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Abstract

With many Hamiltonians one can naturally associate a |¥|*-distributed
Markov process. For nonrelativistic quantum mechanics, this process is in fact
deterministic, and is known as Bohmian mechanics. For the Hamiltonian of a
quantum field theory, it is typically a jump process on the configuration space of
a variable number of particles. We define these processes for regularized quan-
tum field theories, thereby generalizing previous work of John S. Bell [3] and of
ourselves [11]. We introduce a formula expressing the jump rates in terms of the
interaction Hamiltonian, and establish a condition for finiteness of the rates.

PACS numbers: 03.65.Ta (foundations of quantum mechanics), 02.50.-r (proba-
bility theory, stochastic processes, and statistics), 03.70.4+k (theory of quantized

fields)
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1 Introduction

The central formula of this paper is

[(2/R) Im (W| P(dg) H P(dg)| )] * (1)
(P|P(dq)]¥) |

o(dqlq’) =

It plays a role similar to that of Bohm’s equation of motion (2). Together, these two
equations make possible a formulation of quantum field theory (QFT) that makes no



reference to observers or measurements, while implying that observers, when making
measurements, will arrive at precisely the results that QFT is known to predict. Special
cases of formula (1) have been utilized before [3, 11, 31]. Part of what we explain in this
paper is what this formula means, how to arrive at it, when it can be applied, and what
its consequences are. Such a formulation of QFT takes up ideas from the seminal paper
of John S. Bell [3], and we will often refer to theories similar to the model suggested by
Bell in [3] as “Bell-type QFTs”. (What similar means here will be fleshed out in the
course of this paper.)

The aim of this paper is to define a canonical Bell-type model for more or less any
regularized QFT. We assume a well-defined Hamiltonian as given; to achieve this, it is
often necessary to introduce cut-offs. We shall assume this has been done where needed.
In cases in which one has to choose between several possible position observables, for
example because of issues related to the Newton—Wigner operator [26, 19], we shall also
assume that a choice has been made.

The primary variables of Bell-type QFTs are the positions of the particles. Bell sug-
gested a dynamical law, governing the motion of the particles, in which the Hamiltonian
H and the state vector U determine the jump rates . We point out how Bell’s rates
fit naturally into a more general scheme summarized by (1). Since these rates are in a
sense the smallest choice possible (as explained in Section 5), we call them the minimal
jump rates. By construction, they preserve the |¥|? distribution. Most of this paper
concerns the properties and mathematical foundations of minimal jump rates. In Bell-
type QFTs, which can be regarded as extensions of Bohmian mechanics, the stochastic
jumps often correspond to the creation and annihilation of particles. We will discuss
further aspects of Bell-type QFTs and their construction in our forthcoming work [12].

The paper is organized as follows. In Section 2 we introduce all the main ideas
and reasonings; a superficial reading should focus on this section. Some examples of
processes defined by minimal jump rates are presented in Section 3. In Section 4 we
provide conditions for the rigorous existence and finiteness of the minimal jump rates. In
Section 5 we explain in what sense the rates (1) are minimal. Section 6 concerns further
properties of processes defined by minimal jump rates. In Section 7 we conclude.

2 The Jump Rate Formula

2.1 Review of Bohmian Mechanics and Equivariance

Bohmian mechanics [4, 14, 16] is a non-relativistic theory about N point particles moving
in 3-space, according to which the configuration @ = (Q,...,Qy) evolves according

to! dQ v
— = v = hlm ) 2
=@, e 2)
IThe masses my, of the particles have been absorbed in the Riemann metric guv on configuration

space R3N | g, i = m; 6ij Oapy i,5 = 1...N, a,b =1,2,3, and V is the gradient associated with g,
. 21 —1
ie,V=(m] Vg,...,my Vg,)




U = U,(q) is the wave function, which evolves according to the Schrodinger equation

ov
h— = HU
with

h2
H = —5A+V (4)

for spinless particles, with A = divV. For particles with spin, ¥ takes values in the
appropriate spin space C¥, ¥V may be matrix valued, and numerator and denominator
of (2) have to be understood as involving inner products in spin space. The secret
of the success of Bohmian mechanics in yielding the predictions of standard quantum
mechanics is the fact that the configuration Q; is |¥,|*-distributed in configuration space
at all times ¢, provided that the initial configuration Qo (part of the Cauchy data of the
theory) is so distributed. This property, called equivariance in [14], suffices for empirical
agreement between any quantum theory (such as a QFT) and any version thereof with
additional (often called “hidden”) variables @), provided the outcomes of all experiments
are registered or recorded in these variables. That is why equivariance will be our guide
for obtaining the dynamics of the particles.

The equivariance of Bohmian mechanics follows immediately from comparing the
continuity equation for a probability distribution p associated with (2),

dp

5 = —div(pv), (5)

with the equation satisfied by |¥|? which follows from (3),

o 2 '
oo (0:t) = = Tm [0 (. ) (H ) (g, )] (6)
In fact, it follows from (4) that
2 .
7 I | (q.0) (HW)(q.1)] = —div [FIm W (g, )V(g. 1) 7
so, recalling (2), one obtains that
oy -
Bl v}
M i), )

and hence that if p, = |¥;|* at some time ¢ then p, = |¥,|* for all times. Equivariance
is an expression of the compatibility between the Schrodinger evolution for the wave
function and the law, such as (2), governing the motion of the actual configuration. In
[14], in which we were concerned only with the Bohmian dynamics (2), we spoke of the
distribution |¥|? as being equivariant. Here we wish to find processes for which we have
equivariance, and we shall therefore speak of equivariant processes and motions.



2.2 Equivariant Markov Processes

The study of example QFT's like that of [11] has lead us to the consideration of Markov
processes as candidates for the equivariant motion of the configuration ) for Hamilto-
nians H more general than those of the form (4).

Consider a Markov process (J; on configuration space. The transition probabilities
are characterized by the backward generator L;, a (time-dependent) linear operator
acting on functions f on configuration space:

L) = SE((@Qur)l@i =) )

where d/ds means the right derivative at s = 0 and E(-|-) denotes the conditional
expectation. Equivalently, the transition probabilities are characterized by the forward
generator %, (or, as we shall simply say, generator), which is also a linear operator but
acts on (signed) measures on the configuration space. Its defining property is that for
every process (J; with the given transition probabilities, the distribution p; of @); evolves
according to

— =2 (10)

%, is the dual of L; in the sense that

/ £(q) Zipldg) = / Lof(g) p(da) (11)

We will use both L; and .%;, whichever is more convenient. We will encounter several
examples of generators in the subsequent sections.

We can easily extend the notion of equivariance from deterministic to Markov pro-
cesses. Given the Markov transition probabilities, we say that the |W|? distribution is
equivariant if and only if for all times ¢ and ¢’ with ¢ < t/, a configuration @); with dis-
tribution |¥;|? evolves, according to the transition probabilities, into a configuration Qy
with distribution |¥y|2. In this case, we also simply say that the transition probabilities
are equivariant, without explicitly mentioning |¥|?>. Equivariance is equivalent to

oW, |*
ot

for all ¢. When (12) holds (for a fixed t) we also say that % is an equivariant generator
(with respect to W, and H). Note that this definition of equivariance agrees with the
previous meaning for deterministic processes.

We call a Markov process @) equivariant if and only if for every ¢ the distribution p;
of Q; equals |¥,|%. For this to be the case, equivariant transition probabilities are nec-
essary but not sufficient. (While for a Markov process @) to have equivariant transition
probabilities amounts to the property that if p; = |¥;|? for one time ¢, where p; denotes
the distribution of @, then py = |Uy|? for every t' > ¢, according to our definition of
an equivariant Markov process, in fact p;, = |¥,;|? for all t.) However, for equivariant
transition probabilities there exists a unique equivariant Markov process.

Ll =

(12)



The crucial idea for our construction of an equivariant Markov process is to note
that (6) is completely general, and to find a generator .Z; such that the right hand side
of (6) can be read as the action of .Z on p = |¥|?

2
ﬁlm\I/*H\IJ = Z|V)?. (13)

We shall implement this idea beginning in Section 2.4, after a review of jump processes
and some general considerations. But first we shall illustrate the idea with the familiar
case of Bohmian mechanics.

For H of the form (4), we have (7) and hence that

(14)

%Im VHY = —div (AIm U*V) = — div (ywhlm d Wj)

w2

Since the generator of the (deterministic) Markov process corresponding to the dynam-
ical system d@/dt = v(Q) given by a velocity vector field v is

ZLp=—div(pv), (15)

we may recognize the last term of (14) as .Z|¥|? with £ the generator of the determin-
istic process defined by (2). Thus, as is well known, Bohmian mechanics arises as the
natural equivariant process on configuration space associated with H and V.

To be sure, Bohmian mechanics is not the only solution of (13) for H given by
(4). Among the alternatives are Nelson’s stochastic mechanics [25] and other velocity
formulas [8]. However, Bohmian mechanics is the most natural choice, the one most
likely to be relevant to physics. (It is, in fact, the canonical choice, in the sense of
minimal process which we shall explain in [12, Sec. 5.2].)

An important class of equivariant Markov processes are equivariant jump processes,
which we discuss in the next three sections. They arise naturally in QFT, as we shall
explain in Section 2.6.

2.3 Equivariant Jump Processes

Let Q denote the configuration space of the process, whatever sort of space that may
be (vector space, lattice, manifold, etc.); mathematically speaking, we need that Q be a
measurable space. A (pure) jump process is a Markov process on Q for which the only
motion that occurs is via jumps. Given that @); = ¢, the probability for a jump to ¢/,
i.e., into the infinitesimal volume dq’ about ¢’, by time ¢ + dt is o4(dq’|q) dt, where o is
called the jump rate. In this notation, o is a finite measure in the first variable; o(B|q)
is the rate (the probability per unit time) of jumping to somewhere in the set B C Q,
given that the present location is ¢. The overall jump rate is o(Q|q).

It is often the case that Q is equipped with a distinguished measure, which we shall
denote by dg or dq, slightly abusing notation. For example, if @ = R, dg may be the
Lebesgue measure, or if Q is a Riemannian manifold, dg may be the Riemannian volume
element. When o(-|q) is absolutely continuous relative to the distinguished measure,
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we also write o(¢'|q) d¢' instead of o(dq’|q). Similarly, we sometimes use the letter p for
denoting a measure and sometimes the density of a measure, p(dq) = p(q) dg.

A jump first occurs when a random waiting time 7" has elapsed, after the time ¢, at
which the process was started or at which the most recent previous jump has occurred.
For purposes of simulating or constructing the process, the destination ¢’ can be chosen
at the time of jumping, ¢ty + T, with probability distribution oy, 17(Q|q) ™! o,47(|q).
In case the overall jump rate is time-independent, T is exponentially distributed with
mean o(Q|q)~'. When the rates are time-dependent—as they will typically be in what
follows—the waiting time remains such that

to+T
/ 0:(Qlg) dt

to

is exponentially distributed with mean 1, i.e., T becomes exponential after a suitable
(time-dependent) rescaling of time. For more details about jump processes, see [6].
The generator of a pure jump process can be expressed in terms of the rates:

Zyp(dq) = / <0<dQ|q/)P(dql)—U(dql|Q)P(dQ)>a (16)
qeQ

a “balance” or “master” equation expressing dp/0t as the gain due to jumps to dg minus
the loss due to jumps away from gq.

We shall say that jump rates o are equivariant if £, is an equivariant generator. It
is one of our goals in this paper to describe a general scheme for obtaining equivariant
jump rates. In Sections 2.4 and 2.5 we will explain how this leads us to formula (1).

2.4 Integral Operators Correspond to Jump Processes

What characterizes jump processes versus continuous processes is that some amount
of probability that vanishes at ¢ € Q can reappear in an entirely different region of
configuration space, say at ¢ € Q. This is manifest in the equation for dp/0t, (16):
the first term in the integrand is the probability increase due to arriving jumps, the
second the decrease due to departing jumps, and the integration over ¢’ reflects that ¢
can be anywhere in Q. This suggests that Hamiltonians for which the expression (6)
for O|¥|?/0t is naturally an integral over dq’ correspond to pure jump processes. So
when is the left hand side of (13) an integral over d¢’? When H is an integral operator,
i.e., when (q|H|q’) is not merely a formal symbol, but represents an integral kernel that
exists as a function or a measure and satisfies

(HO)0) = [ dd (1) V@), (1

(For the time being, think of Q as R? and of wave functions as complex valued.) In this
case, we should choose the jump rates in such a way that, when p = [¥U]?,

7(ald) o(d) ~ o) pla) = > T ¥ (q) {a Hld) ¥(), (15)



and this suggests, since jump rates must be nonnegative (and the right hand side of (18)
is anti-symmetric), that

2 . +
o(ald) () = |5 Im (@) {al Hla') ¥(q)
(where T denotes the positive part of x € R, that is, 2 is equal to = for z > 0 and is

zero otherwise), or

[(2/) Tm W (q) (| H|q') ¥(¢)] "

U(q') ¥(q')
These rates are an instance of what we call the minimal jump rates associated with H
(and ¥). They are also an instance of formula (1), as will become clear in the following
section. The name comes from the fact that they are actually the minimal possible
values given (18), as is expressed by the inequality (96) and will be explained in detail
in Section 5. Minimality entails that at any time ¢, one of the transitions ¢; — ¢, or
q¢2 — q1 is forbidden. We will call the process defined by the minimal jump rates the
minimal jump process (associated with H).

In contrast to jump processes, continuous motion, as in Bohmian mechanics, cor-
responds to such Hamiltonians that the formal matrix elements (¢|H|q') are nonzero
only infinitesimally close to the diagonal, and in particular to differential opera-
tors like the Schrodinger Hamiltonian (4), which has matrix elements of the type
0"(q—q") + V() 0(q — ')

The minimal jump rates as given by (19) have some nice features. The possible
jumps for this process correspond to the nonvanishing matrix elements of H (though,
depending on the state ¥, even some of the jump rates corresponding to nonvanishing
matrix elements of H might happen to vanish). Moreover, in their dependence on the
state W, the jump rates o depend only “locally” upon W: the jump rate for a given jump
¢ — q depends only on the values ¥(q¢’) and ¥(q) corresponding to the configurations
linked by that jump. Discretizing R? to a lattice €Z3, one can obtain Bohmian mechanics
as a limit ¢ — 0 of minimal jump processes [31, 32|, whereas greater-than-minimal jump
rates lead to Nelson’s stochastic mechanics [25] and similar diffusions; see [32, 17]. If
the Schrodinger operator (4) is approximated in other ways by operators corresponding
to jump processes, e.g., by H, = e * He=*H the minimal jump processes presumably
also converge to Bohmian mechanics.

We have reason to believe that there are lots of self-adjoint operators which do not
correspond to any stochastic process that can be regarded as defined, in any reasonable
sense, by (19).? But such operators seem never to occur in QFT. (The Klein-Gordon
operator vVm?c* — h2c?A does seem to have a process, but it requires a more detailed
discussion which will be provided in a forthcoming work [13].)

o(qld) = (19)

2Consider, for example, H = pcosp where p is the one-dimensional momentum operator —ihd/dq.
Its formal kernel (g|H|q') is the distribution —£6'(q— ¢’ —1) — 26'(¢— ¢’ + 1), for which (19) would not
have a meaning. From a sequence of smooth functions converging to this distribution, one can obtain
a sequence of jump processes with rates (19): the jumps occur very frequently, and are by amounts of
approximately £1. A limiting process, however, does not exist.
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2.5 Minimal Jump Rates

The reasoning of the previous section applies to a far more general setting than just con-
sidered: to arbitrary configuration spaces Q and “generalized observables” —POVMs—
defining, for our purposes, what the “position representation” is. We now present this
more general reasoning, which leads to formula (1).

The process we construct relies on the following ingredients from QFT:

1. A Hilbert space ¢ with scalar product (¥|®).

2. A unitary one-parameter group U; in ¢ with Hamiltonian H,

i

Ut = e_ﬁtH >
so that in the Schrodinger picture the state U evolves according to

L dv,
he—t — HU, . 9
Y ¢ (20)

U; could be part of a representation of the Poincaré group.

3. A positive-operator-valued measure (POVM) P(dg) on Q acting on .5, so that
the probability that the system in the state W is localized in dq at time ¢ is

Py(dq) = (V| P(dq)[Vy) - (21)

Mathematically, a POVM P on Q is a countably additive set function (“measure”),
defined on measurable subsets of Q, with values in the positive (bounded self-adjoint)
operators on (a Hilbert space) ., such that P(Q) is the identity operator.> Physically,
for our purposes, P(-) represents the (generalized) position observable, with values in
Q. The notion of POVM generalizes the more familiar situation of observables given
by a set of commuting self-adjoint operators, corresponding, by means of the spectral
theorem, to a projection-valued measure (PVM): the case where the positive operators
are projection operators. A typical example is the single Dirac particle: the position
operators on L?(R? C*) induce there a natural PVM Fy(-): for any Borel set B C
R3, Py(B) is the projection to the subspace of functions that vanish outside B, or,
equivalently, Py(B)V(q) = 1p(q) V(g) with 1p the indicator function of the set B.
Thus, (U|Py(dq)|¥) = |¥(q)|*dgq. When one considers as Hilbert space J# only the
subspace of positive energy states, however, the localization probability is given by
P(-) = P,PRy(-)I with P, : L?(R3 C*) — 4 the projection and I : 7# — L*(R3 C*)
the inclusion mapping. Since P, does not commute with most of the operators Py(B),
P(-)isno longer a PVM but a genuine POVM* and consequently does not correspond to

3The countable additivity is to be understood as in the sense of the weak operator topology. This
in fact implies that countable additivity also holds in the strong topology.

4This situation is indeed more general than it may seem. By a theorem of Naimark [7, p. 142], every
POVM P(-) acting on 5 is of the form P(-) = Py Py(-)P; where Py is a PVM on a larger Hilbert
space, and P the projection to .77.



any position operator—although it remains true (for ¥ in the positive energy subspace)
that (¥|P(dq)|¥) = |¥(q)|?dq. That is why in QFT, the position observable is indeed
more often a POVM than a PVM. POVMs are also relevant to photons [1, 22]. In one
approach, the photon wave function ¥ : R® — C? is subject to the constraint condition
VU =0,V + Wy + 03¥3 = 0. Thus, the physical Hilbert space JZ is the (closure
of the) subspace of L*(R? C?) defined by this constraint, and the natural PVM on
L?(R3, C?) gives rise, by projection, to a POVM on . So much for POVMs. Let us
get back to the construction of a jump process.

The goal is to specify equivariant jump rates o = o¥#:* i.e., such rates that
dP
zp-2 22
pm (22)

To this end, one may take the following steps:

1. Note that By 2
D~ 2 m (| P(dg) H| ). (23)
dt h
2. Insert the resolution of the identity I = [ P(dq’) and obtain
qeQ
dPy(d
';Z(t 9 _ / Ji(dg,dd'), (24)
q'eQ
where 5
Ji(dg, dg') = + Tm (W, P(dq) HP(dq) [ ¥y) . (25)

3. Observe that J is anti-symmetric, J(d¢’, dq) = —J(dq, dq’). Thus, since x = 2t —
(—l’)+,

J(daq,dq') = [(2/h) Im (0| P(dg) HP(dg)|¥)]" — [(2/h) Im (V| P(dg') H P(dg)|¥)] .

4. Multiply and divide both terms by P(-), obtaining that

D[ em P EPA W
[ stmanr= [ ( (¥ P () [¥) Han -

q€Q qe€Q

(2/1) Im (0| P(dq") HP(dg) )]
(U [P(dq)|0) P(d(”) '

5. By comparison with (16), recognize the right hand side of the above equation as
£, P, with £, the generator of a Markov jump process with jump rates (1), which
we call the minimal jump rates. We repeat the formula for convenience:

[(2/n) lm (V| P(dg) H P(dg)| V)]

o(dqlq) = (U|P(dq)|¥)

10



Mathematically, the right hand side of this formula as a function of ¢’ must be understood
as a density (Radon—Nikodym derivative) of one measure relative to another. The plus
symbol denotes the positive part of a signed measure; it can also be understood as
applying the plus function, x* = max(z, 0), to the density, if it exists, of the numerator.

To sum up, we have argued that with H and ¥ is naturally associated a Markov
jump process @); whose marginal distributions coincide at all times by construction with
the quantum probability measure, p;(-) = P;(-), so that @, is an equivariant Markov
process.

In Section 4, we establish precise conditions on H, P, and ¥ under which the jump
rates (1) are well-defined and finite P-almost everywhere, and prove that in this case
the rates are equivariant, as suggested by the steps 1-5 above. It is perhaps worth
remarking at this point that any H can be approximated by Hamiltonians H,, (namely
Hilbert—Schmidt operators) for which the rates (1) are always (for all ¥) well-defined
and equivariant, as we shall prove in Section 4.2.1.

2.6 Bell-Type QFT

A Bell-type QFT is about particles moving in physical 3-space; their number and posi-
tions are represented by a point ); in configuration space Q, with Q defined as follows.
Let TR? denote the configuration space of a variable (but finite) number of identical
particles in R?, i.e., the union of (R3)™ modulo permutations,

[e.o]

TR® = | J(R?)"/S, . (26)

n=0

Q is the Cartesian product of several copies of I'R3, one for each species of particles.
For a discussion of the space I'R3, and indeed of I'S for any other measurable space S
playing the role of physical space, see [12, Sec. 2.8].

A related space, for which we write T.R?, is the space of all finite subsets of R
it is contained in I'R?, after obvious identifications. In fact, [;R* = I'R* \ A, where
A is the set of coincidence configurations, i.e., those having two or more particles at
the same position. T',R? is the union of the spaces Qi?) forn =0,1,2,..., where Qg?)
is the space of subsets of R® with n elements, a manifold of dimension 3n (see [10]
for a discussion of Bohmian mechanics on this manifold). The set A of coincidence
configurations has codimension 3 and thus can usually be ignored. We can thus replace
I'R? by the somewhat simpler space IR

Q; follows a Markov process in Q, which is governed by a state vector ¥ in a suitable
Hilbert space 5. ¢ is related to @ by means of a PVM or POVM P.

The Hamiltonian of a QFT usually comes as a sum, such as
H=H,+ H, (27)

with Hj the free Hamiltonian and H; the interaction Hamiltonian. If several particle
species are involved, Hj is itself a sum containing one free Hamiltonian for each species.

11



The left hand side of (13), which should govern our choice of the generator, is then also

a sum,

2 2
ﬁlm‘ll*HO\I/—l— ﬁlm\I/*HI\I/ = Z|V)?. (28)

This opens the possibility of finding a generator .Z by setting . = %, + .£7, provided
we have generators %, and . corresponding to Hy and H; in the sense that

2
+ Im W™ HoW = L| |2 (29a)
2

ﬁlm U H U = Z| )2, (29b)

This feature of (13) we call process additivity; it is based on the fact that the left hand
side of (13) is linear in H.

In a Bell-type QFT, the generator .Z is of the form .Z = £,+.%}, where % is usually
the generator of a deterministic process, usually defined by the Bohmian or Bohm—Dirac
law of motion, see below, and .Z} is the generator of a pure jump process, which is our
main focus in this paper. The process generated by .Z is then given by deterministic
motion determined by %, randomly interrupted by jumps at a rate determined by .Z7.

We thus need to define two equivariant processes, one (the “free process”) associated
with Hy and the other (the “interaction process”) with H;. The interaction process is
the pure jump process with rates given by (1) with H; in place of H. We now give a
description of the free process for the two most relevant free Hamiltonians: the second-
quantized Schrodinger operator and the second-quantized Dirac operator. We give a
more general and more detailed discussion of free processes in [12]; there we provide a
formula, roughly analogous to (1), for .4 in terms of Hy, and an algorithm for obtaining
the free process from a one-particle process that is roughly analogous to the “second
quantization” procedure for obtaining Hj, from a one-particle Hamiltonian.

The free process associated with a second-quantized Schrédinger operator arises from
Bohmian mechanics. Fock space 57 = .% is a direct sum

F =P 7", (30)

n=0

where .# ™ is the n-particle Hilbert space. .#(™ is the subspace of symmetric (for
bosons) or anti-symmetric (for fermions) functions in L?(R®", (C?*™1)®") for spin-s par-
ticles. Thus, ¥ € .# can be decomposed into a sequence ¥ = (U@ @M g 5
the n-th member (™ being an n-particle wave function, the wave function represent-
ing the n-particle sector of the quantum state vector. The obvious way to obtain a
process on @ = I'R? is to let the configuration Q(t), containing N = #Q(t) particles,
move according to the N-particle version of Bohm’s law (2), guided by W™ 5> This is

°As defined, configurations are unordered, whereas we have written Bohm’s law (2) for ordered
configurations. Thanks to the (anti-)symmetry of the wave function, however, all orderings will lead to
the same particle motion. For more about such considerations, see our forthcoming work [10].
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indeed an equivariant process since Hy has a block diagonal form with respect to the

decomposition (30),
HO - @ H(gn) 5
n=0

and Hén) is just a Schrodinger operator for n noninteracting particles, for which, as we
already know, Bohmian mechanics is equivariant. We used a very similar process in [11]
(the only difference being that particles were numbered in [11]).

Similarly, if Hy is the second quantized Dirac operator, we let a configuration () with
N particles move according to the usual N-particle Bohm-Dirac law [5, p. 274]

dQ C‘I’*(Q) ay ¥(Q)
dt Q) ¥(Q)

where ¢ denotes the speed of light and ay = (a, ..., a™)) with a® acting on the
spin index of the k-th particle.

This completes the construction of the Bell-type QFT. An explicit example of a
Bell-type process for a simple QFT is described in [11], which we take up again in
Section 3.12 below to point out how its jump rates fit into the scheme (1). Another
such example, concerning electron—positron pair creation in an external electromagnetic
field, is described in [12, Sec. 3.3.].

(31)

3 Examples

In this section, we present various special cases of the jump rate formula (1) and examples
of its application. We also point out how the jump rates of the models in [11] and [3]
are contained in (1).

3.1 A First Example

To begin with, we consider @ = R?, # = L?(R? C), and P the natural PVM, which
may be written P(dq) = |q)(q| dg. Then, P(dq) = (V|P(dq)|¥) = |¥(q)|*dq, and the
jump rate formula (1) reads

[(2/h) Im V*(q) {q|H|q") ¥(q')]"

o(qld) = T () U7 (32a)
2 U*(q)(q|H|g)+
ﬁlmw] . (32b)

Note that (32a) is the same expression as (19). As a simple example of an operator H;
with a kernel, consider a convolution operator, H; = V%, where V may be complex-

valued and V(—q) = V*(q),
H) @) = [Via—d)v(d)dd
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The kernel is (q|H;|¢') = V(¢ — ¢'). Together with Hy = —%2A, we obtain a baby
example of a Hamiltonian H = Hy + H; that goes beyond the form (4) of Schrodinger
operators, in particular in that it is no longer local in configuration space. Recall that
Hy is associated with the Bohmian motion (2). Combining the two generators on the
basis of process additivity, we obtain a process that is piecewise deterministic, with
jump rates (19) and Bohmian trajectories between successive jumps.

3.2 Wave Functions with Spin

Let us next become a bit more general and consider wave functions with spin, i.e.,
with values in C¥. We have Q = R?, 27 = L*(R¢,C*) and P the natural PVM, which
may be written P(dg) = S, |¢,i){q,i| dg, where i indexes the standard basis of C*.
Another way of viewing P is to understand 7 as the tensor product L*(R? C) ® CF,
and P(dq) = Py(dq) ® Icx with Py the natural PVM on L?(R? C) and I¢x the identity
operator on C*. Using the notation (®(q)|¥(q))) for the scalar product in C*, we can
write P(dg) = (V| P(dq)|¥) = (¥ (q)|¥(q))) dg, and the jump rate formula (1) reads

o(qld) = [(2/R) Im (W(q)|K (g, )W (g))]T
(¥ ()W (g))

with K(q,q'), the kernel of H, a k x k matrix. If we write ®*(q) U(q) for (®(q)|¥(q)),
as we did in (2) and (31), and (q|H|¢') for K(q,q’), (33) reads

n _ [(2/h) Im W™ (q) (q|H|q') V(q')]"
O(Q|Q) - \IJ*(q’) \If(q’) ’

which is (19) again, interpreted in a different way.

(33)

3.3 Vector Bundles

Next consider, instead of the fixed value space C¥, a vector bundle E over a Riemannian
manifold Q, and cross-sections of E as wave functions. In order to have a scalar product
of wave functions, we need that every bundle fiber E, be equipped with a Hermitian
inner product ((-|-),. We consider 5# = L?*(F) (the space of square-integrable cross-
sections) and P the natural PVM. For any ¢ and ¢, K(q,q') then has to be a C-linear
mapping E, — E,, so that the kernel of H is a cross-section of the bundle R P O
over @ x Q. (1) then reads

o(qld) = [(2/h) Tm (¥ (q)| K (g, 4') U(d)Ngl*
(P(@)¥(q)) g '

In the following we will use the notation ®*(q) ¥(q) for (®(q)|¥(q))), and (q|H|q') for
K(q,q'), so that

(34)

[(2/h) Im ¥*(q) {q|H|q") ¥(q')]"
U*(q') ¥(q') ’

o(qld) =

which looks like (19) again.
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3.4 Kernels of the Measure Type

The kernel (q|H|q') can be less regular than a function. Since the numerator of (1) is
a measure in ¢ and ¢, the formula still makes sense (for P the natural PVM) when
the kernel (q|H|q') is a complex measure in ¢ and ¢’. The mathematical details will
be discussed in Section 4.2. For instance, the kernel can have singularities like a Dirac
d, but it cannot have singularities worse than §, such as derivatives of ¢ (as would
arise from an operator whose position representation is a differential operator). It can
happen that the kernel is not a function but a measure even for a very well-behaved
(even bounded) operator. For example, this is the case for H a multiplication operator
(i.e., a function V(¢) of the position operator), (q|H|q") = V(q) (¢ — ¢'). Note, though,
that multiplication operators correspond to zero jump rates.

A nontrivial example of an operator with ¢ singularities in the kernel is H = 1 —
cos(p/po) where p = —ihd/0q is the momentum operator in one dimension, J¢ =
L?*(R,C), and py is a constant. The dispersion relation F = 1—cos(p/po) begins at p = 0
like %(p/ po)? but deviates from the parabola for large p. In the position representation,
H is the convolution with ((27)~'/2 times) the inverse Fourier transform of the function
1 — cos(hk/po), and thus (q|H|¢) = 6(q—¢') — 3 6(¢— ¢ + p—}z) —16(g—q - p—i) In this
case, (1) leads to

[(=1/R) Im ¥*(q) ¥(q')]"
U*(q') ¥(q')
(Note that nonnegative factors can be drawn out of the plus function.) This formula

may be viewed as contained in (19) as well, in a formal sense. As a consequence of (35),
only jumps by an amount of :I:p—iz can occur in this case.

o(ald') = (6a—d+2)+sg—d - ).  (35)

3.5 Infinite Rates

There also exist Markov processes that perform infinitely many jumps in every finite
time interval (e.g., Glauber dynamics for infinitely many spins). These processes, which
we do not count among the jump processes, may appear pathological, and we will not
investigate them in this paper, but we note that some Hamiltonians may correspond to
such processes. They could arise from jump rates o( -|¢’) given by (1) that form not a
finite but merely a o-finite measure, so that o(Q|q¢’) = oo. Here is an (artificial) example
of o-finite (but not finite) rates, arising from an operator H that is even bounded.

Let Q@ = R, 2 = L*[R) with P(-) the position PVM, and let H, in Fourier
representation, be multiplication by f(k) = /7 /2sign(k). H is bounded since f is. f
is the Fourier transform of i/x, understood as the distribution defined by the principal
value integral. As a consequence, H has, in position representation, the kernel (¢q|H|q') =
i/(q —¢'). From (19) we obtain the jump rates

2 1 [Re (q) W(Q')F
h¥+(q') ¥(q') q—dq ’

o(qld) = (36)

15



which entails that o(R|¢') = [ o(ql¢’) dg = oo at least whenever ¥ is continuous (and
nonvanishing) at ¢’. Nonetheless, since the rate for jumping anywhere outside the inter-
val [¢/ — &, ¢ +¢] is finite for every £ > 0 and since fq(f_f lg—d'|o(q|q’) dg < oo, a process
with these rates should exist: among the jumps that the process would have to make
per unit time, the large ones would be few and the frequent ones would be tiny—too
tiny to significantly contribute.

3.6 Discrete Configuration Space

Now consider a discrete configuration space Q. Mathematically, this means Q is a

countable set. In this case, measures are determined by their values on singletons {¢},

and we can specify all jump rates by specifying the rate o(q|q’) for each transition ¢ — q.

(1) then reads

) = [/ I HPE P )]
(U[P{q'} W)

We begin with the particularly simple case that there is an orthonormal basis of 77
labeled by Q, {|q) : ¢ € Q}, and P is the PVM corresponding to this basis, P{q} =
|g){q|. In this case, the notation (¢|H|q’) and the name “matrix element” can be taken
literally. The rates (1) then simplify to

[(2/R) Tm (W |q) (q|H|q') (¢ |¥)]*

(37)

D = (38
_ (2. (Yg)(alHlg )1+
- [% Im W] . (38b)

Note that (38a) is the obvious discrete analogue of (19); in fact, one can regard (19) as
another way of writing (38a) in this case.

Consider now the more general case that a basis of Hilbert space is indexed by two
“quantum numbers,” the configuration ¢ and another index 7. Then the POVM is given
by the PVM P{q} = >, |q,7)(g, 1|, the projection onto the subspace associated with ¢
(whose dimension might depend on ¢); such a PVM may be called “degenerate.” We
have P(q) = (U|P{q}V) = > (¥]q,i){q,i|¥), and (1) becomes

+
(2 m (o, ) (0. i1 H I ) . 19)

2 Al )N, 7P

o(qld) = (39)

We may also write (39) as (38a), understanding (V|g) and (¢’|¥) as multi-component,
(q|H|q') as a matrix, and products as inner products. In case that the dimension of the
subspace associated with ¢ is always k, independent of ¢, (39) is a discrete analogue of
the rate formula (33) for spinor-valued wave functions.

Apart from serving as mathematical examples, discrete configuration spaces are rel-
evant for several reasons: First, they provide particularly simple cases of jump processes
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with minimal rates that are easy to study. Second, any numerical computation is dis-
crete by nature. Third, one may consider approximating or replacing the R? that is
supposed to model physical space by a lattice Z3; after all, lattice approaches have often
been employed in QFT, for various reasons. Moreover, Bell-type QFTs will usually have
as configurations the positions of a variable number of particles; so the configuration
has a certain continuous aspect, the positions, and a certain discrete aspect, the number
of particles. Sometimes one wishes to study simplified models, and in this vein it may
be interesting to have only the particle number as a state variable, and thus the set of
nonnegative integers as configuration space.

3.7 Bell’s Process

The model Bell specified in [3] is a case of a minimal jump process on a discrete set. “For
simplicity,” Bell considers a lattice A instead of continuous 3-space, and a Hamiltonian
of a lattice QFT. As a consequence, the configuration space @ = I'(A) is countable.
(Bell even makes Q finite, but this is not relevant here. We also remark that according
to Bell’s formulation, even distinguishable particles have configuration space I'(A).)

Bell chooses as the configuration the number of fermions at every lattice site, rather
than the total particle number (i.e., in our terminology he takes P{q} to be the pro-
jection to the joint eigenspace of the fermion number operators for all lattice sites with
eigenvalues the occupation numbers corresponding to ¢ € T'(A)). He thus gives the
fermionic degrees of freedom a status different from the bosonic ones. That is to say,
boson particles do not exist in Bell’s model, despite the fact that 7 = ermions @ osons
and the presence of bosonic terms in the Hamiltonian.

Thus the PVM P{q} = Prermions{q} ® 1posons is “doubly” degenerate: the fermionic
occupation number operators do not form a complete set of commuting operators, be-
cause of both the spin and the bosonic degrees of freedom. Different spin states and
different quantum states of the bosonic fields are compatible with the same fermion
occupation numbers. So a further index i is necessary to label a basis {|q,i)} of JZ.
The jump rates Bell prescribes are then (39), and are thus a special case of (1). We
emphasize that here the index ¢ does not merely label different spin states, but states
of the quantized radiation as well.

3.8 A Case of POVM

Consider for J# the space of Dirac wave functions of positive energy. The POVM P(-)
we defined on it in Section 2.5 is, as we have already remarked, not a PVM but a genuine
POVM and arises from the natural PVM Py( - ) on L*(R3, C*) by P(-) = P, Py(-)I with
Py : L*(R3 C*) — A the projection and I : 7 — L*(R3 C?) the inclusion mapping.
We can extend any given interaction Hamiltonian H on J# to an operator on L*(R3, C*),
Hexe = THP,. If Hey possesses a kernel (q|Hex|q'), then H corresponds to a jump
process, and the rates (1) can be expressed in terms of this kernel, since for ¥ € 2,
(UP(dg) HP(A)[ W) = (V|P, Po(dg)TH P, Po(dg)T|¥) = (V| Py(dg) Hows Po(d)|¥) =
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U*(q) (q|Hext|q") ¥(¢') dg dq’. We thus obtain

[(2/h) Im W*(q) {g] Hext|g') ¥ (q)] "
V(q') ¥(q) '
This POVM is used in the pair creation model of [12, Sec. 3.3].

o(qld) = (40)

3.9 Another Case of POVM

Let 57 = L*(R%) and let Py( -) be the natural PVM. We obtain a POVM P by smearing
out P with a profile function ¢ : R? — [0,00) with [ ¢(q)dg = 1 and p(—q) = ¢(q),
e.g., a Gaussian:
P = [da [ oo Rutar) (11)
q€B q'€R4

Whereas Py(B) is multiplication by 1, P(B) is multiplication by ¢ x 15. It leads to
P(dg) = (o * [¥[*)(q) dg.
The jump rate formula (1) then yields
[(2/71) Imf dq// f dq/// 90((]” o q)\Ii*(q”) <q//|H|q///> \I/(q///> @(q’" o q/)}‘*‘
f dq// S0(q// _ q/) Jr* ((_I”) \I/(q”) )

i.e., the denominator gets smeared out with ¢, and the square bracket in the numerator
gets smeared out with ¢ in each variable.

o(qld) =

3.10 Identical Particles

The n-particle sector of the configuration space (without coincidence configurations)
of identical particles I'z(R?) is the manifold of n-point subsets of R?; let Q be this
manifold. The most common way of describing the quantum state of n fermions is by
an anti-symmetric (square-integrable) wave function ¥ on Q := R3"; let .# be the
space of such functions. Whereas for bosons ¥ could be viewed as a function on O, for
fermions ¥ is not a function on Q.

Nonetheless, the configuration observable still corresponds to a PVM P on Q: for
B C Q, we set P(B)¥(qy,---,4q,,) = Y(qy,---,4q,) if {q;,...,q,} € B and zero oth-
erwise. In other words, P(B) is multiplication by the indicator function of 7=!(B)
where 7 is the obvious projection mapping o) \ A — Q, with A the set of coincidence
configurations.

To obtain other useful expressions for this PVM, we introduce the formal kets |§)
for G € Q (to be treated like elements of L2(Q)), the anti-symmetrization operator S
(i.e., the projection L?(Q) — ), the normalized anti-symmetrizer® s = v/n! S, and

5The name means this: since S is a projection, SV is usually not a unit vector when ¥ is. Whenever
U € L%(Q) is supported by a fundamental domain of the permutation group, i.e., by a set Q C Q on
which (the restriction of) 7 is a bijection to Q, the norm of SV is 1/v/n!, so that s¥ is again a unit
vector.

18



the formal kets |sG) := s|G) (to be treated like elements of .#°). The |¢) and |sq) are
normalized in the sense that

(Gld) = 6(4 — ¢) and (sq|sq’) = (—1)2@9) §(q — ¢'),

where ¢ = 7(q), ¢ = 7(¢'), 0(¢,q’) is the permutation that carries ¢ into ¢’ given that
q= ¢, and (—1)2 is the sign of the permutation go. Now we can write

P(dg) = > |){(dldg = n!S|4)(d| dg = |sq)(sq| dg, (42)

gem—1(q)

where the sum is over the n! ways of numbering the n points in ¢; the last two terms
actually do not depend on the choice of § € 771(g), the numbering of q.
The probability distribution arising from this PVM is

P(dg) = > |W(q)*dg=n!|¥(§)dg = |(s4|¥)[* dg (43)
gem—1(q)

with arbitrary ¢ € 7(q).
If an operator H on L2(Q) is permutation invariant,

Ug’ll':[UQ — H for every permutation o, (44)

where U, is the unitary operator on LQ(Q) performing the permutation g, then H maps
anti-symmetric functions to anti-symmetric functions, and thus defines an operator H
on €. If H has a kernel (§|H|¢’) then the kernel is permutation invariant in the sense
that

(0(@)|H|o(d") = (@l H|d) Vo, (45)
where 0(qy,...,4q,) = (@ya), - -+ 9om)) and H also possesses a kernel,

(sqlH|sq') = n! (4| SHS|) ,Z Q)H|d ()

In this case (1) yields

[ 5 (@) 0l (@) ]

o(qld) = Z‘I’*( @) (46a)

B (wfsq)(sqlH i) s W) 46b
- (W) (5417) .

where § € 71(¢q) and ¢ € 7 !(¢'), as running variables in (46a) and as arbitrary but
fixed in (46b).
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3.11 Another View of Fermions

There is a way of viewing fermion wave functions as being defined on Q, rather than
R3", by regarding them as cross-sections of a particular 1-dimensional vector bundle
over Q. To this end, define an n!-dimensional vector bundle E by

E,:= @ C. (47)

ger—1(q)

Every function ¥ : R3 — C naturally gives rise to a cross-section ® of E, defined by

o) := P v (48)

ger—1(q)

The anti-symmetric functions form a 1-dimensional subbundle of E (see also [10] for
a discussion of this bundle). The jump rate formula for vector bundles (34) can be
applied to either the subbundle or F, depending on the way in which the kernel of H is
given. The kernel (G|H|¢) above translates directly into a kernel on Q x Q with values
in E, ® £y, for which the rate formula for bundles (34) is the same as the rate formula
for identical particles (46a) derived in the previous section.

Another alternative view of a fermion wave function is to regard it as a complex
differential form of full rank, a 3n-form, on Q. (See, e.g., [10]. This would not work
if the dimension of physical space were even.) Of course, the complex 3n-forms are
nothing but the sections of a certain 1-dimensional bundle, usually denoted C ® A3"Q,
which is equivalent to the subbundle of E considered in the previous paragraph, and
which is contained in the bundle C ® AQ of Grassmann numbers over Q.

3.12 A Simple QFT

We presented a simple example of a Bell-type QFT in [11], and we will now briefly point
to the aspects of this model that are relevant here. The model is based on one of the
simplest possible QFTs [30, p. 339].

The relevant configuration space Q for a QFT (with a single particle species) is
the configuration space of a variable number of identical particles in R?, which is the
set T'(R?), or, ignoring the coincidence configurations (as they are exceptions), the set
I',(R?) of all finite subsets of R®. The n-particle sector of this is a manifold of dimension
3n; this configuration space is thus a union of (disjoint) manifolds of different dimensions.
The relevant configuration space for a theory with several particle species is the Cartesian
product of several copies of I'z(R?). In the model of [11], there are two particle species,
a fermion and a boson, and thus the configuration space is

Q =T (R?) x T,(R?). (49)

We will denote configurations by ¢ = (x,y) with z the configuration of the fermions and
y the configuration of the bosons.
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For simplicity, we replaced in [11] the sectors of I';(R?) x ', (R?*), which are manifolds,
by vector spaces of the same dimension (by artificially numbering the particles), and
obtained the union

0= J®)" x [ J®rH", (50)

with n the number of fermions and m the number of bosons. Here, however, we will
use (49) as the configuration space. In comparison with (50), this amounts to (merely)
ignoring the numbering of the particles.

A is the tensor product of a fermion Fock space and a boson Fock space, and thus the
subspace of wave functions in L2(Q) that are anti-symmetric in the fermion coordinates
and symmetric in the boson coordinates. Let S denote the appropriate symmetrization
operator, i.e., the projection operator LQ(Q) — ¢, and s the normalized symmetrizer

SU(Ey, .. Ty Yy YY) = VRIS (@, .. 0, Yy Ys), (51)

ie., s = VNIM!S with N and 