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Abstract: We prove that the empirical distribution of crossings of a “detector” surface
by scattered particles converges in appropriate limits to the scattering cross section com-
puted by stationary scattering theory. Our result, which is based on Bohmian mechanics
and the flux-across-surfaces theorem, is the first derivation of the cross section starting
from first microscopic principles.

1. Introduction

The central quantity in a scattering experiment is the empirical cross section, which
reflects the number of particles that are scattered in a given solid angle per unit time. In
this paper we shall derive the theoretical prediction for the cross section starting from
a microscopic model describing a realistic scattering situation. We confine ourselves to
the case of potential scattering of a nonrelativistic, (spinless) quantum particle and leave
the many-particle case for future research. This paper is in fact a technical elaboration
and continuation of our article “Scattering theory from microscopic first principles” [9].

The common approaches to the foundations of scattering theory take for granted
that “an experimentalist generally prepares a state … at t → −∞, and then measures
what this state looks like at t → +∞” (cf. [25], p. 113), meaning that the asymptotic
expressions are “all there is,” as if they are not the asymptotic expressions of some other
formula, however complicated, describing the scattering situation as it really is, namely
happening at finite distances and at finite times. Thus a truly microscopic derivation
starting from first principles must provide firstly a formula for the empirical cross sec-
tion, which by the law of large numbers approximates its expectation value, and which
is computed from the underlying theory. Secondly, that formula should apply to the real-
istic finite-times and finite-distances situation, from which eventually the usual Born
formula should emerge by taking appropriate limits.1

1 For a detailed discussion of the scattering regime see [8].
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We shall present a Bohmian analysis of the scattering cross section. With a particle
trajectory we can ask for example whether or not that trajectory eventually crosses a
distant spherical surface and if it does when and where it first crosses that surface. Sim-
ilarly, for a beam of particles we can ask for the number of particles in the beam that
first crosses the surface in a given solid angle�. From a Bohmian perspective it appears
reasonable to identify this number with detection events in a scattering experiment. We
thus model in this paper the measured cross section using the number N �(�) of first
crossings of �. This will of course depend on many parameters encoding the experi-
mental setup, e.g. the distances R and L of the detector and the particle source from the
scattering center, the details of the beam including its profile A and the wave functions
of the particles in the beam, as well as on the length of the time interval τ during which
the particles are emitted. We shall show in this paper that when these parameters are
suitably scaled, N �(�)

τ
is well approximated by the usual Born formula for the scattering

cross section in terms of the T -matrix, i.e.,

lim
N �(�)

τ
= 16π4

∫

�

|T (k0ω, k0)|2d�, (1)

where �k0 is the initial momentum of the particles.
The paper is organized as follows: We collect first some mathematical notions and

facts as well as recent results of scattering theory. In Sect. 3 we define the relevant
random variables associated with the surface-crossings of a single particle and relate
their distribution to the quantum probability current density. In Sect. 4 we model the
beam by a suitable point process and in Sect. 5 we define N �(�) in terms of this point
process. A precise description of the limit procedure will be presented in Sect. 6. Our
main results, Theorem 1 and 2, are stated in Sect. 7 and are proven in Sect. 8.

2. The Mathematical Framework of Potential Scattering

We list those results of scattering theory (e.g. [2, 7, 11, 14, 16, 18–20, 22]) which are
essential for the proof of Theorem 1 and Theorem 2 in Sect. 8.

We use the usual description of a nonrelativistic spinless one-particle system by the
Hamiltonian H (we use natural units � = m = 1),

H := −1

2
� + V (x) =: H0 + V (x),

with the real-valued potential V ∈ (V )n , defined as follows:

Definition 1. V is in (V )n, n=2,3,4,..., if

(i) V ∈ L2(R3),
(ii) V is locally Hölder continuous except, perhaps, at a finite number of singularities,

(iii) there exist positive numbers δ, C, R0 such that

|V (x)| ≤ C〈x〉−n−δ for x ≥ R0,

where 〈·〉 := (1 + (·)2) 1
2 .
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Under these conditions (see e.g. [16]) H is self-adjoint on the domain D(H) =
D(H0) = { f ∈ L2(R3) : ∫ |k2 f̂ (k)|2d3k < ∞} (k = |k|), where f̂ := F f is the
Fourier transform

f̂ (k) := (2π)−
3
2

∫
e−i k·x f (x)d3x . (2)

Let U (t) = e−i Ht . Since H is self-adjoint on the domain D(H ), U (t) is a strongly contin-
uous one-parameter unitary group on L2(R3). Let φ ∈D(H ). Then φt ≡ U (t)φ ∈D(H )
and satisfies the Schrödinger equation

i
∂

∂t
φt (x) = Hφt .

In a typical scattering experiment the scattered particles move almost freely far away
from the scattering center. “Far away” in position space can also be phrased as “long
before” and “long after” the scattering event takes place. So for the “scattering states”
ψ there are asymptotes ψin, ψout defined by

lim
t→−∞ ‖e−i H0tψin(x)− e−i Htψ(x)‖ = 0,

lim
t→∞ ‖e−i H0tψout(x)− e−i Htψ(x)‖ = 0.

(3)

From this it is natural to define the wave operators �± : L2(R3) → Ran(�±) by the
strong limits

�± := s-lim
t→±∞ ei Ht e−i H0t . (4)

These wave operators map the incoming and outgoing asymptotes to their corresponding
scattering states. Ikebe [14] proved that for a potential V ∈ (V )n the wave operators exist
and have the range

Ran(�±) = Hcont(H) = Ha.c.(H).

(This property is called asymptotic completeness.) Hence, the scattering states consist of
states with absolutely continuous spectrum and the singular continuous spectrum of H is
empty. In addition Ikebe [14] showed that the Hamiltonian has no positive eigenvalues.
Then we have for every ψ ∈ Ha.c.(H) asymptotes ψin, ψout ∈ L2(R3) with

�−ψin = ψ = �+ψout. (5)

On D(H0) the wave operators satisfy the so-called intertwining property

H�± = �± H0,

while on Ha.c.(H)∩D(H ) we have that

H0�
−1± = �−1± H. (6)

The scattering operator S : L2(R3) → L2(R3) is given by

S := �−1
+ �−,
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while using the identity I , the T -operator is given by

T := S − I. (7)

If the system is asymptotically complete, the ranges of the wave operators are equal and
thus S is unitary. Since the wave operator maps a scattering state onto its asymptotic
state, the scattering operator maps the incoming asymptote ψin onto the corresponding
out state ψout. The formula for the T -matrix, which holds in the L2-sense, is given by
(see e.g., Theorem XI.42 in [19])

T̂ g(k) = −2π i
∫

k′=k

T (k, k′)ĝ(k′)k′d�′, (8)

for g ∈ S(R3) (Schwartz space) such that ĝ has support in a spherical shell.2 T (k, k′)
is given by (see e.g., [19]):

T (k, k′) = (2π)−3
∫

e−i k·x V (x)ϕ−(x, k′)d3x, (9)

where ϕ− (as well as ϕ+) are eigenfunctions of H defined by Lemma 1 below. Since
the eigenfunctions ϕ± are bounded and continuous (cf. Lemma 2), we can conclude that
T (k, k′) is bounded and continuous on R

3 × R
3, if the potential is in (V )3. Then the

formula (8) can be proved for g ∈ S(R3) without any restriction on the momentum
support by the same method as in [19].

We will need the time evolution of a state ψ ∈ Ha.c.(H) with the Hamiltonian H . Its
diagonalization on Ha.c.(H) is given by the eigenfunctions ϕ±:

(−1

2
� + V (x))ϕ±(x, k) = k2

2
ϕ±(x, k). (10)

Inverting (− 1
2� − k2

2 ) one obtains the Lippmann-Schwinger equation. We recall the
main parts of a result on this due to Ikebe in [14] which is collected in the present form
in [22].

Proposition 1. Let V ∈ (V )2. Then for any k ∈ R
3\{0} there are unique solutions

ϕ±(·, k) : R
3 → C of the Lippmann-Schwinger equations

ϕ±(x, k) = ei k·x − 1

2π

∫
e∓ik|x−x′|

|x − x′| V (x′)ϕ±(x′, k)d3x ′, (11)

which satisfy the boundary conditions lim|x|→∞(ϕ±(x, k)− ei k·x) = 0, which are also
classical solutions of the stationary Schrödinger equation (10), and are such that:

(i) For any f ∈ L2(R3) the generalized Fourier transforms3

(F± f )(k) = 1

(2π)
3
2

l. i.m.
∫
ϕ∗±(x, k) f (x)d3x

exist in L2(R3).

2 In [19] Equation (8) was proven outside an “exceptional set”. For our class of potentials the “exceptional
set” is empty. The additional factor 1

2 in [19] comes from the different definition of H0.
3 l. i.m.

∫
is a shorthand notation for s-lim

R→∞
∫

BR
, where s-lim denotes the limit in the L2-norm and BR a

ball with radius R around the origin.
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(ii) Ran(F±) = L2(R3). Moreover F± : Ha.c.(H) → L2(R3) are unitary and the
inverses of these unitaries are given by

(F−1± f )(x) = 1

(2π)
3
2

l. i.m.
∫
ϕ±(x, k) f (k)d3k.

(iii) For any f ∈ L2(R3) the relations �± f = F−1± F f hold, where F is the ordinary
Fourier transform given by (2).

(iv) For any f ∈ D(H) ∩ Ha.c.(H) we have:

H f (x) =
(

F−1±
k2

2
F± f

)
(x),

and therefore for any f ∈ Ha.c.(H),

e−i Ht f (x) =
(

F−1± e−i k2
2 tF± f

)
(x).

In order to apply stationary phase methods we will need estimates on the derivatives
of the generalized eigenfunctions:

Proposition 2. Let V ∈ (V )n for some n ≥ 3. Then:

(i) ϕ±(x, ·) ∈ Cn−2(R3 \ {0}) for all x ∈ R
3 and the partial derivatives4

∂αkϕ±(x, k), |α| ≤ n − 2, are continuous with respect to x and k.

If, in addition, zero is neither an eigenvalue nor a resonance of H, then

(ii) sup
x∈R3,k∈R3

|ϕ±(x, k)| < ∞,

for any α with |α| ≤ n − 2 there is a cα < ∞ such that

(iii) sup
k∈ R3\{0}

|κ |α|−1∂αkϕ±(x, k)| < cα〈x〉|α|, with κ := k
〈k〉 ,

and for any l ∈ {1, ..., n − 2} there is a cl < ∞ such that

(iv) sup
k∈ R3\{0}

∣∣∣ ∂l

∂kl ϕ±(x, k)
∣∣∣ < cl〈x〉l , where ∂

∂k is the radial partial derivative in k-

space.

Remark 1. This proposition, except the assertion (iii), was proved in [22], Theorem 3.1.
Assertion (iii) repairs a false statement in Theorem 3.1 which did not include the nec-
essary κ |α|−1 factor, which we have in (iii). For |α| = 1, which was the important case
in that paper, there is however no difference. We have commented on the proof of this
corrected version in [11].

Remark 2. Zero is a resonance of H if there exists a solution f of H f = 0 such that
〈x〉−γ f ∈ L2(R3) for any γ > 1

2 but not for γ = 0.5 The appearance of a zero
eigenvalue or resonance can be regarded as an exceptional event: For a Hamiltonian
H = H0 + cV, c ∈ R, this can only happen for c in a discrete subset of R, see [1], p.
20 and [15], p. 589.

As a simple consequence of Proposition 2 we obtain

4 We use the usual multi-index notation: α = (α1, α2, α3), αi ∈ N0, ∂
α
k f (k) : ∂α1

k1
∂
α2
k2
∂
α3
k3

f (k) and
|α| := α1 + α2 + α3.

5 There are various definitions, see e.g. [26], p. 552, [1], p.20 and [15], p. 584.
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Corollary 1. Let V ∈ (V )3 and let zero be neither an eigenvalue nor a resonance of
H. Then the T -matrix defined by (9) is a bounded and continuous function on R

3 × R
3.

Moreover, if V ∈ (V )n, for some n ≥ 3 we have for all multi-indices α with |α| ≤ n − 3
a constant cα > 0 such that

sup
k′∈R3,k∈R3\{0}

κ |α|−1|∂αk T (k′, k)| ≤ cα. (12)

With the regularity of the generalized eigenfunctions one can prove the flux-across-
surfaces theorem. The quantum probability current density (=quantum flux density) is
given by

jψt (x) := − i

2
(ψ∗

t (x)∇ψt (x)− ψt (x)∇ψ∗
t (x)). (13)

For ψt (x) a solution of the Schrödinger equation we have the identity

∂|ψt (x)|2
∂t

+ div jψt (x) = 0,

which has the form of a continuity equation. The flux-across-surfaces theorem can be
naturally proven for the following class of wave functions (in the following definition
we have the Fourier transform of ψout, ψ̂out(k) = ∫

ϕ+(x, k)ψ(x)d3x (cf. Proposition
1), in mind):

Definition 2. A function f : R
3 \ {0} → C is in G+ if there is a constant C ∈ R+ with:

| f (k)| ≤ C〈k〉−15,∣∣∂αk f (k)
∣∣ ≤ C〈k〉−6, |α| = 1,∣∣κ ∂αk f (k)

∣∣ ≤ C〈k〉−5, |α| = 2, κ = k
〈k〉 ,∣∣∣ ∂2

∂k2 f (k)
∣∣∣ ≤ C〈k〉−3.

With this definition we have

Proposition 3. (Flux-across-surfaces theorem (FAST)). Suppose V ∈ (V )4 and that
zero is neither a resonance nor an eigenvalue of H. Suppose ψ̂out(k) ∈ G+ and let
ψ = �+ψout. Then ψt (x) = e−i Htψ(x) is continuously differentiable except at the
singularities of V , for any measurable set � ⊆ S2 and any T ∈ R jψt (x) · dσdt is
absolutely integrable on R� × [T,∞) for R sufficiently large and

lim
R→∞

∞∫

T

∫

R�

jψt (x) · dσdt= lim
R→∞

∞∫

T

∫

R�

∣∣ jψt (x) · dσ
∣∣ dt=

∫

C�

|ψ̂out(k)|2d3k,

(14)

where R� := {x ∈ R
3 : x = Rω, ω ∈ �}, C� := {k ∈ R

3 : k
k ∈ �} is the cone given

by � and dσ is the outward-directed surface element on RS2.

The proof can be found in [11].
The FAST plays a crucial role in the proof of our main results, Theorem 1 and

Theorem 2. Its importance for scattering theory was first pointed out in [6].
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3. The Quantum Flux, Crossing Statistics and Bohmian Mechanics

In Bohmian mechanics, see [5], the particle has a position Qt that evolves via the
equations

d

dt
Qt = vψt (Qt ) = Im

∇ψt

ψt
(Qt ),

i
∂

∂t
ψt (x) = Hψt (x).

(15)

According to the quantum equilibrium hypothesis ([10], Born’s law), the positions of
particles in an ensemble of particles each having wave function ψ are always |ψ |2-dis-
tributed. Note that if Q0 is |ψ0|2-distributed then Qt is |ψt |2-distributed.

Under two assumptions we have the |ψ0|2 almost-sure existence and uniqueness of
the Bohmian dynamics:

A 1. The initial wave function ψ0 is normalized, ‖ψ0‖ = 1, and ψ0 ∈ C∞(H) =
∞⋂

n=1
D(Hn).

A 2. The potential V is in V2 and C∞ except, perhaps, at a finite number of singularities.

(See Berndl et al. [4], Theorem 3.1 and Corollary 3.2 for the proof, as well as
Theorem 3 and Corollary 4 in [23]. The conditions in [4, 23] are much more gen-
eral. In our context, however, we have to restrict to the case where V ∈ (V )2.) Hence,
depending on the initial position q0 ∈ �0, where �0 is the set of “good” points, the
particle has the trajectory Qψ

t (q0). On the set of “good” points, ψ0(x) is different from
zero and is differentiable. The complement R

3 \�0 of �0 has measure 0 (with respect
to |ψ0|2).

Given a trajectory Qψ
t (q0), q0 ∈ �0, we can define the number of crossings in a

natural way. For the surface R� ⊂ RS2 with unit and normal vector n(x) = x
x , x ∈ R�

we define Nψ
+ (R�) on �0 by:

Nψ
+ (R�)(q0) :=

∣∣∣
{

t ≥0| Qψ
t (q0)∈ R� and Q̇

ψ

t (q0) · n
(

Qψ
t (q0)

)
> 0

}∣∣∣ , (16)

the number of crossings of the trajectory Qψ
t (q0) through R� in the direction of the

orientation in the time interval [0,∞) (“problematical crossings” where the velocity is
“orthogonal” to the orientation of R� have measure zero and need not concern us, see
[3], p. 28-34). If Nψ

+ (R�)(q0) ≥ 1, we can define t R�
exit as the time when the particle

crosses the surface R� in the positive direction for the first time:

t R�
exit (q0) := min

{
t ≥ 0| Qψ

t (q0) ∈ R� and Q̇
ψ

t (q0) · n
(

Qψ
t (q0)

)
> 0

}
. (17)

In the case that the particle does not cross the surface in the positive direction, we set

t R�
exit (q0) := ∞, if Nψ

+ (R�)(q0) = 0. (18)

Analogously to (16) we have Nψ
− (R�), the number of crossings in the opposite direc-

tion. For convenience we define Nψ
+ (R�) and Nψ

− (R�) on the whole of R
3 by setting
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Nψ
+ (R�) = Nψ

− (R�) = 0 for all q0 ∈ R
3 \ �0. Then we can define the number of

signed crossings on R
3 by

Nψ
sig(R�) := Nψ

+ (R�)− Nψ
− (R�). (19)

The total number of crossings defined on R
3 is then

Nψ
tot(R�) := Nψ

+ (R�) + Nψ
− (R�). (20)

These quantities are random variables on the space R
3 of initial conditions, see [3],

Lemma 4.2. The expectation values of Nψ
sig(R�) and Nψ

tot(R�) are given by flux inte-

grals and are finite, see Proposition 4 below. This means that Nψ
sig(R�) and Nψ

tot(R�)
are almost surely finite. Before we give a precise statement we argue heuristically for
the connection between the quantum flux and the expectation values. For a particle to
cross an infinitesimal surface dσ := ndσ in a time interval [t, t + dt), it must be at time
t in the appropriate cylinder of size |vψt (x) · dσdt |. The probability is therefore

|ψt (x)|2|vψt (x) · dσdt | = | jψt (x) · dσ |dt.

Because the intervals are infinitesimal, we have for Nψ
sig(dt, dσ ) ∈ {−1, 0, 1},6 where

the sign will be the same as that of j · dσ . Therefore E(Nψ
sig(dt, dσ )) = jψt (x) · dσdt

and integration over R� and [0,∞) yields (21). The precise statement is:

Proposition 4. Let A1 and A2 be satisfied. In addition suppose that the conditions
of Proposition 3 are satisfied. Then for sufficiently large R the expectation values of
Nψ

sig(R�) and Nψ
tot(R�) are finite and

E(Nψ
sig(R�)) =

∞∫

0

∫

R�

jψt (x) · dσdt, (21)

E(Nψ
tot(R�)) =

∞∫

0

∫

R�

| jψt (x) · dσ |dt. (22)

The proof of Proposition 4 can be found in [3], pp. 34–37, and under slightly different
conditions in [24]. The results in the references hold under more general conditions on
the surfaces.

Consider now a scattering situation where we want to calculate the number of first
crossings. The detector corresponds to the surface R� := {x ∈ R

3 : x = Rω, ω ∈
� ⊂ S2} ⊂ RS2. Then we define Nψ

det([0,∞), R, �) to be equal to one if the parti-
cle with the wave function ψ0 = ψ is “detected” in [0,∞) and zero otherwise. More
precisely,

Nψ
det(R, �) : R

3 → {0, 1},
6 Nψsig(dt, dσ ) is the number of signed crossings in the time interval [t, t + dt) through the surface dσ .
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Nψ
det(R, �)(q0) :=

⎧⎨
⎩

1, if q0 ≤ R, t RS2

exit < ∞ and Qψ

t RS2
exit

(q0) ∈ R�,

0 otherwise.
(23)

The definition is motivated by the idea that particles are detected when they cross the
boundary RS2 for the first time. Using the fact that RS2 is closed we can estimate∣∣∣Nψ

det(R, �)− Nψ
sig(R�)

∣∣∣ ≤ Nψ
− (RS2)

so that by the triangle inequality∣∣∣E(Nψ
det(R, �))− E(Nψ

sig(R�))
∣∣∣ ≤ E(Nψ

− (RS2)). (24)

With (19), (20) and Proposition 4 we obtain for the right-hand side of (24),

E(Nψ
− (RS2)) = 1

2
E

(
Nψ

tot(RS2)− Nψ
sig(RS2)

)

= 1

2

∞∫

0

∫

RS2

(| jψt (x) · dσ | − jψt (x) · dσ
)

dt. (25)

If jψt (x) · dσ ≥ 0 for all dσ ∈ RS2 and t > 0 then we have by (24) and (25) that
E(Nψ

sig(R�)) = E(Nψ
det(R�)). In general jψt (x) · dσ does not have to be positive, but

the flux-across-surfaces theorem (Proposition 3) ensures that the flux is asymptotically
outwards. Thus we can estimate the difference between E(Nψ

sig(R�)) and E(Nψ
det(R�))

for all ψ which satisfy the flux-across-surfaces theorem using (24) and (25),

∣∣∣E(Nψ
sig(R�))−E(Nψ

det(R, �))
∣∣∣≤1

2

∞∫

0

∫

RS2

(| jψt (x) · dσ | − jψt (x) · dσ
)

dt →
R→∞ 0.

(26)

In particular under the hypotheses of Proposition 3 and the general assumptions A1 and
A2 we obtain asymptotic equality between the expectation values E(Nψ

det(R, �)) and

E(Nψ
sig(R�)).

4. A Model for the Beam

In a scattering situation a beam of particles is scattered off a target. We now wish to
focus on the beam. We take the beam to be produced by a particle source located in the
plane YL perpendicular to the x3-axis:

YL := {−Le3 + a| a⊥e3}, L > 0.

The particles are created with wave functions ψ ∈ Ha.c. translated to the plane YL .
Callingψ y the translation ofψ by y, the “centers” of the translated wave functions, with
which we are concerned, are located at

y = y1e1 + y2e2 − Le3 ∈ YL

and are uniformly distributed in a bounded region A ⊂ YL with area |A|. We call A the
beam profile. The momentum distribution of the wave function is concentrated around
the momentum k0‖e3.
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Remark 3. This model of a beam, in which the particles have random impact parameters
and are scattered off a single target “particle,” is equivalent to the more realistic descrip-
tion of the scattering situation, in which all the target particles are randomly distributed
(e.g., in a foil) and the incoming particles have the very same impact parameter, provided
coherent and multiple-scattering effects are neglected (see e.g. [17], p. 214).

The translated wave function ψ y of a wave function ψ ∈ Ha.c. will not in general
be in Ha.c., but can have a part in Hp.p.. This is problematical for the application of our
general results (see Sect. 9). To avoid this difficulty, we assume:

A 3. The Hamiltonian H = − 1
2� + V has no bound states, i.e. Hp.p. = {0}.

Then ψ y ∈ Ha.c.,∀ y ∈ R
3.

We specify now more precisely the model for the beam, which has been already men-
tioned in [9]. The particles are created with wave functions ψ at random times t ∈ R+
and where the wave function of a particle is shifted randomly by the uniformly distrib-
uted “impact parameter” y ∈ A, the “center” of the wave function at the moment of
emission. In Bohmian mechanics the initial position q ∈ R

3 of the particle determines
its trajectory. The initial position is |ψ y|2-distributed. We shall not need many stochastic
details about the beam. The reader may think of a Poisson point process with points in

� = R
+ × A × R

3,

with a point λ = (t, y, q) ∈ � representing a particle with wave function

ψ y(x) ≡ ψ(x − y), y ∈ A (27)

emitted at the time t ∈ R
+ and with initial position q ∈ R

3.We shall consider a general
point process (��,F,P) built on (�,B(�), µ), where λ� ∈ �� represents a configura-
tion of countably many points in �, i.e.

λ� = {λ}, λ ∈ �, λ� countable.

For the number of points

χ�B(λ
�) ≡

∑
λ∈λ�

χB(λ)

in a set B ∈ B(�), where χB is the indicator function of the set B, we have that

E
(
χ�B

) = µ(B), (28)

where the intensity measure µ on B(�) is given by

dµ = |ψ(x − y)|2χA(y)dtd2 yd3x . (29)

Remark 4. For a Poisson process we would have, in addition to (28), that

P
(
χ�B = k

) = exp(−µ(B))µ(B)
k

k! (30)

as well as the independence of χ�A and χ�B , for A ∩ B = ∅, A, B ∈ B(�).
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We shall assume that the point process is ergodic in the following sense: For any
B ∈ B(�) let

B(τ ) := {(t, y, q) ∈ B|t ∈ [0, τ )}. (31)

Then for any ε > 0,

lim
τ→∞ P

(∣∣∣∣∣
χ�B(τ )

τ
− E

(
χ�B(τ )

τ

)∣∣∣∣∣ ≥ ε

)
= 0, (32)

with E

(
χ�B(τ )

)
given by (28).

Remark 5. Because of the independence property (cf. Remark 4), (32) holds for the case
of a Poisson process.

Remark 6. The point process has unit density in the following sense: Let C ⊂ A, τ > 0
and B := [0, τ )× C × R

3 be given. Then with (32) for any ε > 0,

lim
τ→∞ P

(∣∣∣∣ χ
�
B

|C |τ − E

(
χ�B

|C |τ
)∣∣∣∣ ≥ ε

)
= 0, (33)

and

E

(
χ�B(τ )

|C |τ

)
= 1

|C |τ µ(B) = 1. (34)

5. The Definition of the Scattering Cross Section

We shall now start to define N �(τ, R, A, L , ψ,�), the number of detected particles.
To simplify the notation we do not always indicate the dependence of N � on A, L
and ψ . Sometimes we will also suppress the dependence on R and �. We define first
Ndet(τ, R, �) for a single particle corresponding to λ = (t, y, q) by

Ndet(τ, R, ψ,�) : � → {0, 1},

Ndet(τ, R, ψ,�)(λ) := χ[0,τ )(t)N
ψ y
det (R, �)(q), (35)

where N
ψ y
det (R, �)(q) is defined by (23). The characteristic function ensures that no

particle is counted which is emitted after the time τ.Note thatψ y must satisfy condition

A1 (Sect. 3) to ensure that N
ψ y
det (R, �)(q) is well defined. Then

N �(τ, R, A, L , ψ,�) : �� → N0,

N �(τ, R, A, L , ψ,�)(λ�) =
∑
λ∈λ�

Ndet(τ, R, ψ,�)(λ). (36)
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The empirical scattering cross section σemp(�) for the solid angle � is the random
variable7

σemp(�) := N �(τ, R, A, L , ψ,�)

τ
, (37)

which by the law of large numbers (for the Poisson case and by the ergodicity assumption
(32) for the general case) should approximate for large τ in P-probability its correspond-
ing P-expectation value. The expected value of (37) is then the theoretically predicted
cross section. This theoretically predicted cross section involves a very complicated
formula which is not very explicit, cf. (47) and Remark 7. It depends of course on the
detection directions �, the potential V and the approximate momentum k0 of the parti-
cles in the beam, but depends also on the other details of the experimental setup such as
R, A, L and the detailed specification of ψ . By taking the scaling limit described in the
next section, we shall arrive at (1), which does not depend on these additional details.

6. The Scaling of the Parameters

According to the usual asymptotic picture of scattering theory where the particles are
prepared long before and are detected long after the scattering event has occurred, the
preparation and detection should be far away from the scattering center. That means
the limits R → ∞ and L → ∞ have to be taken. However, increasing L has the
(undesirable) effect of an increased spreading of the beam, which reduces the beam
intensity in the scattering region. To maintain the beam intensity in the scattering region
we must widen the beam profile A as L → ∞. The idealization of an incoming plane
wave corresponds to particles with a narrow distribution in momentum space, i.e., to
a limit in which the Fourier transform of the initial wave function becomes more and
more concentrated around a fixed initial wave vector k0. For a detailed discussion of the
scattering regime see [8].

The limits for the parameters L , A, and ψ will be combined by simultaneously
scaling them using a small parameter ε : We introduce Lε , Aε and ψε , whose precise
dependence on ε will be given below, and consider the cross section corresponding to
(37), depending on ε, R, τ ,

σ εemp(�) = N �(τ, R, Aε, Lε, ψε,�)

τ
, (38)

to which the limit ε → 0 is to be applied.
However, the limit R → ∞ is taken before we take ε → 0; this is because we must

have that the diameter of the beam profile A is much smaller than R, since otherwise un-
scattered particles will often contribute to what should be the cross section for scattered
particles. For convenience, we first take the limit τ → ∞, required for the stabilization
of the empirical cross section produced by the law of large numbers. We are thus led to
consider a limit for the cross section of the form

σ(�) = lim
ε→0

lim
R→∞ lim

τ→∞ σ
ε
emp(�). (39)

7 We shall ignore the dimension factor [unit area · unit time] which comes from the normalization of (37)
by the unit density 1

[unit area·unit time] of the underlying point process, cf. Remark 6. One can also normalize
by the beam density, i.e. with the number of detected particles (by a detector in the beam with a surface
perpendicular to the beam axis) per unit time and unit area, in front of the target. In the scattering regime, i.e.
if the parameters are suitably scaled (cf. Section 6), the beam will have unit density in front of the target. We
shall not elaborate on this further in this paper, see however [8].
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The precise definition of Lε , Aε and ψε , used in our main results, is the following:

ψε(x) = ε
3
2 ei k0·xψ(εx), (40)

with the Fourier transform

ψ̂ε(k) = ε−
3
2 ψ̂

(
k − k0

ε

)
. (41)

The particle source is located on YLε , with

Lε = L

εl
, l > 2. (42)

For the beam profile Aε ⊂ YLε we take the circular region

Aε = {x ∈ R
3|

√
x2

1 + x2
2 <

Dε

2
and x3 = Lε} (43)

with the beam diameter Dε given by

Dε = D

εd
, d > 2l − 3. (44)

(One might be inclined to consider a scattering experiment in which the diameter of the
beam is much smaller than the distance of the particle source from the scattering center.
Indeed, if 2 < l < 3, d < l is consistent with (44). Hence, such a scenario is covered
by our results.)

7. The Scattering Cross Section Theorem

We can now formulate our main results. Our basic assumptions are that V ∈ (V )5 (Defi-
nition 1), A2 (Sect. 3), A3 (no bound states, Sect. 4) and hat for all ε small enough
ψεy is “good” for all y ∈ Aε in the sense that it satisfies A1 (Sect. 3) as well as the
condition for the FAST (Prop. 3). Moreover, we need to assume that the potential has
no zero energy resonances. However, instead of invoking the implicit condition on ψ
that the ψεy are “good,” we impose stronger but more explicit conditions on ψ , namely

that ψ ∈ C∞
0 (R

3) (Theorem 2) or ψ ∈ S (Theorem 1), with corresponding additional
conditions on the potential (Definitions 4 and 3, respectively).

Definition 3. V is in V if

(i) the Hamiltonian H = − 1
2� + V has no bound states, i.e. Hp.p. = {0},

(ii) the Hamiltonian H = − 1
2� + V has no zero energy resonances,

(iii) V is a C∞-function on R
3,

(iv) V and its derivatives of all orders are uniformly bounded in x: For all multi-indices
α there exist an Mα < ∞ such that |∂αx V (x)| < Mα for all x ∈ R

3,

(v) there exist positive numbers δ and C such that

|V (x)| ≤ C〈x〉−5−δ for all x ∈ R
3.
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Theorem 1. Let ψ be a normalized vector in S(R3) and suppose that V is in V. Fur-
thermore, suppose that the point process (��,F,P) satisfies (28), (29) and the ergodic
assumption (32). Let k0||e3 with k0 > 0 and suppose that k0 /∈ C�. Then σ εemp is well
defined and (recalling (1))

σεemp(�) = N �(τ, R, Aε, Lε, ψε,�)

τ

P−→
ε→0,R→∞,τ→∞ σ(�) =

∫

�

σ diff(ω)d�, (45)

where σ diff(ω) = 16π4|T (k0ω, k0)|2 and
P−→ denotes convergence in probability.

Definition 4. V is in V ′ if

(i) the Hamiltonian H = − 1
2� + V has no bound states, i.e. Hp.p. = {0},

(ii) the Hamiltonian H = − 1
2� + V has no zero energy resonances,

(iii) V is in (V )5,
(iv) V is C∞ except, perhaps, at a finite number of singularities.

Under these conditions we obtain

Theorem 2. Let ψ be a normalized vector in C∞
0 (R

3) and let V be in V ′. Furthermore,
suppose that the point process (��,F,P) satisfies (28), (29) and the ergodic assumption
(32). Let k0||e3 with k0 > 0 and suppose that k0 /∈ C�. Then σ εemp is well defined and
(45) of Theorem 1 holds.

8. Proof of Theorem 1 and Theorem 2

During the proof in this section and in the appendix 0 < c < ∞ will denote a con-
stant whose value can change during a calculation—even within the same equation or
inequality.

If either V ∈ V andψ ∈ S(R3) or V ∈ V ′ andψ ∈ C∞
0 , then (ifψ is normalized) the

ψεy are “good” for all y ∈ Aε for all ε small enough. That the ψεy satisfy the conditions
for the FAST follows from Lemma 1 below, and that they satisfy A1 is easily seen: For
the case V ∈ V and ψ ∈ S(R3) the conclusion follows from a simple computation, and
if V ∈ V ′ and ψ ∈ C∞

0 it suffices to observe that by choosing ε small enough the wave
function ψεy has, for all y ∈ Aε , no overlap with the singularities of the potential.

N � is thus well defined by (36), and we can take the first limit in (45) using the
following

Proposition 5. Suppose that ψεy satisfies A1 for all y ∈ Aε and that the potential satis-
fies A2. Furthermore, suppose that the point process (��,F,P) satisfies (28), (29) and
the ergodic assumption (32). Then the number of detected particles N �(τ ) obeys the law
of large numbers, i.e. for all δ > 0,

lim
τ→∞ P

(∣∣∣∣ N �(τ,�)

τ
− γ

∣∣∣∣ ≥ δ

)
= 0, (46)

where

γ =
∫

Aε

E

(
N
ψεy
det (�)

)
d2 y. (47)
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Remark 7. γ = γ (�) is in fact the cross section which would be measured in an exper-
iment. The remaining limits in (45) applied to γ yield the cross section σ(�). If the
basic point process is a Poisson process with [0, τ ) = R

+ the times of detection in �
form a Poisson process with intensity γ.Moreover, in the scattering regime, the detailed
detection events, involving times and directions, form a Poisson process on R

+ × S2

with intensity σ diff(ω).

Proof. By the definition (36) of N � we have that

N �(τ )(λ�) = χ�B(τ )(λ
�) =

∑
λ∈λ�

χB(τ )(λ), (48)

with B(τ ) given by

B(τ ) = {(t, y, q) ∈ �|Ndet(τ,�)(t, y, q) = 1}. (49)

It thus follows from (28) and (29) that

E
(
N �(τ )

) = µ(B(τ ))=
∫
χ[0,τ )(t)N

ψεy
det (�)(q)dµ

= τ

∫

Aε

E

(
N
ψεy
det (�)

)
d2 y =τγ. (50)

The proposition follows from the ergodicity assumption (32). ��
It is not easy to calculate the expectation value γ (cf. (47)) directly. However, as we

shall show below, using the FAST we can approximate (47) by
∫

Aε

E

(
N
ψεy
sig (R�)

)
d2 y, (51)

where the integrand of (51) is given by an integral over the flux (cf. (21)), an expression

that we can more easily handle. We will show in Lemma 2 below that E

(
N
ψεy
sig (R�)

)
is

absolutely integrable over Aε .
We introduce now a class of scattering states G for which we can show that the

corresponding asymptotes are in the set G+, i.e. that they satisfy the FAST.

Definition 5. A function f : R
3 → C is in G0 if 8

f ∈ Ha.c.(H) ∩ C8(H),

〈x〉2 Hn f (x) ∈ L2(R3), n ∈ {0, 1, 2, ..., 8},
〈x〉4 Hn f (x) ∈ L2(R3), n ∈ {0, 1, 2, 3}.

Then G := ⋃
t∈R

e−i HtG0.

We state now the important lemma that ensures that the ψεy satisfy the FAST.

8 C8(H) :=
8⋂

n=1
D(Hn)
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Lemma 1. Suppose V ∈ (V )4 and that zero is neither a resonance nor an eigenvalue
of H. Then

ψ(x) ∈ G ⇒ ψ̂out(k) = F
(
�−1

+ ψ
)
(k) ∈ G+.

The proof is adapted from [12] and can be found in the appendix.

Remark 8. For other mapping properties between ψ and ψout, which are not applicable
in our case, see [26].

For ψ ∈ S and V ∈ V or ψ ∈ C∞
0 (R

3) and V ∈ V ′ we have that ψεy ∈ C∞(H)
for all y ∈ Aε and ε small enough. By (i) in the definition of V or V ′ (Definition 3 or
4) there are no bound states. Hence ψεy ∈ Ha.c.(H) ∩ C8(H), and one easily sees that
ψεy ∈ G. Thus by Lemma 1 and Proposition 3 the ψεy satisfy the FAST for all y ∈ Aε

and ε small enough.

We now show that E

(
N
ψεy
sig (R�)

)
is absolutely integrable over Aε .

Lemma 2. Suppose that ψ ∈ S and V ∈ V or that ψ ∈ C∞
0 (R

3) and V ∈ V ′. Then
there exist M and R0 > 0 such that for ε small enough

∞∫

0

∫

RS2

| jψ
ε
y,t (x) · dσ |dt < M, ∀ y ∈ Aε,∀R > R0. (52)

For the proof see the Appendix. From now on we assume that R > R0.

By Lemma 1, Proposition 3, Proposition 4 and Lemma 2 we see that (51) is a

well defined expression. Moreover, by (26) the difference between E

(
N
ψεy
det (R, �)

)

and E

(
N
ψεy
sig (R�)

)
vanishes in the limit R → ∞, and using Lemma 2 we easily see

by the dominated convergence theorem that the same conclusion holds for the integrals
themselves. Thus, by Proposition 5, the limit σ(�) in Theorem 1 is given by

σ(�) = lim
ε→0

lim
R→∞ γ = lim

ε→0
lim

R→∞

∫

Aε

E

(
N
ψεy
det (R, �)

)
d2 y

= lim
ε→0

∫

Aε

lim
R→∞ E

(
N
ψεy
sig (R�)

)
d2 y

= lim
ε→0

∫

Aε

lim
R→∞

∫

R�

jψ
ε
y,t (x) · dσdtd2 y. (53)

Using Lemma 1 and Proposition 3 we get instead of (53),

σ(�) = lim
ε→0

∫

C�

∫

Aε

| ̂
�−1

+ ψεy(k)|2d2 yd3k = lim
ε→0

∫

C�

∫

Aε

| ̂S�−1− ψεy(k)|2d2 yd3k. (54)

The formula for S = T + I is given by (8) and (9). To exploit this formula we write
instead of (54):

σ(�) = lim
ε→0

∫

C�

∫

Aε

|F
(

S(�−1− ψεy − ψεy) + Tψεy + ψεy
)
(k)|2d2 yd3k. (55)
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By the triangle equality we see that (55) yields

σ(�) = lim
ε→0

∫

C�

∫

Aε

|F(Tψεy)(k)|2d2 yd3k, (56)

provided

lim
ε→0

∫

Aε

‖�−1− ψεy − ψεy‖2d2 y = 0 (57)

and

lim
ε→0

∫

C�

∫

Aε

|ψ̂εy(k)|2d2 yd3k = 0. (58)

Remark 9. In [9] the “sufficient condition” for proceeding from (54) to (56) was insuffi-
cient.

We will establish now (57) and (58). We start with (58). Suppose that � is such that
k0 /∈ C�. With (41) we have then that

∫

C�

∫

Aε

∣∣ψ̂εy(k)∣∣2
d2 yd3k = ε−3

∫

C�

∫

Aε

∣∣∣∣ψ̂
(

k − k0

ε

)∣∣∣∣
2

d2 yd3k

=
∫

1
ε
(C�−k0)

∫

Aε

|ψ̂ (k) |2d2 yd3k. (59)

Since k0 /∈ C� there exists a δ > 0 such that

|k − k0| > δ for all k ∈ C�. (60)

Using that ψ̂ ∈ S(R3) (we will use that |ψ̂ | ≤ ck−(d+2)), the last integral in (59) can be
estimated by

∫

1
ε
(C�−k0)

∫

Aε

|ψ̂ (k) |2d2 yd3k ≤
∫

k>δ
ε

∫

Aε

|ψ̂ (k) |2d2 yd3k ≤ c

ε2d

∫

k>δ
ε

1

k2d+4 d3k ≤ cε,

(61)

from which (58) follows.
Since �− is a partial isometry, (57) is equivalent to

lim
ε→0

∫

Aε

‖�−ψεy − ψεy‖2d2 y = 0, (62)

which is the content of the following
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Lemma 3. Let zero be neither an eigenvalue nor a resonance of H and suppose that
V ∈ (V )5. Let ψ ∈ S(R3) and let k0 > 0. Then

lim
ε→0

∫

Aε

‖�−ψεy − ψεy‖2d2 y = 0. (63)

Remark 10. Under the additional condition that supp ψ̂ ⊂ Pαe3
for some α ∈ (0, π2 ),

where Pαe3
:= {k ∈ R

3 : k · e3 > k cosα}, 0 < α < π
2 (this is a convenient condition,

see e.g. [2], Lemma 7.17), one can prove in a manner similar to the way we prove Lemma
3 that the following holds:

lim
L→∞

∫

YL

‖�−ψ y − ψ y‖2d2 y = 0. (64)

It is well known that the integrand in (64) tends to zero for large y (see e.g. [2], Corollary
8.17, [19], Theorem XI.33, and [21], Theorem 2.20).

Proof of Lemma 3. We have that

‖�−ψεy − ψεy‖2 = 1 − (ψεy,�−ψεy) + c.c. (65)

Since �−ψ = F−1− ψ̂(k) for any ψ ∈ L2(R3) (Proposition 1, (iii)) we obtain for the
r.h.s. of (65):

1 −
∫
(ψεy)

∗(x)(2π)−3/2
∫
ψ̂εy(k)ϕ−(x, k)d3kd3x + c.c. (66)

Writing

ϕ−(x, k) = ei k·x − η−(x, k), (67)

and since ‖ψεy‖2 = 1, we then find that

‖�−ψεy − ψεy‖2 =
∫
(ψεy)

∗(x)(2π)−3/2
∫
ψ̂εy(k)η−(x, k)d3kd3x + c.c. (68)

We shall divide the k-integration into two parts with the help of smooth (C∞) mol-
lifiers 0 ≤ f1(k) ≤ 1 and 0 ≤ f2(k) ≤ 1 satisfying

f1(k) =
{

1, for |k − k0| < k0
3 ,

0, for |k − k0| ≥ k0
2 ,

f2(k) := 1 − f1(k). (69)

Using (69) we obtain for (68)

‖�−ψεy − ψεy‖2 =
∫
(ψεy)

∗(x)(2π)−3/2
∫
ψ̂εy(k)( f1 + f2)(k)η−(x, k)d3kd3x + c.c.

=
∫
(ψεy)

∗(x)(2π)−3/2
∫
ψ̂εy(k) f1(k)η−(x, k)d3kd3x

+
∫
(ψεy)

∗(x)(2π)−3/2
∫
ψ̂εy(k) f2(k)η−(x, k)d3kd3x

+ c.c. =: I1 + I2 + c.c.

≤ 2|I1| + 2|I2|. (70)
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Observing that ψ ∈ S(R3) we estimate |I2| by using that for any n > 0 |ψ̂(k)| ≤ c
kn

and that |η−(x, k)| ≤ 1 + |ϕ−(x, k)| ≤ c (Proposition 2 (ii)) as well as (40), (41) and
(69):

|I2| ≤ c

ε3

∫
|ψ(x − y)|(2π)−3/2

∫

|k−k0|≥ k0
3

∣∣∣∣ψ̂
(

k − k0

ε

)∣∣∣∣ d3kd3x

≤ c

ε3

∫

|k|≥ k0
3

∣∣∣∣ψ̂
(

k
ε

)∣∣∣∣ d3k ≤ cεn−3
∫

|k|≥ k0
3

1

kn
d3k = cεn−3, (71)

if n ≥ 4.
Lemma 3 concerns the integration of I1 and I2 over Aε . With (71) we obtain that

∫

Aε

|I2|d2 y ≤ cεn−3−2d , (72)

which tends to zero if we choose n large enough. We are left with showing that

lim
ε→0

∫

Aε

|I1|d2 y = 0, (73)

and for this it suffices to prove that

lim
ε→0

∫

YLε

|I1|d2 y = 0. (74)

Recalling the Lippmann-Schwinger equation (11), i.e. that

η−(x, k) = 1

2π

∫
eik|x−x′|

|x − x′| V (x′)ϕ−(x′, k),

we find that

I1 = 1

(2π)
5
2

∫
(ψεy)

∗(x)
∫
ψ̂εy(k) f1(k)

∫
eik|x−x′|

|x − x′| V (x′)ϕ−(x′, k)d3x ′d3kd3x . (75)

Since the integrand in (75) is absolutely integrable over x, x′, k (because ψ ∈ S(R3),
V ∈ (V )5; cf. Lemma 2, (ii)) we are free to interchange these integrations and more
generally change integration variables as convenient. Using (ψεy)

∗(x) = (ψε)∗(x −
y), ψ̂εy(k) = ψ̂ε(k)e−i k· y we obtain that

I1 = 1

(2π)
5
2

∫

R3

(ψε)∗(x − y)
∫

R3

ψ̂ε(k) f1(k)

×
∫

R3

eik|x−x′|−i k· y

|x − x′| V (x′)ϕ−(x′, k)d3x ′d3kd3x . (76)
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Making the change of variables x → x − y and using y = (y1, y2,−Lε) we obtain

I1 = 1

(2π)
5
2

∫

R3

(ψε)∗(x)
∫

R3

ψ̂ε(k) f1(k)
∫

R3

eik| y+x−x′|−ik1 y1−ik2 y2+ik3 Lε

| y + x − x′| V (x′)

×ϕ−(x′, k)d3x ′d3kd3x .

(77)

Introducing as shorthand notation (no change of variables) ỹ = y + x − x′, a := x − x′,
b3 := −Lε + a3 and letting (r, θ) be the polar coordinates for (ỹ1, ỹ2), with er the
corresponding radial unit vector (⊥e3), this becomes

I1 = 1

(2π)
5
2

∫

R3

(ψε)∗(x)
∫

R3

ψ̂ε(k) f1(k)

×
∫

R3

e
ik

√
ỹ2

1 +ỹ2
2 +(−Lε+a3)2−ik1 ỹ1−ik2 ỹ2+ik3 Lε

| ỹ| eik1a1+ik2a2 · V (x′)ϕ−(x′, k)d3x ′d3kd3x

= 1

(2π)
5
2

∫

R3

(ψε)∗(x)
∫

R3

ψ̂ε(k) f1(k)

×
∫

R3

e
ik

√
r2+b2

3−ik sin ϑ r cosβ+ik cosϑLε

√
r2 + b2

3

eik1a1+ik2a2 · V (x′)ϕ−(x′, k)d3x ′d3kd3x,

(78)

with k sin ϑ = |k p| =
√

k2
1 + k2

2, k3 = k cosϑ , where ϑ (0 ≤ ϑ ≤ π) is the angle
between k and e3 and β is the angle between k p = (k1, k2, 0) and er . Moreover, there
is an angle 0 < α < π

2 such that

ϑ ≤ α, i.e. cosα ≤ cosϑ ≤ 1, 0 ≤ sin ϑ ≤ sin α, 0 < α <
π

2
(79)

for all k’s in the support of f1 (cf. (69)).
We introduce now spherical coordinates (k,ω) for k as integration variables and do

first the integration over k (note that β is not k-dependent). Since ψ̂ε ∈ S(R3), f1 is
smooth and ∂

∂kϕ−(x′, k) is uniformly bounded in k (Proposition 2 (iv)), we can do two
integration by parts with respect to k and obtain that

I1 = − 1

(2π)
5
2

∫

R3

(ψε)∗(x)
∫

R3

V (x′)

×
∫

S2

∞∫

0

∂2

∂k2

(
ψ̂ε(k) f1(k)ϕ−(x′, k)eik1a1+ik2a2 k2

)
· eikλ√

r2 + b2
3λ

2
dkd�d3x ′d3x,

(80)
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where

λ := r

⎛
⎝

√
1 +

b2
3

r2 − sin ϑ cosβ

⎞
⎠ + cosϑLε. (81)

To estimate the derivatives of the functions f1(k)ϕ−(x′, k)we use Proposition 2, (iv)
and the smoothness of f1(k). We introduce a multi-index notation

i := (i1, i2, i3, i4), im ∈ N0, |i | := i1 + i2 + i3 + i4, j := ( j1, j2, j3) analogously.

With kl = κl k, κl ∈ [−1, 1], l = 1, 2 we obtain that

∣∣∣∣ ∂
2

∂k2 ( f1(k)ϕ−(x′, k)ψ̂ε(k)k2eik1a1+ik2a2)

∣∣∣∣
≤ 2

∑
|i |=2

∣∣∣∣ ∂
i1

∂ki1

(
f1(k)ϕ−(x′, k)

)∣∣∣∣
∣∣∣∣ ∂

i2

∂ki2

(
ψ̂ε(k)k2

)∣∣∣∣
∣∣∣∣ ∂

i3

∂ki3

(
eiκ1ka1

)∣∣∣∣
∣∣∣∣ ∂

i4

∂ki4

(
eiκ2ka2

)∣∣∣∣

≤ c
∑
|i |=2

(1 + x ′)i1

∣∣∣∣ ∂
i2

∂ki2

(
ψ̂ε(k)k2

)∣∣∣∣
∣∣∣κ1a1|i3 |κ2a2

∣∣∣i4

≤ c
∑
|i |=2

(1 + x ′)i1

∣∣∣∣ ∂
i2

∂ki2

(
ψ̂ε(k)k2

)∣∣∣∣ ai3ai4

≤ c
∑
|i |=2

(1 + x ′)i1

∣∣∣∣ ∂
i2

∂ki2

(
ψ̂ε(k)k2

)∣∣∣∣
∣∣x − x′∣∣i3+i4

≤ c
∑
| j |=2

(1 + x ′) j1

∣∣∣∣ ∂
j2

∂k j2

(
ψ̂ε(k)k2

)∣∣∣∣
∣∣x − x′∣∣ j3 . (82)

With (79) we may assume that λ in (81) is bounded below,

λ ≥ r(1 − sin α) + Lε cosα ≥ λmin := η(r + Lε), (83)

with η := min((1 − sin α), cosα) > 0. Using (83) and (82) in (80) we obtain that

M :=
∫

YLε

|I1|d2 y ≤ c
∑
| j |=2

∫

R2

∫

R3

|ψε(x)|

×
∫

R3

|V (x′)|
∫

S2

∞∫

0

1√
r2 + b2

3λ
2
min

∣∣∣∂ j2
k

(
ψ̂ε(k)k2

)∣∣∣ |x − x′| j3(1 + x ′) j1

× dkd�d3x ′d3xd2y. (84)

Since the integrand of the right-hand side of (84) is positive, we may perform the change
of integration variables (y1, y2) → (ỹ1, ỹ2) → (r, θ), as well as freely interchange the
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order of integrations. With (83) we then obtain that

M ≤ c
∑
| j |=2

∫

R3

|ψε(x)|
∫

R3

|V (x′)|

×
∫

S2

∞∫

0

∞∫

0

2π∫

0

1√
r2 + b2

3λ
2
min

∣∣∣∂ j2
k

(
ψ̂ε(k)k2

)∣∣∣ |x−x′| j3(1+x ′) j1rdθdrdkd�d3x ′d3x

≤ c
∑
| j |=2

∫

R3

|ψε(x)|
∫

R3

|V (x′)|

×
∫

S2

∞∫

0

∞∫

0

1

η2(r + Lε)2

∣∣∣∂ j2
k

(
ψ̂ε(k)k2

)∣∣∣ |x − x′| j3(1 + x ′) j1 drdkd�d3x ′d3x

= c

η2Lε
∑
| j |=2

∫

R3

|ψε(x)|
∫

R3

|V (x′)|

×
∫

S2

∞∫

0

∣∣∣∂ j2
k

(
ψ̂ε(k)k2

)∣∣∣ |x − x′| j3(1 + x ′) j1dkd�d3x ′d3x . (85)

Using that |x − x′| j3 ≤ 2(x j3 + x ′ j3) for j3 = 1, 2 we obtain that

M ≤ c

Lε
∑
| j |=2

∫

R3

|ψε(x)|(1 + x) j3

∫

R3

∣∣∣∂ j2
k

(
ψ̂ε(k)k2

)∣∣∣

×
∫

R3

|V (x′)|(1 + x ′) j1+ j3 d3x ′dkd�d3x . (86)

Since V ∈ (V )5 (so that V ∈ L2(R3) and |V (x)| ≤ Cx−5−δ, δ > 0, for x > R0) and
j1 + j3 ≤ 2 the x′ integration is finite and we obtain (by dividing the integration region
for x′ into two parts, x ′ > R0 and x ′ ≤ R0)

M ≤ c

Lε
∑

j2+ j3≤2

∫

R3

|ψε(x)|(1 + x) j3

∫

R3

∣∣∣ ∂ j2
k

(
ψ̂ε(k)k2

)∣∣∣ dkd�d3x . (87)

Using (40), (41) and that ψ ∈ S(R3) one finds by simple calculation that
∫

R3

|ψε(x)|x j3 d3x ≤ c

ε
3
2

1

ε j3
(88)

and
∫

R3

∣∣∣∂ j2
k

(
ψ̂ε(k)k2

)∣∣∣ dkd� ≤ cε
3
2

1

ε j2
. (89)



A Microscopic Derivation of the Quantum Mechanical Formal Scattering Cross Section

Since j2 + j3 ≤ 2 we see with (88), (89) and (42) that for M in (87) we have for small
ε the bound

M ≤ c

Lεε2 = cεl−2. (90)

Since l > 2, this completes the proof of (63). ��
We can now proceed with the evaluation of (56). With (8) we obtain for (56)

σ(�)= lim
ε→0

∫

C�

∫

Aε

|T̂ψεy(k)|2d2 yd3k

=lim
ε→0

4π2
∫

C�

∫

Aε

∣∣∣∣∣∣
∫

k′=k

e−i k′· yT (k, k′)ψ̂ε(k′)k′d�(k′)

∣∣∣∣∣∣
2

d2 yd3k

=lim
ε→0

4π2
∫

C�

∫

yp<
Dε
2

∣∣∣∣∣∣
∫

k′=k

e−i(k′
1 y1+k′

2 y2−k′
3 Lε )T (k, k′)ψ̂ε(k′)k′d�(k′)

∣∣∣∣∣∣
2

dy1dy2d3k,

(91)

where yp := (y1, y2). We insert again the identity f1 + f2 ≡ 1 and obtain for σ(�)

lim
ε→0

4π2
∫

C�

∫

yp<
Dε
2

∣∣∣∣∣∣
∫

k′=k

e−i(k′
1 y1+k′

2 y2−k′
3 Lε )T (k, k′)ψ̂ε(k′)( f1(k′) + f2(k′))k′d�(k′)

∣∣∣∣∣∣
2

×dy1dy2d3k. (92)

Multiplying out we get four terms. The main term is

lim
ε→0

4π2
∫

C�

∫

yp<
Dε
2

∣∣∣∣∣∣
∫

k′=k

e−i(k′
1 y1+k′

2 y2−k′
3 Lε )T (k, k′)ψ̂ε(k′) f1(k′)k′d�(k′)

∣∣∣∣∣∣
2

dy1dy2d3k.

(93)

Before we evaluate (93) we show that the three other terms are zero. Noting that
T (k, k′) is bounded (Corollary 1) and that ψ ∈ S(R3) we obtain that
∣∣∣∣∣∣

∫

k′=k

e−i(k′
1 y1+k′

2 y2−k′
3 Lε )T (k, k′)ψ̂ε(k′) fi (k′)k′d�(k′)

∣∣∣∣∣∣ ≤ c

ε
3
2

k, i = 1, 2,

∣∣∣∣∣∣
∫

k′=k

e−i(k′
1 y1+k′

2 y2−k′
3 Lε )T (k, k′)ψ̂ε(k′) f2(k′)k′d�(k′)

∣∣∣∣∣∣ ≤ c

ε
3
2

k
∫

k′=k

∣∣∣∣ψ̂
(

k′ − k0

ε

)∣∣∣∣
× f2(k′)d�(k′). (94)
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Using (94), the difference between (93) and (92) is no greater than

c

ε3

∫

C�

∫

yp<
Dε
2

∫

k′=k

∣∣∣∣ψ̂
(

k′ − k0

ε

)∣∣∣∣ f2(k′)k′2d�(k′)d2 yd3k

≤ c

ε3+2d

∫

R3

∣∣∣∣ψ̂
(

k′ − k0

ε

)∣∣∣∣ f2(k′)k′2d3k′

≤ c

ε3+2d

∫

|k′−k0|≥ k0
3

∣∣∣∣ψ̂
(

k′ − k0

ε

)∣∣∣∣ k′2d3k′. (95)

Using that |ψ̂(k)| ≤ c
kn for any 6 ≤ n ∈ N, we see that the right-hand side in (95) is

bounded by cεn−3−2d , which tends to zero for sufficiently large n. Thus the three other
terms are zero.

Since, as we shall show,

lim
ε→0

4π2
∫

C�

∫

yp≥ Dε
2

∣∣∣∣∣∣
∫

k′=k

e−i(k′
1 y1+k′

2 y2−k′
3 Lε )T (k, k′)ψ̂ε(k′) f1(k′)k′d�(k′)

∣∣∣∣∣∣
2

×dy1dy2d3k = 0, (96)

we may extend the y-integration in (93) to all of R
2, so that

σ(�) = lim
ε→0

4π2
∫

C�

∫

R2

∣∣∣∣∣∣
∫

k′=k

e−i(k′
1 y1+k′

2 y2−k′
3 Lε )T (k, k′)ψ̂ε(k′) f1(k′)k′d�(k′)

∣∣∣∣∣∣
2

×dy1dy2d3k. (97)

Before establishing (96) we compute (97) with the help of the following

Lemma 4. Let 0 < α < π
2 and δ > 0 be given. Suppose that φ : R

3 → C is a
function with support in the sector Pαe3

:= {k ∈ R
3 : k · e3 > k cosα} such that∫

k=δ
|φ(k)|2d�(k) < ∞. Then

∫

R2

∣∣∣∣∣∣
1

2π

∫

k=δ
e−i k· yφ(k)d�(k)

∣∣∣∣∣∣
2

d2 y =
∫

k=δ
|φ(k)|2 1

kk3
d�(k). (98)

Remark 11. This lemma is proved in [2], Lemma 7.17. The integration over the impact
parameter is crucial for the derivation and is a standard ingredient in the derivation of
the scattering cross section.
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Because of Corollary 1, T (k, k′) is bounded on R
3 ×R

3 and continuous on R
3 ×R

3 \
{0}. Moreover, ψ̂ε(k) ∈ S(R3) and ψ̂ε(k) f1(k) has support in Pϑ2

e3 with 0 < ϑ2 <
π
2 .

Hence, by Lemma 4, (97) becomes

σ(�) = lim
ε→0

16π4
∫

C�

∫

k′=k

∣∣T (k, k′)
∣∣2 ∣∣ψ̂ε(k′)

∣∣2 ∣∣ f1(k′)
∣∣2 1

cosϑ ′ d�(k
′)d3k

= lim
ε→0

16π4
∫

�

∫

R3

∣∣T (k′ω, k′)
∣∣2 ∣∣ψ̂ε(k′)

∣∣2 ∣∣ f1(k′)
∣∣2 1

cosϑ ′ d
3k′d�, (99)

where k′
3 = k cosϑ ′. Because supp f1(k) ⊂ Pϑ2

e3 with 0 < ϑ2 <
π
2 , there exists a δ > 0

such that δ < cosϑ ′. Hence the integral in (99) is finite (it is ≤ c‖ψ‖2). Thus, since
clearly |ψ̂ε(k)|2 → δ(k − k0) (in the sense that lim

ε→0

∫ |ψ̂ε(k)|2g(k)d3k = g(k0) for

any bounded continuous function g), and since T (k′ω, k′), f1(k′) and 1
cosϑ ′ are bounded

and continuous as functions of k′, we may conclude that

σ(�) = 16π4
∫

�

|T (k0ω, k0)|2d�. (100)

The proof of Theorem 1 and Theorem 2 will thus be complete once we establish (96).
Changing variables, (96) follows from

lim
ε→0

∫

R3

∫

yp≥ D
2

1

ε2d

∣∣∣∣∣∣
∫

k′=k

e
−i(k′

1
y1
εd +k′

2
y2
εd −k′

3 Lε )
T(k, k′)ψ̂ε(k′) f1(k′)k′d�(k′)

∣∣∣∣∣∣
2

dy1dy2d3k =0.

(101)

Equation (101) is the content of

Lemma 5. Let V ∈ (V )5, ψ ∈ S(R3) and suppose that k0 > 0. Let l > 2, d > 2l − 3
and let M be given by (to simplify the notation we interchange k and k′)

M = M(y1, y2, k′, ε) :=
∫

k=k′
e
−i(k1

y1
εd +k2

y2
εd −k3 Lε )

T (k′, k)ψ̂ε(k) f1(k)kd�(k).

(102)

Then for any D > 0,

lim
ε→0

∫

R3

∫

yp≥D

1

ε2d
|M |2 dy1dy2d3k′ = 0. (103)

Proof. We will establish the following inequality (104) giving a bound on M : There
exists a c < ∞ such that

|M |2 ≤ cχ(
k0
2 ,

3
2 k0

)(k′)ε
4d+5−4l

y4
p

1(
1 + |k′−k0|

ε

)2 . (104)
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Assuming (104) we show now that (103) follows. Using (104), the integral in (103) is
dominated by

∫

k0
2 <k′< 3

2 k0

∫

yp≥D

c
ε2d+5−4l

y4
p

1(
1 + |k′−k0|

ε

)2 d2 yd3k′ ≤ cε2d+5−4l

∞∫

−∞

dk′
(

1 + |k′−k0|
ε

)2

= cε2d+6−4l

∞∫

−∞

dk′

(1 + |k′|)2

= cε2d+6−4l . (105)

Since d > 2l − 3 there is a δ > 0 such that d = 2l − 3 + δ. Then (105) is of order ε2δ

and (103) follows.
It thus remains to establish (104). Changing variables in (102) from ω to k1, k2 we

obtain, with the Jacobian determinant k′k3 with k3 = k3(k1, k2) =
√

k′2 − k2
1 − k2

2 and
k+ = (k1, k2, k3(k1, k2)),

M =
∫ ∫

k2
1+k2

2≤k′2

e
−i(k1

y1
εd +k2

y2
εd −k3 Lε )

T (k′, k+)ψ̂ε(k+) f1(k+)k
′ 1

k′k3
dk1dk2

= 1

ε
3
2

∫ ∫

k2
1+k2

2≤k′2

e
−i(k1

y1
εd +k2

y2
εd )

(
T (k′, k+)ψ̂

(
k+ − k0

ε

)
eik3 Lε f1(k+)

k3

)
dk1dk2

=: 1

ε
3
2

∫ ∫

k2
1+k2

2≤k′2

e
−i(k1

y1
εd +k2

y2
εd )g(k1, k2, k′, ε)dk1dk2. (106)

Performing two integration by parts with respect to k p := (k1, k2), we obtain (using the
fact that f1(k+) and its derivatives vanish on the boundary of the region of integration)
that

|M | = 1

ε
3
2

εd

∣∣∣∣∣∣∣
∫ ∫

kp≤k′

(
∇kp e

−i(k1
y1
εd +k2

y2
εd )

)
· yp

y2
p

f1(k+)g(k1, k2, k′, ε)dk1dk2

∣∣∣∣∣∣∣

= 1

ε
3
2

εd

∣∣∣∣∣∣∣
∫ ∫

kp≤k′
e
−i(k1

y1
εd +k2

y2
εd )

yp

y2
p

· ∇k p g(k1, k2, k′, ε)dk1dk2

∣∣∣∣∣∣∣

= 1

ε
3
2

ε2d

∣∣∣∣∣∣∣
∫ ∫

kp≤k′

(
∇kp e

−i(k1
y1
εd +k2

y2
εd )

)
· yp

y2
p

yp

y2
p

· ∇k p g(k1, k2, k′, ε)dk1dk2

∣∣∣∣∣∣∣
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= 1

ε
3
2

ε2d

∣∣∣∣∣∣∣
∫ ∫

kp≤k′
e
−i(k1

y1
εd +k2

y2
εd )

yp

y2
p

· ∇kp

yp

y2
p

· ∇k p g(k1, k2, k′, ε)dk1dk2

∣∣∣∣∣∣∣

≤ 1

ε
3
2

ε2d

y2
p

∫ ∫

kp≤k′

2∑
i, j=1

∣∣∂ki ∂k j g(k1, k2, k′, ε)
∣∣ dk1dk2. (107)

We estimate now the derivatives of g on the support of f1. Note first that on supp f1
k3 > k0/2. Using Corollary 1 we have for i, j = 1, 2 that

sup
k′∈R3,k+∈supp f1

|T (k′, k+)| ≤ c, sup
k′∈R3,k+∈supp f1

∣∣∂ki T (k
′, k+)

∣∣ ≤ c, (108)

sup
k′∈R3,k+∈supp f1

∣∣∂ki ∂k j T (k
′, k+)

∣∣ ≤ c.

To estimate the wave function ψ̂
(

k+−k0
ε

)
and its derivatives we introduce the following

notation:

Pk := 1

1 + |k−k0|
ε

, Pk := 1

1 + |k−k0|
ε

. (109)

Clearly

Pk ≤ Pk . (110)

Since ψ ∈ S(R3), ψ̂ and its derivatives decay faster than the reciprocal of any polyno-
mial, we can find for k+ ∈ supp f1 and for n ∈ N suitable constants such that

∣∣∣∣ψ̂
(

k+ − k0

ε

)∣∣∣∣≤cPn
k+
,

∣∣∣∣∂ki ψ̂

(
k+ − k0

ε

)∣∣∣∣ ≤ c

ε
Pn

k+
,

∣∣∣∣∂ki ∂k j ψ̂

(
k+ − k0

ε

)∣∣∣∣≤ c

ε2 Pn
k+
.

(111)

The derivatives of the third factor e−ik3 Lε of g can be estimated on supp f1 as follows:

∣∣∣e−ik3 Lε
∣∣∣ ≤ 1,

∣∣∣∂ki e
−ik3 Lε

∣∣∣ ≤ Lε
|ki |
|k3| ≤ Lε |ki |. (112)

Since |ki |Pk+ ≤ ε, we obtain using (111) with n = j + 1 and (42) that

∣∣∣∣
(
∂ki e

−ik3 Lε
)
ψ̂

(
k+ − k0

ε

)∣∣∣∣ ≤ cLε |ki |Pk+ P j
k+

≤ cLεεP j
k+

= c

εl−1 P j
k+
, j arbitrary.

(113)

With a similar calculation we find that
∣∣∣∣
(
∂ki ∂k j e

−ik3 Lε
)
ψ̂

(
k+ − k0

ε

)∣∣∣∣ ≤ c

ε2l−2 P j
k+
, j arbitrary, (114)
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and analogous estimates for terms which contains derivatives of ψ̂
(

k+−k0
ε

)
. Clearly

we have that

sup
k+∈supp f1

∣∣∣∣ f1(k+)

k3

∣∣∣∣≤c, sup
k+∈supp f1

∣∣∣∣∂ki

f1(k+)

k3

∣∣∣∣≤c, sup
k+∈supp f1

∣∣∣∣∂ki ∂k j

f1(k+)

k3

∣∣∣∣≤c, i, j =1, 2.

(115)

Combining (108), (111)–(115) and using that 2l − 2 > 2 since l > 2 we obtain for all
k′ ∈ R

3 and any n ∈ N that

∣∣∂ki ∂k j g(k1, k2, k′, ε)
∣∣ ≤ c

ε2l−2 Pn
k+
, (116)

for all (k1, k2) such that k+ ∈ supp f1.
Reintroducing the original integration variable ω we then have that

|M | ≤ c

y2
p
ε2d−2l+ 1

2

∫

k=k′
χ{ f1>0} Pn

k k′k3d�(k)

≤ c

y2
p
ε2d−2l+ 1

2χ(
k0
2 ,

3
2 k0

)(k′)
∫

k=k′,|k−k0|< k0
2

Pn
k d�(k). (117)

Choosing n = 4 in (117) and splitting P4
k into

P4
k = P1

k P3
k ≤ P1

k P3
k , (118)

we obtain that

|M | ≤ c

y2
p
ε2d+ 1

2 −2lχ(
k0
2 ,

3
2 k0

)(k′)P1
k′

∫

k=k′,|k−k0|< k0
2

P3
k d�(k). (119)

Moreover, it is easy to see that

∫

k=k′,|k−k0|< k0
2

P3
k d�(k) ≤ c

∫

R2

1(
1 + kp

ε

)3 dk1dk2 ≤ cε2. (120)

Thus

|M | ≤ c

y2
p
ε2d+ 5

2 −2lχ(
k0
2 ,

3
2 k0

)(k′)P1
k′ (121)

and (104) follows. This completes the proof of Lemma 5. ��
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9. Summary and Outlook

The purpose of this paper has been to rigorously derive the standard formula for the
scattering cross section starting from a microscopic model of a scattering experiment.
While the use of Bohmian mechanics is crucial for our result, we would like to stress
that major parts of our proof are vital even from an orthodox point of view. These parts
concern in particular the replacement of the incoming asymptote by its scattering state
(cf. Lemma 3 and Remark 10) and the flux-across-surfaces theorem in a formulation
which depends only on the smoothness of the scattering state (cf. Proposition 3, Lemma
1 and [11]).

Several problems have been left for future work, which we shall mention here.

• Bound states: Our assumption A3 arises from the problem that in general the transla-
tion of the initial wave function by the impact parameter y—which is needed for the
averaging over the beam profile—will produce wave functions which have a com-
ponent in the bound states. One would then have to show that asymptotically the
crossing statistics are induced by the “relevant part”ψ ′ of the wave function, namely

ψ ′ := Pψ,

where P is the projection onto the absolutely continuous subspace Ha.c.(H) and is
given by

P := �−�∗−.

Note that by using Lemma 3 one can also show that

lim
L→∞

∫

YL

‖Pψ y − ψ y‖2d2 y = 0, (122)

i.e., that the bound state component is small in an L2-sense. This is however not
directly applicable.

• It would of course be desirable to derive the crossing statistics for many particles
guided in general by an entangled wave function both for the noninteracting case and
eventually even for interacting particles [13].

• We are currently working [8] on a detailed formulation of the conditions character-
izing the scattering regime, which turns out to be surprisingly intricate. What we
have shown here is that the simplest limiting procedure that brings the experimen-
tal arrangement into the scattering regime yields the standard formula of formal
scattering theory. This formula should of course hold much more generally—more
or less for all limits corresponding to the scattering regime—but establishing that this
is so remains a formidable challenge.

Acknowledgements. The work of S. Goldstein was supported in part by NSF Grant DMS-0504504. The work
of T. Moser was supported by the DFG (DU 120/10). The work of N. Zanghì was supported by INFN.
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10. Appendix

Proof of Lemma 1. Let ψ ∈ G. Then there is a χ ∈ G0 and a t ∈ R such that

ψ = e−i Htχ.

Using the intertwining property (6) we obtain

ψout = �−1
+ ψ = �−1

+ e−i Htχ = e−i H0t�−1
+ χ = e−i H0tχout. (123)

Since G+ is invariant under time shifts it suffices to show that χ̂out(k) is in G+. Since
〈x〉2 Hnχ(x) ∈ L2(R

3), 0 ≤ n ≤ 8, and 〈x〉4 Hnχ(x) ∈ L2(R
3), 0 ≤ n ≤ 3, we have

Hnχ(x) ∈ L1(R
3) ∩ L2(R

3), 0 ≤ n ≤ 8,

〈x〉 j Hnχ(x) ∈ L1(R
3) ∩ L2(R

3), 0 ≤ n ≤ 3, j = {1, 2}. (124)

Using Proposition 1 (ii), (iii) we have for f ∈ L2(R3):

F+�+ f = F f, (125)

and hence for χ = �+χout we have that

χ̂out(k) = F+χ(k) = (2π)−
3
2

∫
ϕ∗

+(x, k)χ(x)d3x . (126)

Using the intertwining property (6) we thus have:

k2

2
χ̂out(k) = Ĥ0χout(k) = F(H0�

−1
+ χ)(k) = F(�−1

+ Hχ)(k) = F+(Hχ)(k)

= (2π)−
3
2

∫
ϕ∗

+(x, k)(Hχ)(x)d3x . (127)

Similarly, applying Hn
0 to χ̂out(k) (0 ≤ n ≤ 8) we obtain

k2n

2n
χ̂out(k) = (2π)− 3

2
∫
ϕ∗

+(x, k)(Hnχ)(x)d3x . (128)

Since the generalized eigenfunctions are bounded (Proposition 2 (ii)) and Hnχ ∈
L1(R

3), 0 ≤ n ≤ 8, we obtain

|χ̂out(k)| ≤ c(1 + k)−16 ≤ c(1 + k)−15. (129)

Because of Proposition 2 (iii) and (124) we can differentiate (126) with respect to ki
and get

∣∣∂ki χ̂out(k)
∣∣ =

∣∣∣∣(2π)− 3
2

∫ (
∂kiϕ

∗
+(x, k)

)
χ(x)d3x

∣∣∣∣ ≤ c, ∀k ∈ R
3 \ {0}. (130)

Differentiating (128) with n = 3 with respect to ki we obtain

k6∂ki χ̂out(k) = 8(2π)−
3
2

∫ (
∂kiϕ

∗
+(x, k)

)
(H3χ)(x)d3x − 6k5χ̂out(k)

ki

k
. (131)
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Again the right-hand side is bounded because of Lemma 2 (iii), (124) and (129). Hence,
we obtain with (130):

∣∣∂ki χ̂out(k)
∣∣ ≤ c(1 + k)−6, ∀k ∈ R

3 \ {0}. (132)

Using Proposition 2 (iii) and (126) we may control κ times a second derivative of χ̂out(k),
obtaining

∣∣κ∂k j ∂ki χ̂out(k)
∣∣ =

∣∣∣∣(2π)− 3
2

∫ (
κ∂k j ∂kiϕ

∗
+(x, k)

)
χ(x)d3x

∣∣∣∣ ≤ c, ∀k ∈ R
3 \ {0}.

(133)

For the last inequality we have also used (124) with j = 2 and n = 0. Similarly, using
(131) we obtain

k6κ∂k j ∂ki χ̂out(k) = 8(2π)−
3
2

∫ (
κ∂k j ∂kiϕ

∗
+(x, k)

)
(H3χ)(x)d3x

− 30k4 k j

k

ki

k
κχ̂out(k)− 6k5 ki

k
κ∂k j χ̂out(k)

− 6k5χ̂out(k)κ
kδi j k − ki k j

k3 − 6k5 k j

k
κ∂ki χ̂out(k), (134)

with right-hand side that is bounded because of Proposition 2 (iii), (124), (129) and
(132). Hence, using (133),

∣∣κ∂αk χ̂out(k)
∣∣ ≤ c(1 + k)−6 ≤ c(1 + k)−5, |α| = 2, ∀k ∈ R

3 \ {0}. (135)

Equation (132) implies also that

|∂k χ̂out(k)| ≤ c(1 + k)−6, ∀k ∈ R
3 \ {0}. (136)

Similarly, twice differentiating (126) with respect to k we obtain that
∣∣∣∂2

k χ̂out(k)
∣∣∣ ≤ c, ∀k ∈ R

3 \ {0}, (137)

and then twice differentiating (128) for n = 2 with respect to k we obtain
∣∣∣∂2

k χ̂out(k)
∣∣∣ ≤ c(1 + k)−4 ≤ c(1 + k)−3, ∀k ∈ R

3 \ {0}, (138)

using Proposition 2 (iv), (124), (129), (136) and (137).
With (129), (132), (135) and (138) we see that χ̂out(k) ∈ G+. ��

Proof of Lemma 2. In the proof of Proposition 3 in [11] the absolute value of the flux
integrated over time and the surface RS2 with R > R0 (with some R0 > 0 depending
on the potential) is shown to be bounded (uniformly in R) by linear combinations of
integrals involving ψ̂out(k) and its derivatives, namely integrals over expressions corre-
sponding to the left hand side of the inequalities in Definition 2. Thus these bounds are
finite if ψ̂out(k) ∈ G+. To bound the integrated flux uniformly for allψεy, y ∈ Aε (and ε

small enough and fixed), F
(
ψεy,out

)
(k) = F

(
�−1

+ ψεy

)
(k) (note that ψεy ∈ Ha.c.(H),

for all y ∈ Aε , cf. (i) in Definition 3 or 4) must be bounded as in Definition 2 with
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constants uniform in y ∈ Aε . These constants depend, according to the proof of Lemma
1, on the norms of

‖Hnψεy‖1, 0 ≤ n ≤ 8 and ‖〈x〉 j Hnψεy‖1, 0 ≤ n ≤ 3, j ∈ {1, 2}. (139)

We will show that for ε small enough there exists a constant C > 0 such that

|Hnψεy(x)| ≤ C(1 + x)−6, 0 ≤ n ≤ 8, ∀ y ∈ Aε . (140)

Thus the norms in (139) are bounded uniformly in y ∈ Aε and Lemma 2 follows.
It remains to establish (140). We start with n = 0. Sinceψ ∈ S(R3) and y ∈ Aε, Aε

compact, we obtain

|ψεy(x)| = ε
3
2 |ψ(ε(x − y))| ≤ c(1 + |x − y|)−6 ≤ c(1 + x)−6, ∀ y ∈ Aε . (141)

For n = 1 we have withψεy ≡ Tyψ
ε (Ty is the translation operator) and [Ty, H0]− = 0,

|Hψεy(x)| = |(H0 + V )Tyψ
ε(x)| = |Ty H0ψ

ε(x)| + ε
3
2 |V (x)ψ(ε(x − y))|. (142)

Using now |V (x)| < M < ∞ for V ∈ V or sup
x∈suppψεy

|V (x)| < M < ∞ for ψ ∈
C∞

0 (R
3), V ∈ V ′, y ∈ Aε and ε small enough, we obtain together with (141),

|Hψεy(x)| ≤ |Ty H0ψ
ε(x)| + c(1 + x)−6. (143)

Since ψε ∈ S(R3) we have that also H0ψ
ε ∈ S(R3) so that analogously to (141), there

is the bound

|Ty H0ψ
ε(x)| ≤ c(1 + x)−6, ∀ y ∈ Aε . (144)

Equations (143) and (144) yield (140) for n = 1. Analogously, we obtain (140) for
2 ≤ n ≤ 8 by using the fact that ψ ∈ S(R3) and |∂αx V (x)| < M < ∞, ∀ |α| ≤ 14,
if V ∈ V or sup

x∈suppψεy

|∂αx V (x)| < M < ∞, ∀ |α| ≤ 14, for all y ∈ Aε and ε small

enough if ψ ∈ C∞
0 (R

3) and V ∈ V ′. ��
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