̂∗ (and is the only such state). It is convenient to include
this state in our study, so that from now on we assume that ρ̂ ≥ 1.

The dynamical rules of the SSM simplify on X̂∗ as follows: if nt(i) is 0 or
1 then in the transition to nt+1 a particle moves from each of the sites i+ 1
and i− 1 to i, while if n(j),n(j + 1) ≥ 2 a particle moves from j to j + 1
or the reverse, each with probability 1/2. Since at each time step a particle
must move across each bond, the parity (−1)n(i) of the stack height at each
site i is conserved. Let S := {0, 1}Z be the space of parity sequences, define

the parity map P : X̂∗ → S by P(n)(i) = (1 − (−1)n(i))/2, and for σ ∈ S
define the parity sector X̂∗σ ⊂ X̂∗ by X̂∗σ := P−1({σ}), so that n ∈ X̂∗σ iff, for
all i, n(i) and σ(i) have the same parity.

Since for each σ ∈ S the parity sector X̂∗σ is invariant under the dynamics,

we obtain by restriction a dynamical system on each X̂∗σ. In Section 5.1 below
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we discuss the stationary states in the even sector X̂∗e , where e is the parity
sequence satisfying e(i) = 0 for all i, and in Section 5.2 and Appendix B

show how these give rise to all the ETIS states on X̂∗.

5.1 ETIS states in the even sector

Our next result describes a family of ETIS states for the SSM in the even
sector; the proof will be given shortly.

Theorem 5.2 For each ρ̂e ≥ 1 there is an ETIS state µ
(ρ̂e)
e on X̂∗e , of density

ρ̂e; µ
(ρ̂e)
e is a grand-canonical Gibbs state for the statistical-mechanical system

with state space X̂∗ and one-body potential

V (n) := 2 ln 2 δn0. (5.1)

For ρ̂e = 1, µ
(ρ̂e)
e = µ̂(2) and hence is ergodic but not weakly mixing. For

ρ̂e > 1, µ
(ρ̂e)
e is mixing.

As we will see in Section 5.2 and Appendix B, for a full discussion of the
ETIS states of the SSM on X̂∗ we need to know all stationary states on X̂∗e ,
both TI and non-TI (should any of the latter exist). We make the

Conjecture 5.3 For each ρ̂e ≥ 1, µ
(ρ̂e)
e is the unique stationary state of the

SSM on X̂∗e with density ρ̂e.

In Section 5.2 we will discuss the ETIS states on X̂∗ under the assumption
that Conjecture 5.3 holds, and in Appendix B turn to the general case.

We begin our discussion of Theorem 5.2 with the consideration of the SSM
on a ring of 2L + 1 sites, indexed by IL := {−L, . . . , L}; the configuration

space X̂
∗(L)
e is the set of elements n ∈ ZIL+ for which n(i) is even for all i

and for which no two adjacent sites both have height zero. For the moment
we take a fixed number N of particles, with N even and N ≥ 2L + 2, with
corresponding configuration space X̂

∗(N,L)
e ⊂ X̂

∗(L)
e . For n ∈ X̂∗(N,L)e let z(n)

be the number of sites i with n(i) = 0 . In a transition from nt to nt+1 the
direction of particle movement across 2z(nt) bonds is determined and across
the remainder is chosen randomly; moreover, a given transition can occur via
at most one set of these choices unless nt = nt+1, in which case there are two
possibilities (this occurs iff z(nt) = 0). Thus the probability P (nt,nt+1) of
such a transition, if nonzero, is 2−(2L+1−2z(nt))+δnt,nt+1 . Then a TIS state µ(N,L)
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is given by µ(N,L)(n) = Z−1N,L2−2z(n), with Z−1N,L a normalizing constant, since

because P (n,n′) = 0 iff P (n′,n) = 0, µ(N,L) satisfies the detailed balance
condition µ(N,L)(n)P (n′,n) = µ(N,L)(n′)P (n,n′). It is straightforward to

check that the dynamics permits transition from any configuration in X̂
∗(N,L)
e

to any other, so that µ(N,L) is the unique TIS state.
The state µ(N,L) is a Gibbs measure arising from the one-particle potential

V (n) of (5.1), that is, µ(N,L)(n) = Z−1N,L
∏L

i=−L e
−V (n(i)). (One may also view

µ(N,L) as a Gibbs measure on the space of all N -particle configurations, with
one- and two-body hard core potentials, that is, formal potentials taking
infinite values, that impose the restrictions of X̂

∗(L)
e .) In order to pass to the

L → ∞ limit it is convenient to consider the grand canonical measure with
fugacity ζ ≥ 0:

µ(ζ,L) := Ξ−1L,ζ
∑

n∈X̂∗(L)
e

ζ
∑
i n(i)−2L−2e−

∑
i V (n(i)), (5.2)

with Ξ−1ζ,L again a normalizing constant.

Lemma 5.4 The limiting measure µ(ζ,∞) = limL→∞ µ
(ζ,L) exists for 0 ≤ ζ <

1 and is a TIS state of density 1/(1 − ζ) for the SSM on X̂∗e . Moreover,
µ(0,∞) = µ(2) and µ(ζ,∞) is mixing if ζ > 1.

Proof: The case ζ = 0 follows immediately from the fact, evident from
(5.2), that µ(0,L) gives equal weight to the 2L + 1 configurations in X̂

∗(N,L)
e

with
∑

i n(i) = 2L+ 2. From now on we assume that 0 < ζ < 1.
We can prove the existence of µ(ζ,∞), and also calculate many of its prop-

erties, using the standard transfer matrix formalism; we give only a sketch.
Let us think of `2 = {(xi)∞i=0 |

∑
x2i <∞} as a space of column vectors, with

uT denoting the transpose of the vector u, and define u, v ∈ `2 by ui := δi0
and v0 := 0, vi := ζ i if i ≥ 1. Let T := (uvT + vuT )/2 + vvT ; then for

n = 2i ∈ X̂∗(L)e ,

µ(ζ,L)(n) = Ξ−1ζ,LTi(−L)i(−L+1)Ti(−L+1)i(−L+2) · · · Ti(L−1)i(L)Ti(L)i(−L), (5.3)

with Ξζ,L the trace of T 2L+1. T is a rank 2 operator with nonzero eigenvalues
λ1 = ζ/(2(1 − ζ)) and λ2 = −ζ/(2(1 + ζ)); the eigenvector associated with
λ1, the larger in magnitude, is w = (ζ/(1 + ζ))u+ v, so that

lim
n→∞

λ−n1 T n = ‖w‖−2wTw. (5.4)
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Thus for m = 2i ∈ Z{−K,···K}+ and E the event that n(−K :K) = m(−K :K)
we have

µ(ζ,∞)(E) := lim
L→∞

µ(ζ,L)(E)

= Y−1ζ,Kwi(−K)Ti(−K)i(−K+1) · · · Ti(K−1)i(K)wi(K) (5.5)

with

Yζ,K = λ2K1 ‖w‖2 =
ζ2K+2

(1 + ζ)222K−1(1− ζ)2K+1
. (5.6)

Taking K = 0 in (5.5) we find that

µ(ζ,∞)(n(0) = 2i) = Y−1ζ,0w2
i =

{
(1− ζ)/2, if i = 0,

(1 + ζ)2(1− ζ)ζ2i−2/2, otherwise,
(5.7)

from which we find the density ρ̂(ζ) := µ(ζ,∞)(n(0)) = 1/(1− ζ). From (5.4)

and (5.5) it follows that if f, g : X̂∗ → R each depend only on the values of
the configuration at a finite number of sites then µ(ζ,∞)(fτng) ∼ Ce−(λ1−|λ2|)n

as n→∞, so that µ(ζ,∞) is mixing.
The stationarity of µ(ζ,∞) can be verified from the explicit formulas (5.5)

and (5.6), but it is simpler to argue from the stationarity of µ(ζ,L). Take

L > K > 0, suppose that A(K) ⊂ X̂
∗(K)
e , and let A, respectively A(L), be

the set of n ∈ X̂∗e , respectively n ∈ X̂
∗(L)
e , such that n(−K − 1:K + 1) ∈

A(K). If Q and Q(L) are the transition kernels for the SSM on X̂∗ and X̂∗(L),
respectively, then the stationarity of µ(ζ,L) implies that

∫

X̂∗(L)

Q(L)(n, A(L))µ(ζ,L)(dn) = µ(ζ,L)(A(L). (5.8)

Now Q(L)(n, A(L)) depends only on n(−K − 1:K + 1) and Q(L)(n, A(L)) =
Q(n′, A) if n(−K − 1:K + 1) = n′(−K − 1:K + 1), so that taking the L→
∞ limit in (5.8) yields

∫
X̂∗
Q(n, A)µ(ζ,∞)(dn) = µ(ζ,∞)(A), the stationarity of

µ(ζ,∞). �

Proof of Theorem 5.2: The theorem follows immediately from Lemma 5.4
via ν

(ρ̂e)
e = ν((ρ̂e−1)/ρ̂e),∞). �

Remark 5.5 There is an alternative way to describe the state µ(ζ,∞) (and

hence also µρee ). Consider the image of µ(ζ,∞) under the map F : X̂∗ → {0, 1}Z
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defined by F (n)(j) = min{1,n(j)}, which effectively classes sites simply as

occupied or empty. The image measure F
(ζ,∞)
µ is again Gibbisan, with no

interactions other than the exclusion of configurations containing adjacent
holes, so that it is, after an interchange of the roles of particles and holes, the
equilibrium state of the familiar nearest-neighbor hard core model. The holes
in this system have effective fugacity (1 − ζ2)/(2ζ)2 (relative to a fugacity
of 1 for the particles) and from (5.7) the density of holes is (1 − ζ)/2. The
full state µ(ζ,∞) is then obtained by first conditioning F (n) = η for some
η ∈ {0, 1}∞ with no adjacent holes, distributed according to F∗µ

(ζ,∞), and
then distributing particles on each site j for which η(j) = 1 independently,
with distribution µ{n(j) = 2i} = ζ2i−1/(1− ζ2), i = 1, 2, . . ..

5.2 ETIS states for the SSM

We now discuss the passage from stationary states of the SSM on the even
sector to general high-density ETIS states, specifically, to states with ρ̂ > 1 as
well as the special state µ(2) with ρ̂ = 1. By Theorem 5.1, these are precisely
the ETIS states on X̂∗. Let us define γ : X̂∗e × S → X̂∗ by γ(m, σ) = m + σ
(with component-wise addition: (m + σ)(i) := m(i) + σ(i)). Note that for

fixed σ ∈ S, γ(·, σ) is a bijection of X̂∗e with X̂∗σ. We define the dynamics in

X̂∗e × S to be constant on S.

Lemma 5.6 (a) A measure µ on X̂∗ is an ETIS state for the SSM iff µ̃ :=

γ−1∗ µ is an ETIS state on X̂∗e × S.

(b) Each ETIS state µ̃ of density ρ̂ on X̂∗e × S has the form µ̃(dn dσ) =
µσ(dn)λ(dσ), where λ is an ergodic TI probability measure on S and the µσ,

σ ∈ S, are stationary probability measures on X̂∗e satisfying µτσ = τ∗µσ.
Moreover, if λ has density κ then λ-almost all µσ have density ρ̂e = ρ̂− κ.

Proof: (a) The map γ clearly commutes with translations and with the
dynamics. Thus γ∗ and γ−1∗ carry TIS states to TIS states, and they clearly
preserve extremality.
(b) The form µ̃(dn dσ) = µσ(dn)λ(dσ) is immediate, with λ the probability
measure on S giving the distribution of σ and µσ the conditional probability
measure on X̂∗e given σ. Stationarity of µ̃ implies stationarity of each µσ, and
translation invariance of µ̃ yields translation invariance of λ and the relation
µτσ = τ∗µσ. λ must be ergodic, since a decomposition of λ as a convex
combination of TI measures would yield immediately a decomposition of µ
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in terms of TIS measures. Finally, since µ̃-a.s. configurations have density ρ̂,
λ-a.s. each µσ must have density ρ̂e = ρ̂− κ. �

Throughout the remainder of this section we assume that Conjecture 5.3
holds. See Appendix B for an analysis of the situation when this assumption
is not valid.

Theorem 5.7 Suppose that the µ
(ρ̂e)
e of Theorem 5.2 are the only stationary

states of the SSM on X̂∗e , i.e., that Conjecture 5.3 holds. Then the ETIS

states with density ρ̂ > 1 are precisely the states µ(ρ̂,λ) := γ∗(µ
(ρ̂e)
e × λ), with

λ an ergodic TI probability measure on S of density κ ≤ ρ̂−1 and ρ̂e = ρ̂−κ.

Before giving the proof we note an immediate consequence of this result
and Theorem 2.1.

Corollary 5.8 Under the hypotheses of Theorem 5.7 the ETIS states of the
F-SSEP with density ρ > 1/2 are the states Φφ

(
µ(ρ̂,λ)

)
; Φφ

(
µ(ρ̂,λ)

)
has density

ρ̂/(1 + ρ̂).

Proof of Theorem 5.7: By Lemma 5.6 it suffices to prove that the ETIS
states on X̂∗e ×S are the states µ

(ρ̂e)
e ×λ described in the theorem. The latter

are clearly TIS. If µ̃ is an ETIS state on X̂∗e ×S of density ρ̂ then Lemma 5.6

and Conjecture 5.3 imply that µ̃ = µ
(ρ̂−κ)
e × λ. Conversely, a decomposition

of a state µ
(ρ̂e)
e × λ as described in the theorem into extremal components

must, by this and the ergodicity of λ, be trivial. �

Remark 5.9 (a) The states µ(ρ̂,λ) of the SSM with ρ̂ > 1 are defined in

Theorem 5.7; it is natural then to define also µ(1,δe) := γ∗(µ
(ρ̂e)
e × δe) = µ(2),

with δe ∈M(S) the point mass on the zero configuration e.

(b) It follows from the theorem that, whenever µ(ρ̂,λ) is defined, the density
κ of the measure λ satisfies 0 ≤ κ ≤ max{1 − ρ̂, 1}. The case ρ̂ = 1 + κ,
corresponding, in the notation of the theorem, to ρ̂e = 1, is of particular
interest; see (c) and (d) below.

(c) µ(ρ̂,λ) is extremal in the class of TIS states, but it may not be ergodic
under translations. For example, if σ ∈ S has even period p and density
κ, and λ is the superposition of the point masses on σ and its translates,
then if ρ̂ = 1 + κ (i.e., if ρ̂e = 1), µ(ρ̂,λ) is a superposition of two ergodic
measures, these being the superpositions of the translates of n∗ + σ and
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τn∗+σ, respectively. When in general can such non-ergodicity occur? First,
if ρ̂e > 1 then µ

(ρ̂e)
e × λ, as the product of a mixing and an ergodic measure,

is ergodic, and hence so is µ(ρ̂e+κ,λ). On the other hand, if ρ̂e = 1 we use
the fact that µ

(ρ̂e)
e × λ will be ergodic iff the eigenvalue 1 of the translation

operator in L2(X̂∗e × S, µ(ρ̂e)
e × λ) is simple; since translation on L2(X̂∗e , µ

(1)
e )

has simple eigenvalues of ±1 and no others, we conclude that µ(ρ̂,λ) is ergodic
iff the translation operator on L2(S, λ) does not have the eigenvalue −1.

(d) If λ has density κ then, µ(1+κ,λ)-a.s., each configuration n has sites with 0
or 1 particle(s) alternating with sites with 2 or 3 particles, and the dynamics
carries such a configuration to the one obtained from it by the substitutions
0 → 2, 1 → 3, 2 → 0, and 3 → 1. The evolution of these configurations is
thus periodic, of period 2.

We finally observe that the states µ(ρ̂,λ) for fixed ρ̂e = ρ̂ − κ (where as
usual κ is the density of λ) form a λ-family (see Definition 2.3), which we

denote F̂ρ̂e . The indexing map Ψ̂ρ̂e : L → F̂ρe is given by Ψ̂ρ̂e(λ) = µ(ρ̂e+κ,λ),
where we have made the identification L =M(S). From Corollary 5.8, then,
the ETIS states of the F-SSEP with density ρ > 1/2, together with the state

µ(2), form the λ-families Fρ̂e = Φ∗(F̂ρ̂e).

6 Summary

The results of this paper are summarized, under the assumption that Conjec-
ture 5.3 holds, by Figure 2, which gives a symbolic depiction of the relations
among the λ-families of regular ETIS states of the SSM. The heavy black
lines denote λ-families. F̂left and F̂right have been separated for visibility, but
in fact both lie at ρ̂ = 1. The state µ̂(1) belongs to all three of the families
F̂low, F̂left, and F̂right, and the state µ̂(2) to F̂left, F̂right, and F̂ (1) (see Re-
mark 5.9(a)). κ denotes the density of a measure λ ∈M(S); this variable is
relevant only for the state µ̂(2) (for which κ = 0) and for states with ρ̂ > 1.

The shaded region is filled with the λ-families F̂ρ̂e ; the family for ρ̂e = 1 and
three other representative families (ρ̂e = r1, r2, r3) are shown.

Acknowledgments: The work of JLL was supported by the AFOSR under
award number FA9500-16-1-0037 and Chief Scientist Laboratory Research
Initiative Request #99DE01COR.
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Figure 2: Symbolic picture of the set of ETIS states of the SSM.

A Equivalence of TI measures under substi-

tutions

In this appendix we give a construction which will be used at several points
in the paper. Suppose that S and T are countable alphabets, that Ŷ = SZ

and Y = T Z with typical elements ζ ∈ Ŷ and η ∈ Y , and that for each s ∈ S
we specify a finite sequence χ(s) = ts(1) . . . ts(k(s)) of elements of T (that

is, a word of k(s) letters in the alphabet T ). Then we define φ : Ŷ → Y to
be the map which substitutes χ(s) for s, that is,

φ(. . . ζ(−1)ζ(0)ζ(1)ζ(2) . . .) = . . . χ(ζ(−1))χ(ζ(0))χ(ζ(1))χ(ζ(2)) . . . ,
(A.1)

with χ(ζ(1)) beginning at site 1, so that φ(ζ)(1) = tζ(1)(1). For s ∈ S we

define Ŷs = {ζ ∈ Ŷ | ζ(1) = s} and Ys = φ(Ŷs); for 0 ≤ j ≤ k(s) − 1 we set

Ysj = τ−jYs and define φsj : Ŷs → Ysj by φsj = τ−jφ
∣∣
Ŷs

. From now on we

assume that the χ(s) are such that the sets Ysj are pairwise disjoint.

We call a TI measure ν̂ on Ŷ regular if ν̂(k(ζ(1))) is finite, i.e., if Zν̂ :=∑
s∈S k(s)ν̂(Ŷs) <∞, and a TI measure ν on Y regular if it is supported on⋃
s∈S
⋃k(s)−1
j=0 Ysj, the smallest translation invariant subset of T Z containing

φ(Ŷ ). Let M(Ŷ ) denote the space of regular TI states on Ŷ and M(Y ) the

space of regular TI states on Y . If ν̂ ∈M(Ŷ ) and ν ∈M(Y ) define ν̂s = ν̂
∣∣
Ŷs
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and νs = ν
∣∣
Ys

.

Theorem A.1 For ν̂ ∈M(Ŷ ) define the measure Φ(ν̂) on Y by

Φ(ν̂) := Z−1ν̂
∑

s∈S

k(s)−1∑

j=0

φsj∗ν̂s. (A.2)

Then Φ is a bijection of M(Ŷ ) with M(Y ), and for ν ∈ M(Y ), Φ−1(ν) =

Z̃−1ν
∑

s∈S φ
−1
s0 ∗νs, where Z̃ν =

∑
s∈S ν(Ys). Φ(ν̂) is ergodic iff ν̂ is.

Proof: This is straightforward to check. The final statement follows from
the fact that ν̂ =

∑
cαν̂α if and only if Φ(ν̂) =

∑
c′αΦ(ν̂α), where ν̂α ∈M(Ŷ )

and c′α = Zν̂αcα/Zν̂ . �

We now suppose that we are given dynamical rules in the spaces Ŷ and
Y , that is, translation invariant Markov processes with state spaces Ŷ and
Y , specified by respective TI transition kernels Q̂(ζ, A) and Q(η,B). We

will say that Q̂ or Q preserves ergodicity if ν̂Q̂ (respectively νQ) is ergodic
whenever ν̂ (respectively ν) is; preserving regularity is defined similarly.

We next want to give a condition which will imply that the mapping
Φ preserves these dynamics, i.e., that Φ(ν̂Q̂) = Φ(ν̂)Q; we will need some

further notation. Let Y ⊂ Ŷ × Y be the set of pairs (ζ, η) such that η is a
(possibly trivial) translate of φ(ζ), and let π̂ and π be the projections of Y

onto the first and second components, respectively, of Ŷ × Y .

Definition A.2 A τ -coupling of Q̂ and Q is a Markov transition kernel Q
with state space Y such that for (ζ, η) ∈ Y , Â ⊂ Ŷ , and A ⊂ Y ,

Q
(
(ζ, η), π̂−1(Â)

)
= Q̂(ζ, Â), (A.3)

Q
(
(ζ, η), π−1(A)

)
= Q(η, A). (A.4)

Equivalently, a Markov transition kernel Q with state space Y is a τ -coupling
of Q̂ and Q provided that for any Markov process (ζt, ηt) with transition

kernel Q, ζt and ηt are Markov processes with transition kernels Q̂ and Q,
respectively.

Remark A.3 To show that there is a τ -coupling of Q and Q̂ it suffices to
find a restricted transition probability Q

(
(ζ, φ(ζ)), ·

)
which satisfies (A.3)
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and (A.4) when η = φ(ζ). For Q can then be extended to the rest of Y by
setting Q

(
(ζ, η), ·

)
:= τ q∗Q

(
(ζ, φ(ζ)), ·

)
when η = τ qφ(ζ), choosing q, when

periodicity of φ(ζ) necessitates a choice, to be the minimal nonnegative q
with η = τ qφ(ζ) . Here τ acts on Y via τ(ζ, η) := (ζ, τη).

Theorem A.4 Suppose that Q and Q̂ are TI Markov transition kernels on
Ŷ and Y , respectively, which preserve ergodicity and regularity and for which
there exists a τ -coupling Q. Then for any TI state ν̂ ∈M(Ŷ ) and any n ≥ 1,

Φ(ν̂Q̂n) = Φ(ν̂)Qn.

Corollary A.5 If Q and Q̂ are as in Theorem A.4 then Φ is a bijection of
Ms(Ŷ ) with Ms(Y ), i.e., ν̂ ∈M(Ŷ ) is stationary for Q̂ if and only if Φ(ν̂)
is stationary for Q.

The corollary is of course immediate. The idea of the proof of Theo-
rem A.4 is taken from [1] and [12]:

Proof of Theorem A.4: It suffices to verify the result for ν̂ ergodic. Then
since Q̂ andQ preserve ergodicity, as does Φ, Φ(ν̂Q̂n) and Φ(ν̂)Qn are ergodic,
so that these two measures are either equal or mutually singular. Hence to
prove their equality it suffices to find a nonzero measure λ with λ ≤ Φ(ν̂Q̂n)
and λ ≤ Φ(ν̂)Qn.

Let Q be a τ -coupling of Q̂ and Q with state space Y , as in Definition A.2,
define ψ : Ŷ → Y by ψ(ζ) := (ζ, φ(ζ)), and for ν̂ ∈ M(Ŷ ) let ν := ψ∗ν̂,
so that π̂∗ν = ν̂ and πν = φ∗ν̂. Fix n ≥ 1 and let q ∈ Z be such that
(νQ

n
)(Cq) > 0, where Cq := {(ζ, η) ∈ Y | η = τ qφ(ζ)}, and define ν(n,q) :=

1CqνQ
n
, ν ′ := φ∗π̂∗ν

(n,q), and ν ′′ := π∗ν
(n,q). We claim that (i) ν ′′ = τ q∗ν

′ and

that, for an appropriate constant c > 0, (ii) cν ′ ≤ Φ(ν̂Q̂n) and (iii) cν ′′ ≤
Φ(ν̂)Qn. Since Φ(ν̂)Qn is TI, the proof is completed by taking λ = cν ′.

It remains to prove the claim. (i) follows from the definition of Cq. From

Definition A.2, π̂∗(νQ
n
) = ν̂Q̂n and π∗(νQ

n
) = (φ∗ν̂)Qn, and with this and

(A.2) we have

ν ′ = φ∗π̂∗ν
(n,q) ≤ φ∗π̂∗(νQ

n
) = φ∗(ν̂Q̂

n) ≤ Zν̂Q̂nΦ(ν̂Q̂n) (A.5)

and
ν ′′ = π∗ν

(n,q) ≤ π∗(νQ
n
) = (φ∗ν̂)Qn ≤ Zν̂Φ(ν̂)Qn. (A.6)

This verifies parts (ii) and (iii) of the claim, with c := min{Z−1
ν̂Q̂n

, Z−1ν̂ }. �
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In the remainder of this appendix we discuss the applications we make
of these results. Theorem A.1 is used in Section 4; the substitution maps
there are denoted φleft and φright. Theorems A.1 and A.4 are used to obtain a
correspondence between the stationary states of the Symmetric Stack Model
(SSM) and of the Facilitated Simple Symmetric Exclusion Process (F-SSEP),
a correspondence first introduced in Section 1 (see that section and Section 2

for the definition of the transition kernels Q̂ and Q for these models) and
used throughout the paper. In this application S = Z+, T = {0, 1}, and

for n ∈ Z+, χ(n) := 0 1n; we write X̂ := ZZ
+ and X = {0, 1}Z but keep

the notation φ : X̂ → X for the substitution map obtained from χ. The
general definition of regularity of measures given above corresponds in this
case to the definition given in Section 2, and it is clear that Q̂ and Q preserve
regularity.

Lemma A.6 Q̂ and Q preserve ergodicity.

Proof: We consider Q̂ (the proof for Q is similar), and so must show that

if ν̂ ∈ M(X̂) then ν̂Q̂ is ergodic. We define the probability space (Ω, P )

by Ω := X̂ × {0, 1}Z, P := ν̂ × κ, where κ is the Bernoulli measure with
parameter 1/2, and write a typical element of Ω as (n, α). Then we can

introduce a concrete realization on Ω of one step of the Q̂ process, from n0

distributed as ν̂ to n1 distributed as ν̂Q̂, as follows. Recall that if n0 has a
short stack on either i or i + 1 then the movement, or non-movement. of a
particle across the bond 〈i, i+ 1〉, in passing from n0 to n1, is determined by
the rule given in Section 1; we supplement this rule by requiring that if n0

has tall stacks at both i and i + 1 then a particle moves from site i to site
i+ 1 if α(i) = 1 and from i+ 1 to i if α(i) = 0.

As the product of measures which are respectively ergodic and mixing
under translations, P is ergodic under translations. But then ν̂Q̂ = n1∗P is
the covariant image of an ergodic measure and hence is ergodic. �

Theorem A.7 There exists a τ -coupling Q of the Markov transitions kernels
Q̂ and Q for the SSM and F-SSEP.

Proof: As in the definition of Q̂ and Q in Section 2 we give the transition
rules for a Markov process (nt, ηt) on X ⊂ X̂ × X (see Definition A.7),
leaving the specification of Q as an easy exercise. By Remark A.3 it suffices
to consider only the transition from (n0, η0) to (n1, η1) for η0 = φ(n0). As a
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preliminary, for n ∈ X̂ we define the map K = Kn, with K : Z→ Z, so that
K(i) is the starting point of the word χ(ζ(i)) in the substitution (A.1):

K(i) =

{
1 +

∑i−1
j=1(n(j) + 1), if i ≥ 1,

1−∑0
j=i(n(j) + 1), if i ≤ 0.

(A.7)

For the dynamics under Q we allow n0 to evolve to n1 according the the
Q̂ dynamics, and let n1 and η0 determine η1 as follows. Write K = Kn1 .
Then, if in passing from n0 to n1 a particle jumps from site i − 1 to site i,
then in passing from η0 to η1 a particle jumps from site K(i)−1 to site K(i),
while if a particle jumps from site i to site i − 1 in passing from n0 to n1

then one jumps from site K(i) + 1 to site K(i) in passing from η0 to η1. It
is straightforward to verify that then (n1, η1) ∈ X and with η1 distributed
according to Q(η0, ·). �

With Lemma A.6 and Theorem A.7 we can apply Corollary A.5 to obtain
the correspondence of the F-SSEP and SSM stationary states. The result is
summarized in Theorem 2.1.

B Possible ETIS states of the SSM for ρ̂ > 1.

In this appendix we discuss, in the case where Conjecture 5.3 is not satis-
fied, the passage from stationary states of the SSM on the even sector X̂∗e
to general ETIS states of the SSM with density ρ̂ > 1. By Theorem 5.1,
the latter all have support on X̂∗; moreover, as observed in Section 5, the
stationary states on X̂∗ include in addition only µ̂(2). Let Nρ̂e denote the

family of stationary states on X̂∗e with density ρ̂e, that is, states ν for which

ν-a.e. n ∈ X̂∗e satisfies

lim
N→∞

1

N

N∑

i=1

ni = lim
N→∞

1

N

−1∑

i=−N

ni = ρ̂e. (B.1)

Let N ρ̂e be the extremal elements of Nρ̂e . We analyze completely the struc-

ture of ETIS states on X̂∗, in terms of the states of N ρ̂e , in two cases: when
for each ρ̂e, N ρ̂e contains only TI states (Theorem B.1), and when for each
ρ̂e, N ρ̂e is countable (Theorem B.5). The first case is quite simple:
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Theorem B.1 If all stationary states on X̂∗e are translation invariant then

every ETIS state µ on X̂∗ of density ρ̂ is of the form γ∗(µ∗ × λ), with λ
an ergodic TI measure on S of density κ and µ∗ ∈ N ρ̂e, where ρ̂e = ρ̂ − κ.
Conversely, every state of this form is ETIS.

Proof: If µ is an ETIS state on X̂∗ of density ρ̂ then Lemma 5.6 implies
that µ = γ∗µ̃ with µ̃(dn dσ) = µσ(dn)λ(dσ) and µτσ = τ∗µσ. But if all

stationary states on X̂∗e are TI then µσ = µτσ for all σ, so that the ergodicity
of λ implies that µσ is independent of σ, λ-a.s., and extremality of µ implies
that this state, µ∗, must be ETIS on X̂∗e . The converse is clear. �

We now consider the possibility of non-TI stationary states on X̂∗e . In

the next definition we introduce a class of stationary states on X̂∗e ×S which
we call basic states, and a further restriction of this class to irreducible basic
states.

Definition B.2 Let λ be an ergodic TI measure on S, let ν ∈ N ρ̂e have
period n = n(ν) under translation, and let m and q be positive integers such
that n = qm.

(a) A (λ,m)-partition of S is an ordered family A =
(
Ai
)m−1
i=0

of subsets of
S such that

⋃
iAi = S and Ai ∩ Aj = ∅ for 0 ≤ i < j ≤ m − 1, both up

to sets of λ-measure zero, and such that the family is cyclically permuted
by translation: τ(Ak) = A(k+1) mod m. Translations act on such partitions via
(τA)k = A(k+1) mod m.

(b) Let A be a (λ,m)-partition of S, and let ν(q) := q−1
∑q−1

i=0 τ
im
∗ ν. Then

µ̃(λ,ν,A) is the state on X̂∗e × S with µ̃(λ,ν,A)(dn dσ) = µ
(ν,A)
σ (dn)λ(dσ), where

µ
(ν,A)
σ = τ k∗ ν

(q) iff σ ∈ Ak, i.e.,

µ(ν,A)
σ =

m−1∑

k=0

1Ak(σ)τ k∗ ν
(q). (B.2)

µ̃(λ,ν,A) and γ∗µ̃
(λ,ν,A) will be called basic states.

(c) The basic state µ̃(λ,ν,A) is reduced by the basic state µ̃(λ,ν,A′) if A′ is a
proper refinement of A; µ̃(λ,ν,A) is then called reducible, and we say also that
γ∗µ̃

(λ,ν,A) is reducible. If µ̃(λ,ν,A) and γ∗µ̃
(λ,ν,A) are not reducible then they

are irreducible.

Observe that whether or not µ̃(λ,ν,A) is reducible depends only on λ, A,
and n, the period of the orbit of ν under the action of τ∗: µ̃

(λ,ν,A) is reducible
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precisely when there is a (λ,m′)-partition A′ of S such that m′ divides n and
A′ is a proper refinement of A. Equivalently, µ̃(λ,ν,A) is irreducible when the
action of τn on A0, equipped with the invariant measure λ

∣∣
A0

, is ergodic.
We next give some simple consequences of Definition B.2.

Lemma B.3 Let µ̃(λ,ν,A) be a basic state. Then:
(a) µ̃(λ,ν,A) is stationary.
(b) µ̃(λ,τ∗ν,τA)(dn dσ) = µ̃(λ,ν,A)(dn dσ).

(c) For any σ ∈ S, τ∗µ
(ν,A)
σ = µ

(ν,A)
τσ = µ

(ν,τ−1A)
σ . In particular, µ̃(λ,ν,A) is TI.

Moreover, if λ has density κ then µ̃(λ,ν,A) has density ρ̂e + κ.
(d) If the basic state µ̃(λ,ν,A′) reduces µ̃(λ,ν,A), and A′0 ⊂ Aj, then Ai =⋃p−1
k=0A

′
(i−j+mk) mod m for i = 0, . . . ,m − 1, where m = |A| and p = |A′|/|A|.

Moreover, µ̃(λ,ν,A) = p−1
∑p−1

k=0 µ̃
(λ,ν,τ−j−mkA′).

(e) If µ̃(λ,ν,A) is irreducible then it cannot be written as a convex combination
of other µ̃(λ′,ν′,A′); more generally, we cannot have

µ̃(λ,ν,A) =

∫
µ̃β α(dβ), (B.3)

with α a probability measure on triples β = (λ′, ν ′, A′) which assigns zero
probability to (λ, ν, A).

Proof: (a), (b), and (c) are immediate.
(d) The first statement follows from A′k = τ kA′0 ⊂ τ kAj = A(k+j) mod m. For

the second it suffices to prove that µ
(ν,A)
σ = p−1

∑p−1
k=0 µ

(ν,τ−j−mkA′)
σ for all σ,

and this follows from the first and (B.2), by straightforward rearrangement
of sums.
(e) If (B.3) holds then ergodicity of λ implies that λ′ = λ α-a.s., and thus,
λ-a.s.,

µ(ν,A)
σ =

∫
µβσ α(dβ), (B.4)

where µβσ := µ
(ν′,A′)
σ . Now we can use limL→∞(2L+1)−1

∑L
i=−L τ

i
∗µ

(ν,A)
σ = ν(n),

the corresponding formula for µ
(ν′A′)
σ , and the bounded convergence theorem,

to conclude from (B.4) that ν(n) =
∫
ν ′(n

′) α(dβ) (with n′ the period of ν ′).
Moreover, since ν is extremal, ν(n) is ETIS. But then, since ν ′(n

′) is TIS, ν ′

must be a translate of ν α-a.s.
Without loss of generality, then, we may assume that ν ′ = ν, and with

that it suffices to show that A′0 ⊂ A0 (because τ acts cyclically on A and all
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A′). Let Gi, i = 0, . . . , n− 1, support τ i∗ν, with Gi and Gj disjoint for i 6= j.
We have from (B.3) that

0 = µ̃(λ,ν,A)(G0 × Ac0) =

∫
µ̃β(G0 × Ac0)α(dβ), (B.5)

so that for α-a.e. β, µ̃β(G0 × Ac0) = 0 and so also µ̃β(G0 × (Ac0 ∩ A′0)) = 0.

But for σ ∈ A′0, µ(ν,A′)
σ = ν(q

′) (with q′ = n′/|A′|), and so

0 = µ̃β(G0 × (Ac0 ∩ A′0)) = ν(q
′)(G0)λ(Ac0 ∩ A′0) =

1

q′
λ(Ac0 ∩ A′0). (B.6)

Thus A′0 ⊂ A0. �

Lemma B.4 If N ρe is countable for each ρ̂e ≥ 1 then each ETIS state on

X̂∗ is an irreducible basic state.

Proof: We write N ρ̂e = {νj}j∈J, with J either Z or a finite set {1, 2, . . . , J},
and allow the translation operator τ to act on J via ντj = τ∗νj. Let J denote
the set of orbits in J under translation.

Now let µ be an ETIS state on X̂ of density ρ̂. Then from Lemma 5.6 we
know that µ = γ∗µ̃ with µ̃(dn dσ) = µσ(dn)λ(dσ), λ ergodic, µσ stationary,
and µτσ = τ∗µσ. For each σ ∈ S we have µσ =

∑
j∈J aσ,jνj, with coefficients

aσ,j which, from translation invariance, satisfy aτσ,τj = aσ,j. Now note that

if c ∈ J then Z
(c)
σ :=

∑
j∈c aσ,j is TI and hence constant λ-a.s.; from now

on we write this as Z(c). Define µ
(c)
σ by µ

(c)
σ := (Z(c))−1

∑
j∈c aσ,jνj and µ̃(c)

by µ̃(c)(dn dσ) = µ
(c)
σ (dn)λ(dσ), so that µ̃ =

∑
c∈J Z

(c)µ̃(c); since the µ̃(c) are

TIS, the extremality of µ̃ implies that µ̃ = µ̃(c0) for some c0 ∈ J.
We claim that c0 must be a finite set. For otherwise we may fix j0 ∈ c0

and define f : S → Z by

f(σ) := min{i ∈ Z | aσ,τ ij0 = max
i′∈Z

aσ,τ i′j0}; (B.7)

f satisfies f(τσ) = f(σ) + 1, so that by the translation invariance of λ the
sets f−1({k}), k ∈ Z, have equal λ-measure, a contradiction.

Thus we are reduced to the case where c0 contains n elements, that is, if
j0 ∈ c then n is the minimal period for νj0 , and

µσ =
n−1∑

i=0

aσ,τ ij0ντ ij0 . (B.8)
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We regard aσ := (aσ,τ ij0
)n−1
i=0

as an element of Rn and let translations act on
Rn via τ(b0, . . . , bn−1) = (bn−1, b0, . . . , bn−2), so that aτσ = τaσ. The orbit of
aσ under this action is independent of translations in σ and hence constant,
λ-a.s.; let θ denote this orbit.
|θ| is a positive integer m satisfying n = qm for some integer q. Let

θ = {v0, . . . , vm−1}, with τvk = v(k+1) mod m, let Ak := {σ | aσ = vk}, and
note that if w ∈ Rm is defined by wi = qv0,i then w is independent of
σ and

∑m−1
i=0 wi = 1. Then from (B.8) we find, using (B.2), that µσ =

∑m−1
r=0 wiµ

(νj0 ,τ
−iA)

σ . Thus

µ̃ =
m−1∑

r=0

wiµ̃
(λ,νj0 ,τ

−iA). (B.9)

But since µ̃ is extremal, precisely one of the wi can be nonzero, so that µ̃ is
basic. It then follows from Lemma B.3 (d) that µ̃, and hence µ, is irreducible
basic. �

Now we can give the second main result of this appendix.

Theorem B.5 If N ρe is countable for each ρ̂e ≥ 1 then the ETIS states on

X̂∗ are precisely the basic irreducible states.

Proof: Lemma B.4 tells us that every ETIS state is an irreducible basic state.
It follows from this that the decomposition of any irreducible basic state into
ETIS components must be of the form (B.3) and hence, by Lemma B.3 (e),
that such a state must be ETIS. �
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