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Abstract

The renewed interest in the foundations of quantum statistical mechanics in
recent years has led us to study John von Neumann’s 1929 article on the quantum
ergodic theorem. We have found this almost forgotten article, which until now
has been available only in German, to be a treasure chest, and to be much mis-
understood. In it, von Neumann studied the long-time behavior of macroscopic
quantum systems. While one of the two theorems announced in his title, the
one he calls the “quantum H-theorem,” is actually a much weaker statement than
Boltzmann’s classical H-theorem, the other theorem, which he calls the “quantum
ergodic theorem,” is a beautiful and very non-trivial result. It expresses a fact we
call “normal typicality” and can be summarized as follows: For a “typical” finite
family of commuting macroscopic observables, every initial wave function ¥y from
a micro-canonical energy shell so evolves that for most times ¢ in the long run,
the joint probability distribution of these observables obtained from 1), is close to
their micro-canonical distribution.
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1 Introduction

In recent years, there has been renewed interest in the foundations of quantum statistical
mechanics, see, e.g., [14, 45, 48, 50, 36]. Our own research in this direction has led us to
questions which we later discovered had already been addressed, and some in fact solved,
by John von Neumann in his 1929 article on the quantum ergodic theorem (QET) [64].
This article concerns the long-time behavior of macroscopic quantum systems, and in
particular the approach to thermal equilibrium. We have found the article very useful,
and think that it will also be of interest to a wider audience interested in the foundations
of quantum statistical mechanics. Here we present an English translation of the 1929
QET article by R. Tumulka, together with some commentary. In this commentary, we
describe von Neumann’s results in a non-technical (at least, less technical) way, elaborate
on the aspects that we think need elucidation, and put the result into perspective by
comparing it to current work on this topic. N.B. All results to date are still far from
solving the mathematical problems concerning the quantitative approach to thermal
equilibrium of realistic classical or quantum systems. Even less is known rigorously
about properties of non-equilibrium systems, e.g., we are not able to derive the heat
equation from either classical or quantum mechanics.

Von Neumann’s book on the “Mathematical Foundations of Quantum Mechanics”
[66], published in German in 1932 and in English in 1955, also contains some thermody-
namic considerations in Chapter V. This chapter, however, has only little overlap with
the QET article, whose content is mentioned only in two brief sentences. “The reader
who is interested in this problem,” von Neumann writes on page 416 of his book, “can
refer to the treatments in the references” [i.e., to the QET article]. We actually found
the QET article more illuminating than Chapter V of his book.

The QET article is topical also in the following way. There is no consensus about
the definition of thermal equilibrium for a quantum (or even a classical) system in
microscopic terms; the main divide in the literature lies between a view that can be
called the ensemblist view, according to which a system is in thermal equilibrium if it is
in a mixed state (represented by an ensemble) that is close to the canonical (or micro-
canonical) mixed state, and a view that can be called the individualist view, according
to which a system in a pure state (or a point in phase space) can very well be in thermal
equilibrium, depending on the state. The ensemblist view has traditionally prevailed,
but the individualist view has gained ground recently (see, e.g., [7, 57, 58, 19, 45, 48, 50,
36, 18]). While von Neumann’s ideas contain elements of both views, the QET is based
mainly on the individualist view; indeed, he considered an isolated quantum system
described by a pure state that evolves unitarily. We will elaborate on these two views
in Section 5 below.

The QET article contains two theorems, mentioned already in its title: one von
Neumann called the quantum ergodic theorem, the other the quantum H-theorem (in
analogy to Boltzmann’s H-theorem in classical mechanics [6]). These two theorems are
so closely related to each other in substance that one and the same proof establishes
both of them. For this reason, and because the “quantum H-theorem” actually asserts
much less than Boltzmann’s H-theorem, we will discuss it only in Section 7 below and



focus otherwise on the QET.

We will convey the content of the QET in Section 2. It expresses a precise version
of a phenomenon we call “normal typicality” [17]: under conditions that are “typically”
satisfied, every wave function ¢ from a micro-canonical energy shell displays the same
“normal” long-time behavior, viz., for most times ¢ the “macroscopic appearance” of i
is the same as that of the micro-canonical ensemble. Here, the macroscopic appearance
is expressed in terms of von Neumann’s concept of macroscopic observables, which was
developed for the first time (as far as we are aware) in the QET article and which we
will outline in Section 2.2.

The QET provides a condition under which “normal” long-time behavior occurs,
and it also says that this condition is satisfied for most finite families of commuting
macroscopic observables (or, in fact, for most Hamiltonians [17]). It is thus perhaps
the first typicality theorem in quantum mechanics. Typicality theorems, i.e., statements
about most wave functions or most observables or most Hamiltonians, are now widely
used. They were crucial to Wigner’s work on random Hamiltonians in nuclear physics in
the 1950s [67] and are currently used in a great variety of “random” systems. Typicality
has also been used in recent years in the context of canonical typicality (i.e., the fact
that, for most wave functions from a narrow energy shell of a large system, the reduced
density matrix of a small subsystem is approximately canonical) [14, 19, 45, 47]. For
other uses of typicality see, e.g., [20, 21, 49, 55, 2, 13].

When the QET article was published in 1929, Schrodinger wrote an enthusiastic
letter to von Neumann [53]. Among other things, he wrote:

Your statistical paper has been of extraordinary interest to me, I am very
happy about it, and I'm particularly happy about the gorgeous clarity and
sharpness of the concepts and about the careful bookkeeping of what has
been achieved at every point.

Schrédinger had previously published work [54] on thermodynamic properties of macro-
scopic quantum systems that one would nowadays regard as a precursor of canonical
typicality. A few years later, Pauli and Fierz [43] published an alternative proof of the
QET which, however, yields weaker error bounds than von Neumann’s proof. During
the 1930s, the QET was also mentioned in expositions of the foundations of quantum
statistical mechanics by Kemble [25] and Tolman [59, p. 472] (who misattributed it,
though, to Pauli and Fierz).

In the 1950s, two articles appeared expressing sharp criticisms of the QET, one by
Farquhar and Landsberg [10] and one by Bocchieri and Loinger [4]. They claimed to have
“mathematically proved the inadequacy of von Neumann’s approach” [4] and that “the
von Neumann approach is unsatisfactory” [10]. The authors repeated their criticisms in
later publications [5, 9, 28], calling the QET “essentially wrong” [28], “seriously flawed”
28], and “devoid of dynamical content” [9, p. 166]. However, in these works the QET
was mixed up with other statements that indeed are devoid of dynamical content, and
the criticisms do not apply to the original QET. Unfortunately, this misunderstanding

!Translated from the German by R. Tumulka.



was not pointed out until recently [17]; in the 1950s and 1960s, the negative assessment
of Farquhar, Landsberg, Bocchieri, and Loinger was widely cited and trusted (e.g.,
(37, 38, 39, 62, 12, 46, 24, 44]). In 1962 Ludwig expressed the widespread view in this
way [39]:

A short time after the development of quantum mechanics, J. von Neu-
mann has given a proof of some kind of ergodic theorem. [...] After there
was shown by papers of Landsberg and Farquhar and then definitively by
a very clear paper of Bocchieri and Loinger that this proof is a physically
meaningless one, it is superfluous to go deeper into this proof.

As a consequence, the QET was undeservingly forgotten. We elaborate on the nature
of the misunderstanding in [17] and in Section 4 below.

The remainder of this paper is organized as follows. In Section 2, we give a qualitative
summary of the QET. In Section 3, we compare the QET with the situation in classical
mechanics and the concept of ergodicity. In Section 4, we describe the nature of the
widespread misunderstanding of the QET from the 1950s onwards. In Section 5 we
review different definitions of thermal equilibrium and compare the QET to recent works
on the approach to thermal equilibrium. In Section 6, we discuss the general relevance
of typicality theorems. In Section 7, we discuss the contents and significance of von
Neumann’s “quantum H-theorem.” Because the statement of the QET in the QET
article is distributed over several places, we formulate it in Appendix A as a concise and
precise mathematical theorem. In Appendix B, we provide a table with von Neumann’s
notation and elucidate some of his terminology.

2 Qualitative Summary of the Quantum Ergodic The-
orem

2.1 Setting

Von Neumann considered a macroscopic quantum system, confined to a finite volume
of space. For the sake of concreteness, we suggest that readers think of a system of N
interacting particles, where N is very large (usually larger than 10%%), in a box A C R3.

The wave function ¢, = ¥(qi, ..., qn,t) evolves according to the Schrodinger equation
oY

h— =H 1

ot v (1)

with H the Hamiltonian of the system. (Von Neumann used the opposite sign in the
Schrodinger equation, writing —i instead of i. The form (1) is nowadays standard.) As
usual, ¥y (and thus ;) should be normalized,
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It follows from the confinement to a finite volume that H has discrete energy levels, which
we denote E, (see Appendix B for a list of von Neumann’s notation). Let {¢,} be an
orthonormal basis of the system’s total Hilbert space .. consisting of eigenfunctions
of H,
H Qba - a¢a . (3>
Considering only Hamiltonians that are bounded from below, there will be only finitely
many eigenvalues (with multiplicity) below any given value, so we can order them so
that E()SEl SEQ S
Von Neumann considered further (what amounts to) a partition of the energy axis,
or rather of the relevant half-axis [Ey, o), into disjoint intervals .%, = [&,, &,+1) (with
8y = Ep and &, < &,,1) that are large on the microscopic scale (so that each contains
many eigenvalues E,), but small on the macroscopic scale (so that different energies
in one interval are not macroscopically different).? Such an interval is called a micro-

canonical energy shell, an expression that is also often used to refer to the subspace
Iy, C Hiora spanned by the ¢, with E, € .Z,.

2.2 Macroscopic Observables

We now turn to the mathematical structure that encodes the concept of “macroscopic”
in von Neumann’s article. Suppose that the operators My, ..., M, correspond to “macro-
scopic observables.” Von Neumann argued in his Section 0.2 that an analysis of how a
quantum measurement of such macro-observables is carried out in practice leads to the
conclusion that the M; commute with each other, have pure point spectrum, and have
huge degrees of degeneracy. They are usually coarse-grained and “rounded” approxima-
tions of suitable “microscopic” observables. As an example, von Neumann points out
that when we simultaneously measure the position and momentum of a macroscopic
body, the experiment corresponds not to the exact center-of-mass position and total
momentum observables but to two commuting observables approximating these.?* Cor-
respondingly, the distance between neighboring eigenvalues of M; represents the inaccu-
racy of the measurement. As further examples of macro-observables, we may consider
similar approximations to the number of particles in the left half of the box A divided
by the total number of particles, or to the z-component of the magnetization (i.e., the
total magnetic z-moment sz\il 0., where o.; is the third Pauli matrix acting on the
i-th particle).

2In von Neumann’s words (Section 1.2): “With a certain (reduced) accuracy, [it is] possible [to
measure energy with macroscopic means], so that the energy eigenvalues [...] can be collected in groups
[...] in such a way that all [eigenvalues in the same group] are close to each other and only those [in
different groups| can be macroscopically distinguished.”

3In von Neumann’s words (Section 0.2): “In a macroscopic measurement of coordinate and momen-
tum (or two other quantities that cannot be measured simultaneously according to quantum mechanics),
really two physical quantities are measured simultaneously and exactly, which however are not exactly
coordinate and momentum.”

4The question of how well two operators with small but non-zero commutator can be approximated
by a pair of commuting operators is mathematically non-trivial and has been settled only recently
[35, 22].



One of the macro-observables, say M, is the “macroscopic energy,” which can be
thought of as obtained from H by coarse-graining in agreement with the partition of
the energy axis into the micro-canonical intervals .7,

My =Y fi(Eq) |$a) (00l (4)
with f; the appropriate step function given by
&, + 6,
F(E) = % for E€ Iy =[& &) (5)

Since the M; commute with one another, every M; commutes with the coarse-grained
energy M, but generally not with H, so it is generally not a conserved quantity.’?

Given the My, ..., M,, a macro-state can then be characterized by alist v = (my, ..., my)
of eigenvalues m; of the M;, and corresponds to the subspace 7, C a1, which we call
a “macro-space,” containing the simultaneous eigenvectors of the M; with eigenvalues
m;; that is, 77, is the intersection of the respective eigenspaces of the M;.

For the sake of simplicity, we focus on only one micro-canonical interval ., =
(€4, 8ur1) and simply write JZ instead of . Let D = dim 7, i.e., the number
of energy levels, including multiplicities, between &, and &,,,. This number is finite but
huge—usually greater than 101" when the number N of particles is greater than 10%°.
The micro-canonical density matriz pye is the projection to S times a normalization
factor 1/D,

pne =5 O 16a)(bal. (©

q:po €EH

and the micro-canonical average of an observable A on J¢ is given by

tr(pucd) = . @

This value can also be obtained as the average of the values (¢,|A|¢s), With equal
weights 1/D, over those a with E, € [&,,&,41). Alternatively, it can also be obtained
as the average of the values (p|A|p) with ¢ uniformly distributed over the unit sphere

S(H) ={p e el =1}. (8)

For this uniform distribution, the probability that ¢ € B C S(4¢) is the (2D — 1)-
dimensional surface area of B times a normalization factor.

Since all M; commute, every M; maps ¢ to itself. We thus have that each of the
macro-spaces 7, either lies in 72 or is orthogonal to 7. We will from now on regard
the M; as operators on 7 and consider only those 77, in J¢°; they form an orthogonal
decomposition of 7,

H =P A, . (9)

°In von Neumann’s words (Section 1.2): “In general, [...] H is not a linear combination of the
[projections to the joint eigenspaces of all M;], since the energy is not a macroscopic quantity, as it
cannot be measured with absolute precision with macroscopic means” [as the M; can].
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We write 2 for this family {7} of subspaces, called a “macro-observer” in von Neu-
mann’s paper, and P, for the projection to . If any of the 7, has dimension 0, i.e.,
if a particular combination of eigenvalues of the M; does not occur, then we delete it
from the family . We use the notation

d, = dim ., . (10)

In words, d, is the degree of simultaneous degeneracy of the eigenvalues my,...,my. In
practice, the size of d, is also of the rough order 10!, though often very much smaller
than D. (Note that, e.g., 1009999x10% g gmaller than 10'°” by a factor of 101016).

2.3 Statement of the Quantum Ergodic Theorem

We now have the ingredients—H , 77, and Z2—to formulate the QET. Despite the name,
the property described in the QET is not precisely analogous to the standard notion
of ergodicity as used in classical mechanics and the mathematical theory of dynamical
systems. That is why we prefer to call quantum systems with the relevant property
“normal” rather than “ergodic.”® Let us proceed towards a description of this property.

Any wave function ¢ € . with ||¢)|| = 1 defines a probability distribution over all
macro-states v; namely, the probability associated with v is

121" = (1P [0) - (11)

(Recall that P, is the projection to .#,.) This is the probability of obtaining, in a
joint measurement of the macro-observables M, ..., M, on a system in state i, the
outcomes (my, ..., my) corresponding to v. Similarly, the micro-canonical density matrix
Pme defines a probability distribution over all macro-states v; namely, the probability

associated with v is
d,

tr(pmeP) = . (12)

Claim 1. For most wave functions v from the unit sphere in the micro-canonical sub-
space €, the distribution (11) associated with v is close to the micro-canonical distri-
bution (12).

The reference to “most” is intended to convey that the subset of the unit sphere in
2 containing those 1 for which (11) is close (in some precise sense) to (12) has measure
arbitrarily close to 1, provided each of the d, is sufficiently large. Here, the “measure”
corresponds to the uniform distribution over the unit sphere. Claim 1 follows from the
fact, proven by von Neumann in his appendices A.1-A.3, that if 77, is any fixed subspace

6This terminology is inspired by the concept of a normal real number, which is “a real number whose
digits in every base show a uniform distribution, with all digits being equally likely, all pairs of digits
equally likely, all triplets of digits equally likely, etc.. While a general proof can be given that almost
all numbers are normal, this proof is not constructive [...]. It is for instance widely believed that the
numbers v/2, 7, and e are normal, but a proof remains elusive.” [41]



of JZ of dimension d, and ¢ is a random vector with uniform distribution on the unit
sphere in 7Z then

d, d,\2 1 /d,\?
ElPwl =%, VallPol? =E(IPel - %) < (%) (13

D d,\ D

Here, E denotes the expected value and Var the variance of a random variable. Thus, the
first equation in (13) says that the value (11) associated with ¢, when averaged over the
unit sphere, yields the micro-canonical value (12), and the second equation says that
the standard deviation of the random variable ||P,pl||? is small, in fact much smaller
than its average, provided d,, > 1. It then follows from Chebyshev’s inequality that the
probability that ||P,p[|? deviates much from its expectation value d, /D is small. That
is, in the language of measure theory, the set of s for which ||P,%||? deviates much
from the micro-canonical value is small, which was what was claimed.

As a consequence of Claim 1, most wave functions 1 are such that for each of the
macroscopic observables My, ..., M,—and, in fact, for every function f(Mj,..., M,),
i.e., for every element of the algebra generated by M, ..., M,—the probability distri-
bution that v defines on the spectrum of the observable is close to the one defined by
the micro-canonical density matrix. Put loosely, most pure states in .7, when looked
at macroscopically, look like the micro-canonical mixed state. It is clear that Claim
1 cannot be true for all (rather than most) wave functions, as one can easily provide
examples of wave functions whose distribution is not close to the micro-canonical one:
say, ¢ € ¢, for one particular v.

Let us consider now the time evolution of some initial 1) and ask whether

dy
| Pape||? ~ D for all v (14)

will hold for most times ¢.” This may seem like a plausible behavior in view of Claim
1. In fact, from Claim 1 it follows rather easily that (14) holds for most initial wave
functions 1y and most times t. The QET goes further. It asserts that, for certain
systems, (14) holds for all initial wave functions ¢y for most times ¢. This is important
because one may expect most wave functions to represent microscopic states of thermal
equilibrium, while states of non-equilibrium should form a very small minority. Thus,
if we are interested in the evolution towards equilibrium, we are specifically interested
in the question whether non-equilibrium states will evolve towards equilibrium, and
hence we cannot be satisfied with statements about most wave functions because such
statements need not apply to the non-equilibrium wave functions.

Let us put this differently. We call a system, defined by H, ¢, 2, and ¢ €
normal if and only if (14) holds for most ¢. The QET provides conditions under which a
system is normal for every initial state vector 1y. Furthermore, the QET asserts normal
typicality, i.e., that typical macroscopic systems are normal for every 1)y; more precisely,
that for most choices of &, macroscopic systems are normal for every 1. The result is,

"When saying “most ¢,” we have in mind most ¢ > 0, but the QET and our other statements are
equally true for most t < 0, as long as the system was and remains isolated.
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in fact, equivalent to the statement that for most Hamiltonians, macroscopic systems
are normal for every vy [17].% It thus provides reasons to believe (but no proof) that
macroscopic systems in practice are normal.

Before we give an informal statement of the QET, we formulate two conditions
involved in it. First, following von Neumann, we say that a Hamiltonian H with eigen-
values Fjy, ..., Ep has no resonances if and only if

either « =o' and =’

(15)
ora=LFand o ="

E, — Es # E, — Eg unless {

In words, this means that the energy differences are non-degenerate. It implies in par-
ticular that the energy levels themselves are non-degenerate, but is a stronger condition.
The other condition is a technical one and can be stated as follows. For a given H and

9 ={H,}, let

F,(H,9) = P|6s)|? P, LA 16
J(H, 7) = mas| (6a| P s) |* + ma( (¢l Polo) = ) (16)

The condition, to which we will simply refer as “condition (17),” is that

F,(H, 2) is sufficiently small for every v . (17)

Informal statement of the QET. (For a fully precise statement see Appendiz A be-
low.) Let 7 be any Hilbert space of finite dimension D, let 9 = {#,} be an orthogonal
decomposition of € with dim 7, = d,, and let the Hamiltonian H be a self-adjoint
operator on F without resonances. If H and 9 satisfy condition (17) then, for every
wave function Yy € S with ||| = 1, the system is normal, i.e., (14) holds most of the
time. Moreover, for sufficiently large d,s with ) d, = D, most families 9 = {4}
of mutually orthogonal subspaces ¢, with dim J¢, = d,, are such that condition (17) is
satisfied (and thus the system is normal for every ).

Here is another way of expressing the QET. Let us denote the long-time average of
a function f(t) by an overbar,

T—oo T

f(t) = lim l/0 dt f(t). (18)

(All statements remain valid if we include negative times and set

70 = lim i/ dt (1)) (19)

T—oo 2T T

8The concept of “most 2" refers to the uniform distribution over all orthogonal decompositions (9)
such that dim .57, = d,,. When talking about “most Hamiltonians” we refer to the uniform distribution
over all Hamiltonians with given eigenvalues. Both distributions are marginals of images of the Haar
measure over the group of unitary D x D matrices; for their full definitions see [17] or the QET article.

9



Then a system is normal if, for every v, the time average || P,1||? is close to d,/D and
the time variance of ||B,v||* is small; equivalently, a system is normal if, for every v,
the expression

(I Px|? - d,/D)? (20)

has small time average. The QET asserts that the time average of (20) is no greater
than (16) (independently of 1), and, moreover, that the average of (16) over all Z with
dim 7, = d, is small when d, is sufficiently large.

More detailed discussions of the QET have been provided by Pauli and Fierz in 1937
[43] and by Jancel in 1963 [24]; see also [17].

3 Comparison With Classical Mechanics
For a classical Hamiltonian system, we denote a point in phase space by

X:(qla-'-7qN7p17'--apN>' (21)

The time evolution of the micro-state X is given by the solution of the Hamiltonian
equations of motion, which sends X (at time 0) to X; (at time t), ¢ € R. This dynamics
preserves the Liouville phase-space volume.

Instead of the orthogonal decomposition of 77 into subspaces .77, we consider a
partition of an energy shell I' in phase space RV,

D={X:6 < H(X) <&}, (22)

into regions I', corresponding to different macro-states v,
r=Jr,, (23)
1%

i.e., if the micro-state X of the system is in I', then the macro-state of the system is
v. Let iy denote the micro-canonical distribution, i.e., the uniform distribution (=
normalized Liouville phase space volume) on I". Then with each macro-state v there is
associated the micro-canonical probability pimc(I').

A crucial difference between a quantum and a classical system is that 1) can be a
superposition of contributions from several .7Z,s whereas X always lies in one and only
one of the I',. As a consequence, a single phase point X does not provide a nontrivial
probability distribution over the ws, and there is no statement analogous to (14) in
classical mechanics. One can only ask about the fraction of time that X; spends in
various I',s, and to this question we turn in the following subsection.

3.1 Ergodicity

As we mentioned already, normality—the property relevant to the QET—is not really
analogous to ergodicity. Nevertheless, to formulate a quantum analog of ergodicity was
von Neumann’s motivation for the QET.

10



Let us recall the concept of ergodicity (called “quasi-ergodicity” in the 1920s) in
statistical mechanics. Let I'¢ denote the energy surface,

Iy ={X eR": H(X) =&}, (24)

and fe the (micro-canonical) invariant measure on I'y defined to be the limit of the
normalized phase space volume measure pi,. as both &, — & and &, — &; in fact,
Le is the surface area measure re-weighted with the inverse norm of the gradient of the
Hamiltonian function and normalized. The dynamics generated by H on I'e is ergodic
if it has no non-trivial constants of the motion. As a consequence of Birkhoff’s ergodic
theorem [3], this is equivalent to the following: the fraction of time that the phase point
X, spends in a region B C I's is in the long run proportional to the size of the region,
pe(B), for almost every Xy € I'p. (“Almost every” means that the set of exceptions has
measure zero; this is different from “most,” which conveys that the set of exceptions has
small measure—but usually not zero.) Equivalently, time averages coincide with phase-
space averages (over the energy surface). Let dx, denote the delta measure concentrated
at the phase point X;. Then ergodicity is equivalent to

Ox, = pe (25)

(with the time average understood in the sense of weak convergence) for almost every
Xo €Tls.

In quantum mechanics, if we regard a pure state [¢;)(1y| as analogous to the pure
state dy, and ppe as analogous to e, the statement analogous to (25) reads

[0) (Y] = pme - (26)

As pointed out by von Neumann in his QET article, the left hand side always exists® and
can be computed as follows. If 1y has coefficients ¢, = (¢a|1o) in the energy eigenbasis

{¢a},

D
@Z)O = Z Ca|¢a> ) (27)
a=1
then
D
Py = Z e_iEat/hCa|¢a> ) (28>
a=1
and thus
[e) (el =Y emiFomBaltlhe, 5l da) (g - (29)
a,B

Suppose that H is non-degenerate; then E, — Ej3 vanishes only for a = 3, so the time
averaged exponential is d,3, and we have that

[0 (Wil =D Ical®@a)(Pal (30)

9This existence statement also follows, at least for almost every 1), from the (classical) ergodic
theorems of Birkhoff [3] and von Neumann [65]; however, the QET article appeared two years earlier.
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Thus, the case (26) occurs only for those special wave functions that have |c,|*> = 1/D
for all . That is, the property of a quantum system that is the most obvious analog of
ergodicity is almost never satisfied.

One can draw other analogies, though, by focusing just on the macroscopic ap-
pearance, understood in terms of the macroscopic observables My, ..., M, mentioned in
Section 2.1 above and the orthogonal decomposition 2 = {7} they define. We say
that two density matrices p and p’ are macroscopically equivalent, in symbols

p~p, (31)
if and only if
tr(pP,) ~ tr(p'P,) (32)

for all v. For example, ) (9] Z Pme if and only if

d
Py|? ~ = 33
1Pl ~ (3)
for all v. This is exactly the condition considered in Claim 1 in Section 2.3, so this

is true of most 1 (provided d, > 1). Returning to the time average, we obtain that
[00) (W] 2 pme if and only if

d
2 . v
2 leal (9alPolda) = 5 (34)
for all v. Condition (34) is satisfied for every ¢y € S(J¢) if and only if
dy
(PalP|0a) = 5 (35)

for every o and v, a condition on H and Z that follows from (17) and thus is, according

to the QET, typically obeyed. The analogy between |);) (1] Z Pme and ergodicity lies in
the fact that the time average of a pure state in a sense agrees with the micro-canonical
ensemble (with two differences: that the agreement is only an approximate agreement
on the macroscopic level, and that it typically holds for every, rather than almost every,
pure state).

However, even more is true for many quantum systems: Not just the time average but
even |1y) (1] itself is macroscopically equivalent to pp,. for most times ¢, as expressed in
(14). Thus, normality is in part stronger than ergodicity (it involves no time averaging)
and in part weaker (it involves only macroscopic equivalence); in short, it is a different
notion. In von Neumann’s words (first paragraph of his Section 0.5):

[T]he agreement between time and microscopic average should only be
required for macroscopic quantities. This weakening comes together with an
essential strengthening that is made possible only by using the macroscopic
perspective. Namely, we will show that for every state of the system the
value of each (macroscopically measurable) quantity not only has time mean
equal to the micro-canonical mean, but furthermore has small spread, i.e.,
the times at which the value deviates considerably from the mean are very
infrequent.
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3.2 Ergodic Components of the Schrodinger Evolution

Every dynamical system whose dynamics leaves invariant a probability distribution u
can be partitioned into its ergodic components [56]. That is, its phase space I can be
partitioned in a (more or less) unique way into disjoint subsets, I' = U, T, and TsNTy = ()
for s # &, so that each Ty is invariant under the dynamics, and the dynamics is ergodic
on T (equipped with a probability measure 4 that it inherits from ).

In Section 0.4 of the QET article, von Neumann identifies the ergodic components
of the Schrodinger dynamics, regarded as a dynamical system on the unit sphere of the
Hilbert space 7o, at least when ., is finite dimensional and the eigenvalues of H
are linearly independent over the rational numbers (which is the generic case). Here,
the invariant distribution is the uniform distribution over the unit sphere, the parameter
s is a sequence (r,) of radii, one for each energy level, and Ty = T, ,, . is the torus
defined by these radii,

T = {Z ra € dn) 0 < B, < 27r} . (36)

4 Misunderstanding in the 1950s

As noted before, the QET was widely dismissed after undeserved criticisms in [10, 4]
arising from a wrong idea of what the QET asserts. In this section we point out the
nature of the misunderstanding. Let p(Z, ) be the statement that the system with
initial wave function vy is normal with respect to Z (i.e., that (14) holds most of the
time). The misunderstanding of Bocchieri and Loinger [4] consists of replacing the
statement

for most 2 : for all vy : p(Z, ), (37)

which is part of the QET, with the inequivalent (in fact, weaker) statement
for all ¢ : for most Z : p(Z, ) . (38)

To see that these two statements are indeed inequivalent, let us illustrate the difference
between “for most x: for all y: p(x,y)” and “for all y: for most x: p(x,y)” by two
statements about a company:

Most employees are never ill. (39)

On each day, most employees are not ill. (40)

When z ranges over employees, y over days, and p(z,y) is the statement “Employee x is
not ill on day y” then “for most x: for all y: p(z,y)” is (39) and “for all y: for most x:
p(z,y)” is (40). It is easy to understand that (39) implies (40), and (40) does not imply
(39), as there is the (very plausible) possibility that most employees are sometimes ill,
but not on the same day. Von Neumann was clearly aware of the difference between
(37) and (38), as his footnote 37 in Section 3.1 shows:
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Note: what we have shown is not that for every given 1 or A the ergodic
theorem and the H-theorem hold for most wy,, but that for most wy,,
they are universally valid, i.e., for all 1) and A. The latter is, of course, much
more than the former.

Also Schrédinger, by the way, was aware that von Neumann had proven (37), as his
1929 letter to von Neumann [53] shows:

You can show: if this rotation [i.e., the unitary operator mapping an
eigenbasis of H to a joint eigenbasis of M, ..., M| is large enough then
the theorem holds with arbitrary accuracy. You can show further: the over-
whelming majority of the conceivable rotations is indeed large enough—
where the “overwhelming majority” is defined in an appropriate, rotation-
invariant way. Given such a rotation, then the theorem holds for every psi.*’

To see how (37) and (38) are connected to the calculations in the QET article, as well
as those of Bocchieri and Loinger [4], we note that, as mentioned earlier, the normality
of 1y with respect to Z (i.e., the statement p(Z,1y)) is equivalent to the statement
that, for every v,

(I Pax|? - d,/ D) (41)

is small. As a straightforward calculation shows (see [17] or the QET article), the
quantity (41) is, for all 1)y, less than or equal to the non-negative quantity F,(H, 2)
defined in (16), which is independent of 5. This calculation is von Neumann’s argument
showing that smallness of F,, = F,(H, Z) implies normality for every ¢)5. The main work
involved in proving the QET, though, is to show that F, is small for most &, and that
is done by showing that the average of F, over all & is small. Bocchieri and Loinger [4]
considered, instead of the two propositions that

(41) < F, (42)
and that
the Z-average of F), is small, (43)
the one proposition that
the Z-average of (41) is small. (44)

It can be proven easily that (44) is true for all ¢, provided the d, are sufficiently large,
by changing the order of the two operations of taking the time average and taking the
P-average [4, 17]. However, this statement implies only (38), and not the stronger
statement (37) needed for the QET. Indeed, (assuming the d, are sufficiently large) it
follows that for all vy it is true of most 2 and most ¢ that || P,vy||* ~ d,/D; this is (38).
In contrast, the two propositions (42) and (43) yield that for most & it is true of all v
that, for most ¢, || P,1||* ~ d,/D; this is (37).

10Translated from the German by R. Tumulka.

14



The weaker statement (38) is indeed, as Bocchieri and Loinger criticized, dynamically
vacuous, as it follows straightforwardly from a statement (true for large d,) that does
not involve the time evolution, viz., the statement that for every v,

the Z-average of (|| P[> - d,/D)* is small. (45)

See [17] for a more detailed discussion.

Farquhar and Landsberg [10] also mistook the QET for a different statement, in fact
for one inequivalent to that considered by Bocchieri and Loinger. Their version differs
from von Neumann’s not just in the ordering of the quantifiers as in (37) and (38), but
also in that it concerns only the time average of || P,)4]|?, whereas von Neumann’s QET
makes a statement about the value of ||P,||? for most times.

5 Approach to Thermal Equilibrium

Von Neumann’s QET, or the phenomenon of normal typicality, is closely connected
with the approach to thermal equilibrium. As mentioned already, there is no consensus
about what it means for a macroscopic system to be in “thermal equilibrium.” Before
comparing the QET to more recent results in Section 5.3, we outline in Section 5.1
several different concepts of thermal equilibrium and in Section 5.2 several different
concepts of approach to thermal equilibrium.

5.1 Definitions of Thermal Equilibrium

We begin with the concept of thermal equilibrium that seems to us to be the most
fundamental. It can be shown in many cases, and is expected to be true generally,
that for a physically reasonable choice of the macro-observables there will be among
the macro-spaces .7, a particular macro-space %, the one corresponding to thermal
equilibrium, such that
deq
D

In fact, the difference 1 — deq/D is exponentially small in the number of particles. This
implies, in particular, that each of the macro-observables M; is “nearly constant” on the
energy shell .77 in the sense that one of its eigenvalues has multiplicity at least deq = D.

We say that a system in the quantum state ¢ € S(.) is in thermal equilibrium if
and only if ¢ is very close (in the Hilbert space norm) to %%, or, equivalently, if and
only if

~1. (46)

(V| Peglth) = 1, (47)

where P, is the projection operator to J#.

The condition (47) implies that a quantum measurement of the macroscopic observ-
able M; on a system with wave function v will yield, with probability close to 1, the
“equilibrium” value of M;. Likewise, a joint measurement of M, ..., M, will yield, with
probability close to 1, their equilibrium values. It follows from (46) that most ¢ on the
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unit sphere in J# are in thermal equilibrium. Indeed, with u(dt) the uniform measure
on the unit sphere,

JiPalu) wtav) = 1. (18)

Since the quantity (1|Peq|?) is bounded from above by 1, most ¢ must satisfy (47).

If a system is normal then it is in thermal equilibrium (as defined above) most of the
time. (After all, being normal implies that || Peqtt||* & deq/D most of the time, which is
close to 1. Of course, if the system is not in equilibrium initially, the waiting time until
it first reaches equilibrium is not specified, and may be longer than the present age of
the universe.) That is why we regard the case that one of the ., has the overwhelming
majority of dimensions as important. Von Neumann, though, did not consider this
case, and his QET actually has technical assumptions that are violated in this case.
We have proved a theorem about normal typicality that applies to this case, and thus
complements von Neumann’s QET), in [18]; it asserts that for most Hamiltonians with
given non-degenerate eigenvalues (or, alternatively, for most 2), all initial state vectors
)y evolve in such a way that 1, is in thermal equilibrium (according to the definition
(47) above) for most times ¢.

The above definition of thermal equilibrium in quantum mechanics is an example of
what we called the “individualist” view; it 