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Abstract

Recently, there has been progress in developing interior-boundary conditions
(IBCs) as a technique of avoiding the problem of ultraviolet divergence in non-
relativistic quantum field theories while treating space as a continuum and elec-
trons as point particles. An IBC can be expressed in the particle-position repre-
sentation of a Fock vector ¢ as a condition on the values of ¥ on the set of collision
configurations, and the corresponding Hamiltonian is defined on a domain of vec-
tors satisfying this condition. We describe here how Bohmian mechanics can be
extended to this type of Hamiltonian. In fact, part of the development of IBCs was
inspired by the Bohmian picture. Particle creation and annihilation correspond
to jumps in configuration space; the annihilation is determinstic and occurs when
two particles (of the appropriate species) meet, whereas the creation is stochas-
tic and occurs at a rate dictated by the demand for the equivariance of the |¢|?
distribution, time reversal symmetry, and the Markov property. The process is
closely related to processes known as Bell-type quantum field theories.
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1 Introduction

A new type of Hamiltonian has recently been proposed [59] for quantum field theories
(QFTs), defined using interior-boundary conditions (IBCs). See [39, 43|, 144, 45| 146,
611, 69, 28] for earlier work involving IBCs, but with rather different purposes than in
[59]. These Hamiltonians do not suffer from an ultraviolet (UV) divergence problem
although they do not involve a UV cut-off such as would be provided by discretizing
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space or smearing out particles over a positive radius. On the contrary, in this new type
of Hamiltonian, all particles are taken to have radius zero. The Hamiltonians involve
particle creation and annihilation and have been shown [38] 37, [35], for various examples
of non-relativistic QFTs, to be free of a UV (or any other) divergence problem; viz.,
they have been shown to be rigorously defined and self-adjoint.

An IBC is a type of boundary condition on the wave function that relates the value
or derivative of the wave function on the boundary of configuration space to its value at
a certain interior point. For particle creation, the relevant boundary consists of those
configurations in which two particles meet at the same location.

We define here the Bohmian trajectories naturally associated with such Hamiltonians
and describe what they look like; that is, we develop an extension of Bohmian mechanics
[7, 29, 25], 63] to Hamiltonians with IBCs. This extension is no longer deterministic but
has the form of a stochastic Markov process in the appropriate configuration space, a
process that is |i;|?-distributed at every time ¢.

The theories that we develop here can be regarded as instances of Bell-type quantum
field theories [4l, 19, 20], 22], versions of QFTs that, like Bohmian mechanics, provide
particle trajectories; the possible paths in configuration space are piecewise solutions of
Bohm'’s equation of motion, interrupted by jumps in configuration space, with the jump
usually connected to the creation or annihilation of a particle. The QFTs considered in
the references [4, 19, 20, 22] just cited involved a UV cut-off, usually implemented by
smearing out the particles over a positive radius . For example, in a theory in which
x-particles can emit and absorb y-particles, the emission of a y-particle corresponds to
the occurence of a further “Bohmian” particle at any point within the z-particle, i.e., at
any point within the 3-ball of radius ¢ around the center of the x-particle. In contrast,
for Hamiltonians defined by means of an IBC, the z-particle has radius 0, and the y-
particle gets created at the location of the z-particle, see Figure[l] Such a picture seems
physically reasonable, in support of the IBC approach.

To study the combination of Bohm’s trajectory picture with IBC Hamiltonians is
useful from both perspectives: For the Bohmian picture, it provides an extension of the
Bell-type QFTs known so far to a further class of Hamiltonians, indeed perhaps more
reasonable and plausible Hamiltonians than the ones based on UV cut-offs. For the IBC
approach, it provides a welcome visualization and clarification of the physical meaning
of the Hamiltonians based on IBCs.

Preliminary considerations in the direction of this paper were reported in [28] [60].
For an introduction to IBCs, see [60]; for a study of IBCs in 1 dimension, see [32]; a
brief overview of the results of this paper is given in Section 2 of [64]; other recent and
upcoming works on IBCs include [26], 42, [50, [49] 65]. While the ideas of the IBC approach
can also be applied to Dirac operators [51], we focus here on the non-relativistic case
and give only a brief discussion of the analogous construction for the Dirac equation in
Section [7.2] It is a future goal to develop a model analogous to the ones described here
for full quantum electrodynamics, with particle trajectories for electrons, positrons, and
photons. Other notable approaches to a version of QFTs with local beables (“hidden
variables”) are based on either using configurations of infinitely many particles while



Figure 1: Bohmian world lines in space-time for the emission of a y-particle from an z-
particle in two kinds of models. LEFT: In a model with a UV cut-off, the y-particle gets
created at a (small but) nonzero distance from the center of the a-particle. RIGHT: In
a model with an interior-boundary condition, the y-particle gets created at the location
of the x-particle, which has zero radius.

avoiding the actual creation and annihilation of particles [9, 10, 11, 13| 14] or using,
instead of an actual particle configuration, an actual field configuration, see [54] and
references therein, or assuming that fermions have beables but bosons do not [4] (or
vice versa [56]); we will not consider these approaches here.

Like Bohmian mechanics and Bell-type QFTs, the models we describe here entail,
as we will show on a non-rigorous level, that the actual configuration @); at time t is
always |1]? distributed (and we then say that the process is equivariant). Like Bell-
type QFTs and unlike Bohmian mechanics (for a conserved number of particles), these
models involve a stochastic motion of ();. We regard it as a serious possibility that the
fundamental dynamical laws of physics may be stochastic in nature (i.e., that the time
evolution may be inherently random). The main advantage of Bohmian mechanics is
not so much its determinism as the clear picture of reality, independent of observation,
that it provides.

So, in the models developed in this paper, the path ¢t — @), is random, and thus a
stochastic process (in fact, a Markov process), which we call the Bell-type process with
IBC because it naturally fits among the processes of Bell-type QFTs, or shorter the
IBC process. The stochastic element in the process is connected to the jumps; between
jumps, the trajectory follows Bohm’s deterministic equations of motion. For example,
the emission of a y-particle by an z-particle (in the model of Section below) occurs
at a random time and in a random direction in space, with a probability distribution
governed by the wave function according to one of the laws of the theory that we propose.

This situation is similar to the one in Bell-type QFTs with a UV cut-off, where a y
particle is created at a random time and a random location within radius ¢ of the center
of the z-particle. A difference is that the absorption event, which in Bell-type QFT's
with UV cut-off is also stochastic (as it occurs at a random time), is deterministic in
Bell-type processes with IBC: a y-particle gets annihilated when it hits an z-particle.



While it may seem to break time reversal invariance that emission is stochastic and
absorption deterministic, this is not so, as we will elucidate in Section 2.5l On the
contrary, time reversal symmetry fixes uniquely the stochastic law governing the rate
of particle creation. While Bell-type QFTs with UV cut-off can also obey time reversal
symmetry, this symmetry does not dictate the rate for them, as several laws for the
jump rate are compatible with it and with the quantum mechanical formula for the
probability current, although one possibility for this law, the one chosen in Bell-type
QFTs, is naturally selected by a minimality property. By the way, this choice of law now
receives further support because it corresponds to the only possible law in IBC models.
We also discuss how, in the limit of removing the UV cut-off (if the limit exists), the
stochastic process @Q; of a Bell-type QFT approaches the process introduced here for
IBC models.
We will use four models for our discussion:

e Model 1. This is a non-relativistic QFT involving two species of particles, x-
particles and y-particles, both spinless and moving in R3, such that the x-particles
can emit and absorb y-particles. The Hilbert space ¢ is the tensor product of the
fermionic Fock space of L*(R3, C) for the z-particles and the bosonic Fock space
of L*(R3,C) for the y-particles.

e Model 2. This is a simplified version of Model 1 in which the z-particles are fixed
at certain locations in space, as would arise in the limit in which the mass of the
x-particles tends to co. We consider here only the case of a single x-particle, and
choose its location as the coordinate origin 0 € R3. So y-particles can be created
and annihilated at the origin, and move around in between.

e Model 3. This model is a version of Model 2 that is further simplified by cutting
off the sectors of the bosonic Fock space with 2 or more particles.

e Model 4. This model is even simpler and does not have much to do with particle
creation any more. Its configuration space Q is the disjoint union of Q) = R
and Q® = the upper half-plane in R? (see Figure ; the boundary 0Q of Q, to
which the IBC refers, is the horizontal axis in R%?. Away from the boundary, the
Hamiltonian is just the free Schrodinger operator.

We give a full definition of these models below, including the IBC approach to them.
Model 1 and Model 2 were discussed, under these names, in [59], and Models 3 and
4 were described in [60]. Model 1 is adapated from [40, 53] [47] (where similar models
were considered without IBCs and without Bohmian trajectories), and also models like
Model 2 have long been considered [66, [16] (without IBCs and without Bohmian trajec-
tories), sometimes under the name “Lee model.” We will consider Models 14 in reverse
order, the order of increasing complexity. For some of these models, the Hamiltonians of
their IBC versions are known [38] 35] to be bounded from below (as would be physically
reasonable), although the IBC approach in general neither requires nor guarantees that
Hamiltonians are bounded from below.



The remainder of this paper is organized as follows. In Section [2, we introduce and
discuss the Bell-type process with IBC for Model 4. In Section |3, we apply IBCs to
particle creation and annihilation for Models 3, 2, and 1; we define the appropriate pro-
cesses, show (non-rigorously) that they are equivariant, and compare the IBC approach
to renormalization on the level of the Hamiltonians, the wave functions, and the Bell-
type process. After Section [3| we turn to more technical aspects of IBC processes. In
Section {4 we discuss the symmetries of the processes (particularly for Model 1), with
particular attention to Galilean boosts. In Section [5], we compare the IBC process to
the known processes (“Bell-type QFTs” [4, 57, 67, 19, 20, 22] 68]) for QFTs with UV
cut-off. In Section [0, we formulate a lattice version of the IBC process and argue that
in the continuum limit, the continuum version of the IBC process described in Sec-
tion [2] is recovered. In Section [7 we consider general IBC processes for codimension-1
boundaries (which are simpler than the physically realistic codimension-3 boundaries)
and characterize such processes in general and abstract terms for Schrodinger and Dirac
operators.

2 Simple Example

We begin with the simplest of our four models, Model 4.
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Figure 2: The configuration space of Model 4 consists of a line and a half-plane.

2.1 Model 4 Comes First

As mentioned, QM =R, Q@® = {(z,y) e R? : y > 0}, @ = QW U Q®, wave functions
are complex-valued functions on Q, and volume in Q is understood as the measure u
defined by

1(S) = vol; (S N QW) + voly(S N QW) (1)
for S C Q, where vol; means the d-dimensional volume (Lebesgue measure). For the
restriction of a wave function v to Q™ we write ¥(™): so, for a point ¢ € Q™ we can
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either write ¥(q) or 1/ (q) (depending on whether we want to emphasize the number of
the sector). The Hilbert space of the model is 5 = L*(Q, C, u), whose inner product is

(W]¢) = / da M (z)* ¢ () + / dz dy v (z,y)* ¢ (2,y) . (2)

o o

The IBC reads [60]:
¥2(x,0) = a2 v1V(z) (3)

for every x € R. Here, m > 0 is a mass parameter and g € R a coupling constantH The
corresponding Hamiltonian H = Hypg¢ is:

(HY) V(@) = =300 (@) + g 9,0 (,0) (4a)
(H) P, y) =~ 4 (624 02) @ (2,y) fory >0, (4b)

(The reasons for setting up the equations this way will become clearer once we have
described the Bell-type process and its probability current.) One can show that H is
self-adjoint on a suitable dense domain in % consisting of functions satisfying the IBC
([3), so that e~*t/" is a unitary operator on ., and 1, = e~*#*/"); is the solution of
the Schrodinger equation

Iy

ih— = = Hiy. (5)

We will assume in the following that 1 (and thus also ;) lies in the domain of H and
in particular satisfies the IBC.

2.2 Process for Model 4

The Bell-type process for this model, for any solution v, to (9], is defined as follows. The
initial configuration @ is chosen with the [1y|? distribution. At any time ¢, if Q; lies in
the interior of Q| then it moves according to Bohm’s equation of motion [7, 29, 25],

dQ Vi

h
=21
= Em=tQ), (©
or, equivalently,
dQ¢ Jj
= @) (7
in terms of the quantities
j = 5 Im(y* Vi) (8a)
p=yP (8b)
3/2

IThe dimension of g is (energy) x (length)3/? if we take 1) to have the dimension of the square root
of a probability density, i.e., (length)~1/2 for () and (length)~* for ¥(%).



that are usually called the probability current and probability density in quantum me-
chanics (and that will turn out to indeed be the probability current and density for our
process).

As soon as the configuration hits the boundary 0Q = 9Q? = {y = 0}, say at
(z,0), it jumps to € Q) and continues moving there according to Bohm’s equation
of motion @, now understood on QW. The motion in QW will be interrupted at a
random time T whose distribution is specified below. At time T the configuration jumps
from QM to the boundary of Q@: if X is the position immediately before the jump
X = limy ~r Q, then the point it jumps to is limpr @ = (X,0). After the jump,
the configuration moves again according to Bohm’s equation of motion @, etc. The
distribution of T" can be expressed by specifying the jump rate o, i.e., the probability
per time of a jump to occur: the probability of a jump between ¢t and ¢ + dt, given that
Qr=x¢€ 9 is

oi(x — (x,0)) dt . (9)

It is one of the laws of the theory that the jump rate is

Im* [ (z,0)* 9,¢® (=, 0)]

A
with the notation
st = max{0, s} (11)

for the positive part of s € R. (We write ¢)(!)(z) for () to emphasize that we are
evaluating 1 in sector Q1))

For the law to be meaningful and sufficient, we need that whenever the process
jumps to (z,0), a unique trajectory begins there and leads away from the boundary.
This is in fact the case: Since the jump rate can be written as

35 (x,0)F
pM ()

where j, means the y-component of the current in Q® | the process can only jump to
(z,0) if the current j®(z,0) has positive y-component, and thus points away from the
boundary. But then also the Bohmian velocity points away from the boundary (i.e.,
has positive y-component), and there is a unique solution of the ODE beginning

oi(z — (2,0)) = (12)

at (z,0); see Figure . In contrast, if jz(,Q)(m,O) < 0, then a solution moving towards
the boundary ends there, so it would not be possible to jump to (x,0) and then move
along the trajectory passing through (x,0) at that time. The case jéQ)(:B,O) =0 is
more complicated but irrelevant here because the jump rate vanishes in this case.
What if ) (x) = 07 Then the jump rate is ill defined, but this is not a problem
because the process should be expected to have probability zero to ever reach such an
z [5, 27, 28, 58].

2The notation ¢t /T means the limit t — T with t < T; ¢t \, T means t — T with t > T.
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Figure 3: Several Bohmian trajectories (i.e., solutions of () in Q®), some of which
begin or end at the boundary point (z,0); a yt-diagram is shown, depicting only the
y-component of the trajectories as a function of ¢ (upward); the vertical bar represents
the boundary y = 0. The uppermost three trajectories begin on the boundary and have
jz(f) (x,0,t) > 0 at the initial point; the lowermost three end on the boundary and have

jf) (x,0,t) < 0 at the final point.

This completes the definition of the process (Q4):>o (or just @y for short). It is clear
that Q; is a Markov process, i.e., a stochastic process for which the probability distri-
bution of the future path depends on the past only through the present configuration.
(Bohmian mechanics, the known Bell-type QFTs [22], and the analogous process on a
graph [62] are also Markov processes.)

2.3 Equivariance

We now turn to the derivation of the equivariance of the |¢|? distribution (i.e., of the
process defined in Section .

Consider an arbitrary probability density (instead of |¢|?) for the initial configuration
(o, and let this density be denoted by p. Then we can formulate the transport equations
for p, or probability balance, as follows. In the interior of Q®, p gets transported
according to the continuity equation

op?
ot

where v(?) = (vg(cz), vl(f)) is the Bohmian velocity vector field,

o = O 2. (14

(2.) = =0, (p@ o) = 9, (62 02). (13)

Some amount of p® gets lost due to trajectories that hit the boundary and jump to
QW In QW p evolves according to
opM
ot

(z) = -8, (pu) U(l)) +pP(2,0) [0l (2,0)]" = pW(2) o (x — (2,0)) . (15)
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The first term on the right-hand side represents the change in p*) () due to transport of
pM) along QW the second term represents the gain due to jumps coming from (z,0), and
the third the loss due to jumps from z to (z,0). Note that p®(z,0) [—vg(jz) (z,0)] " dx dt
is the amount of probability arriving at 9Q?) due to motion in Q@ between (z,0) and
(x + dx,0).

Now the following equations for the time evolution of |1|? follow from the Schrodinger
equation with the Hamiltonian . In the interior of Q@

2))2
WL ) 40— 0 w
with j as in (84)), and in QW,
Ol 2 . x
AL ) = 0,4 + 2 1m0 @) 90,6 (2,0)]. (17)

The IBC (@) allows us to replace 1)) (x)* on the right-hand side by —(h?/2mg) ¢ ® (z, 0)*,
so we obtain that
oV

5 @) =
Thus, it follows from and that whenever p = |¢|?, the right-hand side of
agrees with that of , and the right-hand side of agrees with that of .
Thus, p = |[¢]? is a solution to and ([15)), establishing the equivariance of the [¢)|?
distribution.

This calculation also conveys how the conservation of |1)|* works for this Hamiltonian:
The second term on the right-hand side of ensures, together with the IBC , that
the continuity equation for |9 (V|? contains an additional term (the second term
on the right-hand side) that compensates exactly the loss of [1/(?)|? due to flux into the
boundary while yielding the gain of [1)(®)|? due to the jumps described by .

—0,jV — j{P(2,0). (18)

2.4 Remarks

1. At the time of jump. Two types of jumps occur: (z,0) — x (deterministic)
or x — (z,0) (stochastic). Let T denote the time of either jump. We have not
specified whether Q7 = x or Q7 = (x,0). For the sake of a complete mathematical
definition of the process, various choices for ()7 can be adopted. For example, we
could define that always @7 = z (in the lower sector), or that always Qr = (z,0)
(in the upper sector). Both choices define Markov processes, and the differences
between them seem physically irrelevant.

2. Choice concerning the boundary. Another mathematical fine point that is phys-
ically irrelevant is whether boundary points should be regarded as elements of
Q or not. For clarity, let us write Q° = Q \ 0Q for the interior of Q (the set
of non-boundary points) and @ = Q U dQ for the completion of Q (the set of
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boundary and non-boundary points) Above, we took Q@ = Q, but we could
equally well have defined Q® = {(x,5) € R? : y > 0} (with a > sign instead
of >), which would have led to Q@ = Q°. Since 0Q is a p-null set, we have that
L*(Q°,C, ) = L*(Q,C, ). Since ¢ is then not defined on 9Q, we would have to
write lim,\ o ¥ (z,y) instead of ¥ (z,0) in (3]) and and lim, o 9,1 (z,y)
instead of 8y@/)(2) (2,0) in and . Moreover, since we want that @), € Q for
all ¢, we would need to demand that Q7 lies in the lower sector (see Remark [1]).
Except possibly for the choice of )7, the IBC process is the same as for the previ-
ous choice @ = Q, as every trajectory in @ that hits the boundary has a unique
limiting arrival point lim, ~r Q; € 9Q, and conversely, there is no more than one
trajectory whose limit backwards in time at a given time 7', limy 7 Q, is a given
boundary point. Thus, the choice Q@ = O° vs. Q = o) actually does not matter.

Moreover, if we wish, we can even take the wave function ¢ to be defined on Q°
and the process (();) to move in Q. This choice will be convenient in Section .

. Another topology on configuration space. One can take a somewhat different view
of the same process by introducing a different topology on Q°, which we call
the radical topology. It is obtained by identifying Q) with 9Q?), viz., = with
(,0). This means, for example, that an open neighborhood of = contains not
only nearby points in Q) but also points near (z, 0) in Q(2) In this topology,
Q° is a connected space, and the process @, has continuous paths. Since Q) can
now be pictured as the y = 0 line in R?, a typical path starting with y > 0 may
reach y = 0 sooner or later, stay on the y = 0 line for a random duration, then
leave that line into the upper half plane, etc.; see Figure [

S~

Figure 4: The upper half plane Q@ with Q) glued into the boundary y = 0, as required
by the “radical topology” of Q°, shown with a path of the process.

The radical topology may seem natural in view of , particularly in units in
which 2mg/h* = —1, as then the IBC is satisfied as soon as the wave function is
continuous. Note, however, that the appropriate measure of volume in Q° is still
given by , so the y = 0 line (identified with Q™)) is not a null set, and Hv on
{y = 0} is given by , not . It may also seem confusing that, for ); on the

3The definition of Q° should not be conflated with the definition of the interior of a subset in a
topological space, as the interior of the whole space is always the whole space.

4S0 in a sense, the topology is not very radical at all: In the present example (Model 4), it is the
standard topology of a closed half plane. The name “radical topology” should not be over-interpreted.
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boundary, there are two conflicting Bohmian equations of motion, one using ¢
and the other 1?; the way the process uses them is that for a random duration,
the first equation governs the motion, and then, spontaneously at a random time
T, the second equation takes over.

2.5 Time Reversal Symmetry

Time reversal symmetry plays a bigger role for the IBC process than for ordinary
Bohmian mechanics for two reasons: first, it may be counter-intuitive that the IBC
process is time reversal symmetric at all, and second, the IBC process can be charac-
terized as the unique time reversal symmetric process in a suitable class of processes, as
elucidated below.

We first describe the extension of the IBC process to negative times: The laws
governing (); are such that they define a unique process not only for all positive t,
but also for all negative ¢; put differently, they define, for any solution ¢ — 1, (with
—00 < t < o0) of , a probability distribution over paths R 5 ¢t — @; € Q. To see
this, choose a random |1y, |*-distributed configuration at an “initial time” ¢, < 0 and let
the process evolve for all ¢ > ty. Since for any ¢ > ty, Q; will be |1);|*-distributed, and
since it is a Markov process, the restriction of the process (Q:)i>¢, to a time interval
[t1,00) with t; > ty has the same distribution as the one obtained by starting at time
t1. Thus, the family with parameter ¢, of processes (Q):>t, is consistent, and by the
Kolmogorov extension theorem, each such process is the restriction to the time interval
[to, 00) of some process (Q¢)icr.

Let us now turn to time reversal. Notwithstanding the fact that “downward” jumps
(from Q® to QW) are deterministic (they occur when @, hits the boundary) while
“upward” jumps are stochastic, the process is invariant under time reversal.ﬂ This means
the following: if 1) evolves according to the Hamiltonian H = H;pe, i.e., ¥ = e /My,
and if (Qy)¢er is the associated process, then ¢ defined by ), = 1*, also evolves according
to H, and (Q;) = (Q_,) is the process associated with . To see this, note first that
(i) if ¢ satisfies the IBC then so does ©*; and (ii) Hy* = (H)*; (i) and (ii) together
imply that z/; evolves according to H. (iii) As is well known and obvious from (@, the
Bohmian velocity field v¥ = j¥/|¢)|* changes sign when ¢ is replaced by 1*. Now, we
need to consider the time reversal of the jumps.

The downward jumps erase certain information. That is, if Z(¢) denotes a solution
of Bohm’s equation of motion (6) in @, then a history (Q:)o<i<i, could arrive at
Q:, = Z(t1) in various ways, including specifically a downward jump at time 7 from
(z(7),0) to Z(7), followed by motion along Z(-) without an upward jump. It is this
many-to-one evolution that becomes, when time-reversed, stochastic (i.e., one-to-many),
see Figure |5, The [t)|? distribution induces a distribution over those histories ending up

SStrictly speaking, to ensure reversibility, we need a reversible rule for the choice of Q7 (see Re-
mark [[). Two such rules would be: (i) Q7 always lies in the lower sector (i.e., Qr = z); or (ii) Qr
always lies in the higher sector (i.e., Qr = (z,0)).
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at Z(t1) at time ¢;, and this determines the distribution of the time of the upward jump
in the time-reversed histories.

L L

Figure 5: Why the time reversal of a many-to-one evolution is stochastic. LEFT: Several
trajectories (only y-component shown), depicted in a yt-diagram in the radical topology;
the trajectories arrive at different times on the boundary and stay there on the same
trajectory on the boundary. RIGHT: The time reverse of the diagram on the left; now
the trajectory can leave the boundary at different times.

The mathematical criterion for the reversibility of the jumps is that the amount of
probability transported by jumps from the interval [z, z + dz] in QM) to Q@ during the
time interval [t,¢ 4 dt] (or, so to speak, the number of histories with an upward jump
from [z, z + dx] during [t,t + dt]), given the wave function v, is equal to the amount of
probability transported from the interval between (x,0) and (z + dz,0) in Q@ to QW
during [t,t + dt], given the wave function 1*. The former quantity is

P (z) o (z = (2,0)) dzdt, (19)

the latter is
P (2,0) [—v@ (2,0)] " du dt. (20)

From p = [1|?, the Bohmian velocity law with (8a)), and the jump rate law (10),
it follows that the two quantities are equal. This completes the proof of time reversal
invariance.

Conversely, this reasoning determines the jump rate formula. That is, the law ([10)
is uniquely selected by the conjunction of the following requirements: time reversal
symmetry, the Markov property, Bohm’s equation of motion, deterministic jumps from
(x,0) to x, and equivariance. Indeed, consider any Markov process @; in Q such that
(i) Q is |1|? distributed for every ¢; (ii) in @@, Q, obeys Bohm’s equation of motion
until it hits the boundary, at which time it jumps from (z,0) to x; (iii) in Q, Q, obeys
Bohm’s equation, except that at any time it may jump anywhere on 0Q®). Then, by
the Markov property, the jumps occur spontaneously with some rate o,(z — (2/,0));
reversibility requires that the only transitions  — (2/,0) that occur are the reverse of

13



possible jumps from 0Q® to QW and thus with 2’ = z; reversibility requires further

that is equal to (20), so, using p = |¢|?,

0, (x,0)

PO @F oz = (2,0)) = WP, 0 Sl =le5 5%

(21)
which implies .

Alternatively, the jump rate formula also follows without assuming time rever-
sal symmetry if we assume instead (in addition to equivariance, the Markov property,
Bohm’s equation of motion, and deterministic jumps from (z,0) to =) that the upward
jumps can only be of the form z — (x,0). Indeed, if a given Bohmian trajectory in
Q® begins at (z9,0) € 0Q? at time ¢y, then the process can reach it only by jumping
to (w,0) at time ty, and it can only jump there from 2y € Q). For equivariance, the
process’s y-current p™M (xg, ) 0y, (xo — (70,0)) out of (z0,0) at time ¢, must agree with
jf) (20,0, tp), which implies whenever ]}52) (x,0,t) > 0; further jumps cannot occur
since no trajectories begin at (z,0) at time ¢ if jg(,Q) (x,0,t) < 0.

2.6 Neumann-Type and Robin-Type Boundary Conditions

As pointed out already in [60] for Model 4 and in [59, B8, 65] for other models, other
IBCs are possible that involve derivatives of ¢/ normal to the boundary. While the IBC
(3 is of Dirichlet type in that it involves, like a Dirichlet boundary condition, the value
but not the normal derivative of 1) on the boundary, an IBC of Neumann type involves
the normal derivative but not the value of 1, and one of Robin type involves both[f] A
general scheme is [60), [65]

e (a+ B0,) P (z,0) = —222yD(z) (IBC) (22a)

(HY)D(2) = —22020 W (2) + g€’ (v + 60,) v (2,0)  (22b)

2m T
(HY) D (2,y) =~ (02 + 02 ) 6@ (2,) for y >0 (220)
with constants «a, 3,7,6,60 € R such that
abd — fy=1. (23)

(The constant g can be dropped by adjusting «a, 3,7,0.) These equations define a self-
adjoint Hamiltonian. The IBC and Hamiltonian are included as the special case
a=1,=0,v=0,0=1,60=0.

Given constants satisfying , a configuration process (();) can be defined in the
same way as before, using Bohm’s equation of motion again and literally the same

5However, some care is required with this terminology. For example, the “Neumann-type” IBC for
Model 1-3, which replaces, e.g., by lim,_o 0, (1M (rw)) = (—mg/27h?)y(©), has the property
that for those ¢»() that do not diverge at r = 0, the left-hand side just yields w(l)(O), the expression
that would appear in a Dirichlet condition.
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formula for the jump rate, and postulating again that the configuration, upon
reaching the boundary 9Q® at (z,0), jumps to x € Q). Then equivariance of |i|?
holds again, and so does time reversal symmetry. In general, complex phases such as
¢ in the coefficients of an IBC lead to violations of time reversal symmetry when the
phases at different boundaries are neither equal nor opposite [50]; this does not happen
for Model 4 because it has only one boundary. However, the action of time reversal on v
is now not merely complex conjugation but involves in addition a different phase factor
on each sector, viz., 3 — e729)@* and ) — L [5(0].

3 Particle Creation in 3 Dimensions

We now turn to Model 3 and, later in this section, Models 2 and 1. In Model 3, a y-
particle can move in 3-dimensional space and be absorbed and emitted by an x-particle
fixed at the origin. We refer to the y-configuration simply as “the configuration.” Thus,
the configuration space Q consists of two sectors, Q) and QW corresponding to the
number of y-particles. That is, Q® contains only a single configuration, namely the
empty configuration (), and Q") = R3\ {0}, whose boundary Q" = 9Q = {0}
contains only the origin. This model lies outside the framework discussed so far because
the boundary now has codimension 3.

We will use spherical coordinates (r,w) in QW) with 0 < r < oo and w € S? (the
unit sphere in R3), so that the boundary corresponds to r = 0 and looks like a surface
in coordinate space. In fact, it will be convenient to revise the definition of Q in the
previous paragraph a little bit and set Q) = [0, 00) x S? with the Riemannian metric
ds? = dr? + r? dw? (with dw? the Riemannian metric on S?, so ds* becomes degenerate
on the boundary r = 0, but the IBC approach works nevertheless). With this choice
of QW we have that 0Q is a sphere, not a point, and that Q@ = Q in the sense of
Remark 2l In the following, we will assume that 1) is defined on Q°, whereas (); moves

in Q.
3.1 Model 3

The configuration space Q is equipped with the measure p defined by

VO i 1)
u(S):{ 1(5) fSCQ (24)

1+vol(SNQW) ifpes.

The Hilbert space of this model is 7 = L?(Q,C,u) = s @ #") with #©) = C
and (") = [?(R3,C). In spherical coordinates, the inner product in J# reads

(|6 = @760 4 / dr / e 129 (rw)* 6D (rw) | (25)
S2

0
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where d?w is the surface area element on S?, and the Laplace operator becomes
A=09420,+ 5A, (26)

with A, the Laplace operator on the sphere.
The IBC demands that in Cartesian coordinates,

: 1 o m 0
limn [y ¢ (y) = — 52 v (27)

y € R3\ {0}. Equivalently in spherical coordinates, for any sequence r,, — 0 of positive
numbers and any sequence w,, € S?,

lim 'r‘nw(l)(rn,wn) = —mg 40 (28)

- 2
n—00 2l

This condition implies that, whenever ¢() is nonzero, ¥ (rw) diverges as r — 0 like
1/r. The Hamiltonian is

(Hy)© = £ / e lim 9, <m/1(1)(rw)> (29a)
S2
(HY)D (rw) = — 4= (aﬁ +20, + 5Aw)¢<1>(rw) for 7 > 0 (29b)

(where r N\, 0 means r — 0 with » > 0). It can be shown [38] that defines a
self-adjoint operator H on a dense domain ¥ in S consisting of functions satisfying
the IBC .

We now define the Bell-type process (@) in Q9 =0900y Q(I). If Q, € QW then it
moves according to Bohm’s equation of motion @ until it hits the boundary {r = 0},
at which time it jumps to (), where it remains for a random waiting time. The rate of
jumping from ) to the surface element d?w around w on the boundary r = 0 is

Pw. (30)

Im™ [r2M * 8, pD)
i

The factor 72, not present in the previous jump rate formula , can be thought of
as arising in this way: Since the probability current density is

j = ;- m[y vy, (31)

whose radial component is j,. = %Im[w*&zb], the outward probability flux per time
through a solid angle element d?w of a sphere around the origin of radius r is

jr(rw) r’ d*w = LIm[r?y*0,¢] dPw . (32)

Now the outward flux from the origin in directions in the solid angle element d?w is the
limit thereof as r ™\ 0.
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Let us continue the definition of Q);. After jumping to (0, w), the process moves along
the solution of Bohm’s equation of motion starting at (0, w), see Figure |§] In fact, it turns
out (see Remark [10| below) that the velocity vector field »*) in spherical coordinates
possesses a continuous extension to O, so that at most one trajectory starts at (0, w).
As in Section [ the positive sign of j, at (0,w) guarantees that there actually is a
solution of Bohm’s equation beginning at (0,w). This completes the definition of the

process (Qs).

Figure 6: The trajectory in QM) that @, jumps to, represented in spherical coordinates,
with only one of the two angles of w = (¢, 1) drawn (shaded region = admissible values
r>0,0<¢<2r 0<9 <7). The trajectory begins at » = 0 at a particular value of
w; the corresponding point (0, w) in the diagram is marked.

If we want to use Q° instead of Q as the value space of Q,, then, instead of “jumping
to (0,w) at time T',” we need to say “jumping to the trajectory whose limit backwards
in time at 7T is limp 7 Q; = (0,w)” and stipulate that Qr € Q. If we want to use
Cartesian coordinates, we need to say “jumping to the trajectory whose limit back-
wards in time at 7" is the origin (lim, Q¢ = 0) and whose limiting direction is w
(limp 7 dQ¢/dt x w).” We will often abbreviate this phrase and simply say “jumping
to Ow.”

3.2 Equivariance

We now derive the equivariance of 1|2, following the lines of the argument in Section

for Model 4. For Q; to be |¢;|* distributed means that the distribution of Q; has density
144 (q)|? relative to u, i.e.,

P(Q:=0) = [\, (33a)

P(Q. € #’q) = [vW(q)P d’q (33b)
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for a volume element d®q around q € R3. The probability transport equations for the
process are

(0)
O _ / dw lim r? pW (rw) [—v,(,l)(rw)]+ —pl0 / d*w oy () — 0w), (34a)
825 S2 ™0
SQ
ooV
gt =V (oM oW), (34b)

and the equations for |¢|? implied by the Schrodinger equation with Hamiltonian (29)
are

Ol _ 2 (0)% 2 1 (1)
TR o Im 1) /d w 71}{1(1)&(7‘@/} (rw)) : (35a)
SQ
Oy (1)
The IBC allows us to rewrite as
a’w(0)|2 _ h 2 : (1) * (1)
= —tim / P lim g rw) 0, (00 rw)) | (36)
S2
Using that
Im [rw*&(rw)] =Im [rw*w + r¢] =Im [rzw* Tw] , (37)

we see that, by virtue of Bohm’s equation and the jump rate law , agrees
with , thus completing the derivation of equivariance.

3.3 Remarks

4. Location of creation. We see that the behavior depicted in Figure [I] occurs in
Model 3: The y-particle gets emitted at the location of the z-particle (the origin).
Likewise, it gets absorbed at the location of the z-particle.

5. Dirichlet vs. Neumann vs. Robin conditions. We have used a Dirichlet-type IBC
for Model 3, but Neumann-type or Robin-type conditions are equally possible
[59, B8], also with respect to the Bohmian dynamics. The version of the theory
with the Dirichlet-type condition seems to be the physically most natural and
relevant [59].

6. Ezpansion by powers of r. Let us assume for simplicity that ¢/(!) can be expanded
in powers of r according to

YW (rw) = Z r* (W) . (38)

k=—1
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(See Remark |11] below for a discussion of more general ¢ in the domain of H.)
Note that the IBC enforces that an ! term occurs and, at the same time,
excludes any r® term with a@ < —1.

In terms of the coefficients ¢, the IBC can be expressed as

cr(w) = —55 v, (39)
and the action of the Hamiltonian as
(H)© = 2 / e co(w) (40a)
SQ
(HY)D(rw) = — L2 (af +20, + }A‘,)WW) forr>0.  (40b)

From (339) it follows that ¢_;(w) is actually independent of w.

. ¢y does not depend on w either. If it did, then A¢™ and thus Hi would not
be square-integrable. To see this, note that Ay contains contributions, arising
from the third term on the right-hand side of , of the form

1 oo
S0 =3 P Auer(w). (41)

k=—1

As seen from , a function of the form rc(w) can be square-integrable near the
origin only if

1 1
00 > / dr / Poor? [rle(w) ] = / dr 7+ / Pwlw)?,  (42)
0 0
S?

SZ

that is, if £ > —1. Thus, in the terms with £ = —1 and k& = 0, if nonzero, will
ruin the square-integrability (and one easily checks that this cannot be avoided by
cancellations between summands of ([#1)); so Aycp(w) =0 for k = —1 and k = 0,
which is possible on the sphere only if ¢, (w) = const. = ¢ (as the eigenfunctions of
A, are the spherical harmonics, and every non-constant one of them has negative
eigenvalue).

. Unnecessary w-integration. As a curious consequence of the previous remark,
we can actually drop the w-integration in the definition of H (along with
the prefactor 1/4m) because, for ¢ in the domain, the integrand is ¢y and thus
w-independent. In fact, is equivalent to (H)©® = gc.

. Uniformaty over the sphere. It turns out that the jump rate does not, in fact,
depend on w, so that the jump destination (0,w) is always chosen with uniform
distribution over the sphere, and only the rate of jumping at all depends on ),

o ImT [P (rw)* 9,0 (rw)]
il Q) = 1 e

Vw € §2. (43)
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10.

This follows from the fact that the radial current j,. at » = 0 does not depend on
w; in fact,

li\rg 2 (rw) = LIm[e* ¢, (44)

so that, in particular, the jump rate o; can equivalently be written in the form

e
0u(0 = (0,w)) = %W, (45)

independently of w. It follows also from that the current out of the origin is

Jo = lim 72 /dw W (rw) = 2 Imle* ¢ . (46)
7‘\0 S2 m

In order to derive (44]), we begin with . As a consequence, the limit does not
necessarily commute with taking the imaginary part,

: 2 % : 2 %
ly n[r6°0,) # T {200, (47)
(the latter limit need not exist, as the real part may diverge); however,
0 24(1) _ L 2%
lim g (rw) = o lim Im[r“y7 0, ¢ (48)
_ Ay *
= & lim Imfr*, () (49)
= %Im li{%[rlp*ar(mp)] . (50)

From the expansion (38)), we have that 7 = c_1 + cor + O(r?) and 9,(r¢)) =
co + O(r), so ri*0,(rp) = ¢* 1o + O(r), which yields ([44).

Velocity of emitted particle. As another consequence of Remark [0 the initial ve-
locity of a newly emitted y-particle always points radially in spherical coordinates,
see Figure[7] and its magnitude is independent of w.

To see this, note that the radial component of the Bohmian velocity vector field
at r = 0 is, by virtue of (44)),

lim v(l)(rw) = lim M _ ﬁlm[cil col (51)
™\0 T ™\0 |’f‘ ¢(1)(TW)|2 m |C_1|2 )
and thus w-independent, while its angular components are
2 (1) I % V
lim o) (rw) = lim 2= 7@0)_ pImlet Voea] (52)
™0 N0 |T¢(1)(rw)|2 m |C_1|2

Of course, as soon as r > 0, the velocity can change, and v,, need no longer vanish.
By the way, even if v,, # 0 at r = 0, the velocity vector in Cartesian coordinates
is still pointing radially outward, in fact in the direction w if the trajectory starts
at (0,w), see Figure [§| (Readers might think that curves with v, = 0 have
curvature 0 at r = 0, but this is not true of all curves; a counterexample is given
by dy/dr = rsin(1/r), whose curvature does not approach 0 as r — 0.)
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Figure 7: Different kinds of trajectories, represented in spherical coordinates, one
(LEFT) with v, = 0 at » = 0 and one (RIGHT) with v, # 0 at » = 0. The lat-
ter case does not occur in the Bohmian dynamics we are discussing.

Figure 8: Examples of curves (shown in Cartesian coordinates) that have (LEFT) v, =0
at r = 0 and (RIGHT) v, # 0 at » = 0. Both have w pointing to the right at r = 0,
and correspondingly start from the origin to the right.

11. Expansion in the general case. The functions in the domain of H satisfy the IBC
, but not all of them are analytic, so not all of them can be expanded in a
power series as in (38)). However [38], all of them can be expanded to a certain
extent, according to

PV (rw) = c_1r 4 cor® 4 e(rw), (53)

where c¢_; and ¢y are complex coefficients independent of w, and £(-) : R® — C
is a function from the second Sobolev space H*(R? C) with £(0) = 0. (By the
Sobolev imbedding theorem, all functions in H*(R?, C) are continuous.) It follows
that

lim [ d*w ﬁrs(rw)‘ < 00, (54)

™\ 0
S2

and from this one can obtain the same conclusions as in Remarks [6HIQ above.
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12.

13.

1/r* divergence of probability density. From (51)) and one can also draw
conclusions about the velocity right before absorption: its direction is radial in
spherical coordinates, and its magnitude is independent of w. In particular, the
velocity field is asymptotically, as y — 0, of the form

vW(y) = —a > +o(1) (55)
i
with constant o« = —(h/m)Im|co/c_1], which is positive in the case of absorption.

The motion according to the equation

v __,Y (56)

dt Yl
i.e., radial inward motion at constant speed «, has the property of transport-
ing a radial shell of radius r; and thickness dr (which has volume 47r?dr) to a
shell of radius ro < 71 and thickness dr (which has volume 47r3dr) within time
t = (r1 — re)/a. Now suppose a radially symmetric probability distribution gets
transported; since the volume of the shell goes down like 7%(¢) while the amount of
probability stays constant, probability density will increase like 1/r%(¢). In partic-
ular, the stationary probability density is proportional to 1/r%. This fits with the
Born rule p = [¢|? and the situation that 1)) diverges at the origin like 1/r. In
fact, if the asymptotics of the velocity field are assumed, then we are forced
to allow 1 to diverge like 1/r. Of course, the same reasoning could be done with
emission instead of absorption.

Different rate of divergence in 2 dimensions. The reasoning of the previous remark
might suggest that if we considered the same model in 2 space dimensions, then
probability density should diverge like 1/r as » — 0, and thus that 1 should
diverge like 1/4/r. This is actually not the case. Instead [37], in 2 dimensions, the

expansion gets replaced by
YW (rw) = ¢plogr + cor’ + e(rw) (57)

for w € S', so that the probabiliy density actually diverges like log?r. This
behavior occurs together with the fact that is not valid in 2d, as the limiting
radial velocity is infinite. In fact, instead of the asymptotic velocity reads

o(y) = ot o) (5%)

—o +
ly|2log? |y log |y|

with constant « = (h/m) Im[cy/¢], provided that ¢, # 0. And for the motion

dy Y

W_ o Y (59)
dt y|?log? |y
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14.

3.4

the stationary radially symmetric density is indeed proportional to log®r. The
condition ¢, # 0 is required for a nonzero current into (or out of) the origin, as
the current out of the origin is

Jo = limr/ dw jV (rw) = 2R m(cfe] - (60)
St

r\0

Another type of UV cut-off. A UV cut-off is usually implemented by either dis-
cretizing space or smearing out the electron over a ball with (say) radius § > 0
with some profile function ¢ that can be regarded as the charge density of the
electron and that replaces the Dirac delta function in the Hamiltonian (see, e.g.,
[59]). Another kind of UV cut-off [65] consists of smearing out the electron charge
not over a ball but over a sphere; correspondingly, a y-particle gets absorbed by
an z-particle as soon as their distance gets as small as §; this amounts to intro-
ducing a boundary in configuration space. This cut-off was, as far as we know,
first described (and implemented by means of an IBC) in [28]. In the context of
Model 3, this cut-off amounts to putting the boundary of Q) at r = ¢ instead of
r = 0, and the equations of Model 3 can be adapted straightforwardly with (0, w)
replacing (0, w); Remarks {4| and then no longer apply. An adapted version of
the proof from [38] shows that the Hamiltonian with this UV cut-off is well defined
and self-adjoint. Since the boundary then has codimension 1, the resulting model
is a special case of the framework described in Section |7l A basic fact and crucial
realization (more recent than [28]) about IBCs is that this cut-off can be removed
by taking the limit 6 — 0, or rather, that no cut-off need be introduced as we
can set § = 0 to begin with (as we have done in Section ; that is, that IBCs
provide a UV-finite theory without UV cut-off. It seems plausible to conjecture
that in the limit 6 — 0, the IBC process with cut-off on the d-sphere converges to
the IBC process without cut-off.

Model 2

In Model 2, whose IBC and Hamiltonian we first described in [59], we drop the limitation
of the number of y-particles to 0 and 1 (while there is still only one z-particle fixed at
the origin). As the Hilbert space, we use the bosonic Fock space,

H = @ Sym L*(R? C)®" (61)

n=0

where Sym is the symmetrization operator and Sym L?(IR3, C)®" its range, the space of
permutation-symmetric functions of n arguments in R3. As the configuration space, we
may either choose the space of ordered configurations,

Q= [J® \{op)" = J o™, (62)
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or the space of unordered configurations (see, e.g., [17, 31]),

é°:{ch3\{o}:#q<oo}. (63)

The latter can be obtained from the former by removing configurations with two or
more y-particles at the same location and identifying configurations that differ merely
by a permutation. While Q° is physically more reasonable, we will use Q° because it
is somewhat simpler and more familiar. Since in this model the particle reactions (i.e.,
creation or annihilation events) occur when an x and a y meet, but not when two y’s
meet, it does not matter whether we remove configurations with two y’s at the same
location, and the relevant boundary 9Q(™ consists of configurations with a y-particle
at the origin. Fock vectors ¢ € ¢ can be regarded as functions ¢ : @° — C such that
each ¥ (the restriction of 1) to Q™) is permutation-symmetric.
The asymptotics of wave functions in the domain of H near the boundary are

V() = caly\y) ;" +coly \y;)rj +o(rf) (64)

as ;= |y;| \ O for y = (yy,...,y,) € (R3\ {0})" and any n > 1, using the notation
y\y; = (Y, - Y;-1,Yj41,---»Yy,) By permutation symmetry, the functions c¢_; and
co do not depend on the choice of j (while they do depend on n).

The IBC asserts that for every n > 0 and every 5 < n,

Jim ly; () = —5m v\ ). (65)

The corresponding Hamiltonian is
H(y) = =42V, $(y) + nEg(y)
j=1

Vntl :
+ o /dzw }1{{1{1} O, [r¢(y, rw)]
S2

+ £ Py v(y\y,), (66)

j=1

where we have introduced a constant Fjy > 0 that represents the amount of energy that
must be expended to create a y-particle. (For n = 0, the first and the last line should
be understood as vanishing.) It has been shown [38] that on a certain dense subspace
9 of A, the elements of which satisfy the IBC , the operator H given by is
well-defined, self-adjoint, and bounded from below.

A feature of the expression requires further explanation: the Dirac §° factor
in the last line. Such a factor would make a Hamiltonian without IBC UV divergent,
but causes no problem here for the following reason. Wave functions satistying the IBC
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. . . . . . 2 .
|) Whlch diverge like 1/|y,| as y; — 0, contribute Dirac delta functions to Vyj¢,
viz., since

1
Vi = 4’ (), (67)

|z|

we have that
mg YW\y,) :
—%V;j@b(y) = %Vi 2ﬂhzgﬁ 5] !~ + a function (68)
J

= —0%(y;) ¥(y \ y;) + a function. (69)

These contributions cancel the last line of .

Why did no delta function appear in the formula for the Hamiltonian of
Model 37 Because that formula was stated only for » > 0, where the delta function
does not contribute. In fact, it would be correct to re-write as

(Hy)D(y) = L2 (y) + g8 (y) 0. (70)

We now define the process (Q;) in Q analogously to that of Model 3. If Q, = y =
(Yy, ..., y,) € Q™ with n > 0, then with jump rate

Im™ [rzw(y, rw)* 0 (y, Tw)] ey

oy d*w = L lim (71)
t N0 [ (y)[?
it jumps to the solution of Bohm’s equation in Q™+ beginning at
(Y15 Yj1 0w,y ,) (72)

with 1 < 5 < n 4+ 1. That is, the newly created y-particle gets inserted at the j-th
position, where j is chosen uniformly random. (It does not matter whether involves
V(Yy, - Y1, TW, Yy - Y,) OF Y(y,Tw) because of the permutation symmetry of 1.)
Again, the right-hand side of is actually independent of w, so w is also chosen
random with uniform distribution (see Remark [9] in Section [3.1)).

As long as (); does not jump to the next higher sector, it follows the solution of
Bohm'’s equation of motion @, now understood as applying in Q™ until it hits the
boundary, i.e., one of the y-particles (say, y,) reaches the origin, in which event the
process jumps to y \ y;. This completes the definition of the process.

Equivariance can be established in the same manner as before.

Keppeler and Sieber [32] have proposed an IBC Hamiltonian for particle creation
in 1 dimension. A process for this Hamiltonian can be set up in an analogous way.
An explicit example of the IBC process for a particular wave function in a variant of
Model 2 with two sources is described in Section 2.6 of [50].

Remark.
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15. Ground state. The ground state of Model 2 can be computed explicitly [59, [38].
It is a superposition of contributions from all sectors, and its n-particle wave
function ™ is, up to an n-dependent constant, a product of n copies of a 1-
particle wave function. Since this wave function is real up to a global phase
factor, nothing moves. That is, the Bohmian velocities and the jump rates are
zero. This behavior occurs as well in the known Bell-type QFTs with UV cut-off
[19], [21, Section 6.4]. It can be regarded as a consequence of the time-reversal
symmetry; in fact, for any H that commutes with complex conjugation and any
non-degenerate eigenstate ¢ of H (that then can be taken as real), the time-
reversed wave function coincides with ¢ itself, so all currents vanish, and Q) is
time-independent. Correspondingly, this behavior usually no longer occurs if time-
reversal symmetry fails, which happens [50] if the coefficient g (the “charge”) is
made complex and given different values for different xz-particles, in such a way
that their phases are neither equal nor opposite.

3.5 Model 1: Moving Sources

To obtain a full QFT, we now turn to Model 1 and allow the z-particles to move as well.
The IBC and Hamiltonian were discussed in [59} 35]. The configuration space is

0= [OJ G Qlmn) — G G R3™ x RZ", (73)

m=0n=0 m=0n=0

with the boundary 0Q formed by those configurations with a y-particle at the same
location as an x-particle, except that, as in Model 2, it will be convenient to treat r = 0
as a sphere. The Hilbert space is ¢ = J4, ® J,, with JZ, and JZ, the fermionic and
bosonic Fock spaces, respectively,

A, = @ Anti L*(R?, C)*™ (74a)
m=0

Ay = @D Sym L*(R?, C)*" (74D)
n=0

where Anti is the anti-symmetrization operator. Let mg,m, > 0 be the mass of an
x-particle and a y-particle, respectively.

The asymptotics of wave functions ¢ : Q° — C in the domain of H near the boundary
surface {x; = y,} in Q™™ = R3™ x R3" are [35]

Y(x,y) = cori(z,y \ ’!/j) 7}-}1 + i,y \ yj) log 74 + coi(x,y \ yj) + O(T?j) ; (75)

where ri; = [z; — y,|, * = (%1,..., %), and y = (Y3, ..., y,) with z;, # y, for all k,r.
By permutation symmetry, the functions c_; ;, ¢,;, and ¢y ; do not depend on the choice
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of j (while they do depend on m and n). Moreover, in order to make H self-adjoint, the
coefficients are related according to [35]

Cgﬂ‘ =TnNcC_1; (76)
with real proportionality factor
2 my(m, + 2m -
n= My > Vs y) _ et my arctan( Ty > - (77)
212 (my + my,) My + My, my, Vg (mg + 2my)

The IBC demands that for any ¢ =1,...,m and any j =1,...,n,

lim Tij 'Qb(.T, y) 2ﬂh2\f w( = &I, gj) ) (78)

(:l:i,yj)—)(ill,ill)

where ~ denotes omission and g is the relative mass (or reduced mass),

mgem
p=——> (79)

My + My
Here, ¢¥(x; = x,y;) means ¥(x1,..., Ti 1, T, Tit1, - T, Yps - Y1, Yju1r > Yn)-

Equivalently, the IBC can be expressed as

cori(z,y) = 27rh2f Y(z,y) . (80)

In particular, c_y; (and thus also ¢;;) actually does not depend on i. The Hamiltonian
is

(HY)(z,y) = — 5 ZVQ — ZV2 (z,y) + nEo(z,y)

+9Vn+1ZCO,i(37y +%ZZ53 ) (z,y\y;) - (81)

Again, this Hamiltonian is well-defined and self-adjoint [35]. Since H contains no terms
for the creation or annihilation of z-particles, it commutes with the z-particle number
operator; in the Bell-type process, as we will see, the actual z-particle number is con-
served. (This entails that parts of the wave function in sectors with x-particle number
different from the actual number play no role for the particle trajectories, so that a
“strong superselection rule” [I2] holds for z-particle number.)

The process Q; € Q is defined as follows. Between jumps, it follows Bohm’s equation
of motion, which now reads

X, , .V

= (@), (522)
dY; _ _h Vij
= (@) (82b)



for Q; = (X1,..., Xm,Y1,...,Y,). As soon as a y-particle reaches an z-particle, it
gets removed from the configuration. When at (z,y) = (@1,...,%m, Yy, -.,Y,), the
process spontaneously jumps to the solution of Bohm’s equation in Q"+1) starting at

<§B17 s L1, Ly — 0w7mi+17 s Ty Yps e 7yj—17mi + vayj7 s ’yn) (83)

with rate
Im* [r2 (cr(z, y; i, w)) " 0,0 (cx(z, y; i, 7, w
e G GG ) 2¢( @y M g, (84)
# N0 Y (z, )|
with g as in and
cr(z, y; i, r,w) = (wl, T, T~ e TW Tt 1y Ty Y Y T m%/rw) (85)

in Q) The rate is again w-independent as in Remark @ in Section and
can equivalently be written in the form

pImT et (2, y) coi(, y)]

N TERIE 0
or oy = g=Imt [—coi(z, y) [P(x, y)] (87)
or o, = %ImJr [coi(z,y)/co1(x,y)] (88)

Indeed, by and a reasoning analogous to that of Remark |§|, at cr(z,y;i,r,w),

Vo) = <ci1r_1 + ¢y logr + ¢ + 0(1)) (—c_lr_2 et + 0(7"_1)> (89)
= —le1)*r® = (cje_1)r 2 logr + (¢* ycp — che_1)r 2 +o(r™?). (90)

The 7=3 term has vanishing imaginary part, and so do, by virtue of , the r=2logr
term and the first contribution to the r=2 term. As a consequence,

Im[r?*9,] = Im[—cjes] + o(1). (91)

which yields (86)); application of the IBC then yields and ([88).

Equivariance can be checked in the same manner as before. As in Remark [I0] it
follows that the velocity of emission (or absorption) is radial in spherical coordinates,
and its magnitude is finite and independent of w.

3.6 Renormalization

For our purposes, renormalization means to consider a QFT with UV cut-off and take
the limit in which the cut-off is removed, if such a limit exists. This leads to the
three questions whether the limiting Hamiltonian agrees with the IBC Hamiltonian
(answered in the positive for Model 2 in [38]), whether the Bell-type process defined in
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[4, 19], 20], 2], 22] (see also Section [5| below) for the cut-off theories possesses a limit,
and whether this limit agrees with the IBC process defined here.

One way of implementing a UV cut-off is to discretize space, and in Section [6] below
we will show non-rigorously for Model 4 as an example that, at least if the discrete
Hamiltonian H is chosen appropriately, a renormalized theory (i.e., a limit of removing
the cut-off or, equivalently, a continuum limit) exists and leads to the IBC process
introduced here.

Another way of implementing a UV cut-off is to smear out the z-particles over (say)
a ball of radius § > 0 by means of a (square-integrable) profile function ¢ : R — R
that replaces the Dirac delta function (see, e.g., [16, 19, 59, B8]). Removing the cut-
off corresponds to the limit ¢ — 6%. It is known that for a cut-off Hamiltonian H,,
analogous to that of Model 2, this limit exists [16] and yields the IBC Hamiltonian [3§].
Suppose that ¢ has support of radius § > 0. Since the Bell-type process (Qf) for H, has
an emission rate that vanishes outside the support of ¢, it is clear that it must move the
same way as the IBC process (Q;) when all y-particles are outside the d-ball. Together
with the equivariance of || for both processes and the fact that both processes can
only jump one sector up or down at a time, this is strong evidence (though not rigorous
proof) that (QY) approaches (Q;) in the limit.

A third way (not common) of implementing a UV cut-off is to assume that the z-
particles are spheres of radius 0 > 0, as described in Remark [14]for Model 3. As discussed
there, it is plausible to conjecture that the limit of removing the cut-off, § — 0, exists
and yields the IBC Hamiltonian and the IBC process of Model 3.

These examples suggest that renormalization usually leads to Bell-type processes
with IBC. It would be of interest to study this question further and obtain a full picture
of the conditions under which this is the case.

3.7 Remarks

We conclude this section with a number of remarks.

16. Radical topology. In Remark [3] in Section 2.4, we have described the “radical
topology” for Model 4; an analogous choice of topology is possible for Models 1,
2, and 3. For Model 1, it can be obtained by identifying configurations (x,y) such
that y; = x; with (z,y\y,), thus gluing the (m, n)-particle sector into the diagonal
of the (m,n + 1)-particle sector. In this topology, the process (Q);) has continuous
paths. This view seems particularly natural when using a different configuration
space Q based on unordered configurations [31] (see Remark 28| below) and “all
particles are identical” [30].

17. Known boundary conditions. The use of boundary conditions with the Schrodinger
equation is well known; these are not interior-boundary conditions but concern
solely the value and/or derivative of the wave function at every boundary point.
The Hamiltonian is a self-adjoint version of the negative Laplace operator whose
domain consists of functions satisfying the linear boundary condition. Dirichlet,
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18.

Neumann, or Robin boundary conditions are often considered on a codimension-1
boundary (such as the end points of an interval) and imply that the probabil-
ity current vanishes on the boundary, with the consequence that the Bohmian
trajectory has probability zero to ever reach the boundary. Also cases in which
the boundary has codimension 3 have long been considered, for example in the
Bethe—Peierls boundary condition [6]

0
lim (- +a) (ro(rw)) =0 92
ti (57 + ) (o) 92)
for a wave function ¢ € L?(R?). For this condition, which appears in the theory
of zero-range interactions (delta potentials), the configuration space is R? \ {0},
and the boundary is the origin. Also this condition leads to a vanishing current
into the boundary, so that the Bohmian trajectory never reaches the origin.

Conditions that allow a non-zero current into the boundary have been considered
for graphs (also known as networks), i.e., spaces obtained by gluing several intervals
together at their end points. Usually the probability content of a vertex is taken to
vanish (which means for the Bohmian particle that it has probability zero to stay
at the vertex for a positive duration), which leads to the Kirchhoff condition that at
every vertex at every time, the sum of the currents is zero (or, equivalently, the sum
of the inward-pointing currents equals that of the outward-pointing ones). One
imposes linear vertex conditions on the wave function, which we may call boundary
conditions if we think of the vertices as the boundary points of the intervals. The
vertex conditions that imply the Kirchhoff condition and lead to a self-adjoint
Hamiltonian are known, see, e.g., [33] 34]; the simplest ones demand that 1 is
continuous at every vertex (i.e., the limiting values as the vertex is approached
along different edges coincide), and that the sum of the derivatives along each edge
at this vertex is proportional, with a given proportionality constant, to the value
of 1 at the vertex; so this condition is similar to a Robin boundary condition in
that it involves both the value and the derivative of ). The Bohmian trajectories
for such Hamiltonians are discussed in [62] and form a stochastic process similar
to Bell-type QFTs: the Bohmian particle moves deterministically according to
Bohm'’s law of motion along an edge until it reaches a vertex; at this instant,
the particle chooses randomly the edge along which to leave the vertex, with a
probability distribution expressed by a law of the theory in terms of the wave
function. A parallel with the IBC processes can be seen in that the arrival at the
vertex occurs deterministically (as does the absorption in IBC models), while the
departure from the vertex, which of course occurs in the same instant, is stochastic
(like the emission in IBC models) in that the direction of departure is random.

Kinks in the trajectories for non-Dirichlet IBCs. It is a known feature of Bell-type
QFTs that, whenever a particle gets created or annihilated, there will generically
be a kink in the world line of every particle, corresponding to a discontinuous
change in the velocity. That is because, for a jump ¢ — ¢’ in configuration space
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corresponding to the creation or annihilation of a particle, there is no reason why
the Bohmian velocity Im(V1 /1) (or any of its components) would have to be the
same at ¢’ as at ¢. This phenomenon also occurs for some of the IBC models, such
as Model 1 and Model 2 with IBCs of the Neumann or Robin type, see Figure [9]

4 !

Figure 9: In some IBC models, all particles undergo a kink (i.e., a discontinuous change
in velocity) at every time of a particle creation or annihilation. LEFT: This is the case
for IBCs of the Neumann and Robin type. RIGHT: For IBCs of the Dirichlet type, a
kink occurs only for the emitting or absorbing particle.

In contrast, an IBC of the Dirichlet type, such as or , implies the absence
of such kinks for all particles except the emitting or absorbing one. For the other
particles, the velocity does not change at the time of a creation or annihilation,
but the acceleration jumps, so that the world line (t — X;(t) or t — Y ;(t)) is
non-smooth (of class C* but not C?) at the time of a creation or annihilation.
The velocity is continuous because this condition, say for definiteness, entails
that, as the configuration y € Q™ approaches the boundary, say y; — 0, the
components of Im(V(™ /(™) parallel to the boundary (i.e., the components for
y, with k # 5) approach Im(Vy(®=1 /=1,

In Model 2, in which the z-particle cannot have a kink because it is fixed at the
origin, it follows that none of the particles has a kink at the time of a creation or
annihilation; note, however, that the path in configuration space may well have a
kink (as shown in Figure [4]) when reaching the boundary and the radical topology
is used, as the component of the Bohmian velocity vertical to the boundary usually
jumps from a nonzero value to zero.

In Model 1, the kink in the world line of the emitting or absorbing x-particle arises
as follows. Consider, for example, an absorption event. For the velocity of the
configuration, the component parallel to the boundary does not jump, and that
includes the velocities of all unrelated particles, as well as the center of mass of
the absorbing x-particle and the absorbed y-particle. That is, the velocity of the
center of mass just before the absorption equals the velocity of the xz-particle just
after the absorption. Since the relative velocity between the x and the y just before
absorption is nonzero, the z-trajectory has a kink. So, an z-particle undergoes a
kind of recoil when it emits or absorbs a y-particle.
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19. O’Flanagan’s paradox. This was originally formulated for Model 1 with the kind of
UV cut-off described in Remark The configuration consists of those points in
Uy nRE™ X Rf/n for which every y-particle has distance at least § > 0 from every x-
particle. A y-particle gets absorbed as soon as the distance reaches 6. O’Flanagan
described his puzzle as follows:

“If we think just about the Schrédinger evolution during a process
where a photon [y-particle] gets absorbed by an electron [z-particle],
it seems to me that the information about which direction the photon
came in from is lost. That is, construct an initial state of the wave-
function which is localised in the bulk of the (1,1) sector but which is
heading towards the boundary very quickly, so that all of the Bohmian
trajectories hit the boundary (or at least the vast majority). Then the
trajectories jump to the middle of the (1,0) sector where there is just
an electron, so almost all of the || must end up there too. It seems to
me that if we try to reverse this picture, beginning with a wavefunction
localised in the (1,0) sector, then I can’t see how we can get it to “break
the symmetry” and shoot out the photon in the right direction.” [4§]

Since the reasoning involves only a single z-particle which need not move, and
only 0 or 1 y-particle, it can be considered just as well in Model 3, in which the
configuration space is @ = QU QW with Q© = {f} and QY = R*\ B; with B;s
the ball of radius ¢ around the origin. For the purpose of the reasoning, consider
a large d, and an initial wave function with 1) = 0 and ") a wave packet of size
much smaller than ¢ moving toward the origin along, say, the z axis. In our words,
the reasoning is that since every trajectory jumps to Q@ when it hits the §-sphere,
all of the wave packet will be transferred to Q(¥), so that, after a while, the wave
function will be entirely in Q(©); that is, up to an irrelevant global phase factor,
P =1 and " = 0. Now consider the time-reverse history, starting out with
the complex-conjugate of the final state, /(9 = 1 and ") = 0. By time reversal
symmetry, it should evolve into a wave packet (of size much smaller than 0) in
QM moving away from the origin along the z axis. However, the wave function
P =1, (M = 0 is rotationally symmetric and contains no information about
any direction in space, so it cannot evolve into a packet moving in the z direction.
That is the paradox.

The solution is that while it is true that every Bohmian trajectory that reaches
r =6 jumps to Q) it is not the case that the wave packet just disappears into
that surface like into the horizon of a black hole. Instead, part of the wave packet
actually gets reflected at the surface r = ¢ (and some trajectories never reach
r = 0). In fact, if we expand the wave packet in spherical harmonics, then only
the first term, which is constant over the sphere, couples to Q) via the IBC
and the appropriate term in the Hamiltonian (29a]). So, the wave function
does not end up being rotationally symmetric, and in the time-reverse history, the
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20.

21.

22.

wave function emitted from Q) at r = § superposes with the time-reverse of the
reflected wave function in Q) to form a small packet moving in the z direction.

If we consider O’Flanagan’s paradox for 6 = 0, then, in addition to reflection, part
of the wave packet might evade absorption into Q(°) by passing around the origin.
Thus, the situation seems less paradoxical for § = 0. Rather the other way around,
if only the part of the wave function that reaches the origin can be absorbed, then
one might worry that nothing will be absorbed, as the origin is a set of measure
zero. But we know for fact [38] that the n-particle sector is not invariant under
the time evolution for any n, so the origin must attract a significant part of the
wave function in Q) by “sucking in” the wave function immediately adjacent to
it.

Location of emission. When an atom emits a photon, does the photon trajectory
start at the electron or at the nucleus? Does the electron jump to a new loca-
tion, or move there continuously? Is the electron at rest before and after? These
questions can be answered in the non-relativistic framework of Model 1 (or rather,
a variant thereof), taking photons to be the y-particles, electrons the z-particles,
and introducing z-particles for the nuclei, along with a —1/|x; — 2| potential for
every x and every z. Since both x and z are charged, they should both fundamen-
tally be capable of emitting y’s, each with an IBC. Suppose the initial situation
comprises a single x and a single z, and suppose the initial wave function is an ex-
cited eigenstate of the Hamiltonian without y-creation (a “hydrogen eigenstate”);
so the x and z are initially at rest relative to each other. Then the wave function
created in the sector with one y more can approach the hydrogen ground state,
with the excess energy in the y. The x and the z, if they have equal absolute
charge, are equally likely to emit a y. None of the particles jumps, they all move
continuously. Since the hydrogen ground state has a different position distribution
than an excited state, the x and 2z need to move relative to each other before they
settle into their final configuration. The emission of the y probably occurs in the
middle of this motion. One further complication can arise from the fact that an z
or z is usually surrounded by a cloud of y’s; so the newly emitted y may actually
settle in the cloud while another y from the cloud may escape to infinity. A more
detailed and more careful study of these questions would be of interest.

Boundaries at infinity. Some Bohm-like theories, with a different equation of
motion than Bohm’s, have particles reaching infinity in finite time [55]. This
problematical behavior can perhaps be dealt with by regarding |z| — oo as a
“boundary surface” of R? (similar to the way infinity appears as a boundary sur-
face in Penrose’s conformal diagrams of space-time) and introducing conditions
analogous to IBCs to govern the flux into the boundary and terms to ensure that
the probability that has flown into the boundary re-appears in a different place.

Question of rigorous existence. It would be of interest to rigorously prove the
existence of the Bell-type process with IBC for all times (“global existence theo-
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23.

4

rem”). Corresponding existence proofs, under suitable conditions, are known for
Bohmian mechanics [, 58] and for the Bell-type process for lattice QFTs [27], 28];
such proofs usually also provide a rigorous proof of equivariance. For IBC pro-
cesses, such a proof would need to control that there cannot be infinitely many
jumps in finite time; and that the trajectory has probability 0 to ever run into a
node of the wave function or to escape to infinity.

Question of wave functions outside the domain of H. For defining the process,
we have assumed that 1 lies in the domain & of the Hamiltonian (initially, and
therefore for all times), just like one usually considers Bohmian mechanics for
smooth wave functions (which lie in the domain of the corresponding Hamiltonian).
However, the unitary time evolution is defined also for wave functions ¢ € 5\ 2,
and the question arises whether also for such 1 a process (fo) analogous to the
one we have defined here can be defined.

Symmetries

In this section, we study for various kinds of symmetries of the Hamiltonian whether
the IBC process also respects these symmetries. We find that it does, which provides
support for regarding the IBC process as a reasonable picture of physical reality.

4.1

Several Symmetries

We cover several kinds of symmetries in the following remarks.

24.

25.

26.

Time reversal. All of the IBC processes described in this paper are invariant under
time reversal, as described in detail for Model 4. We describe in [50] how cases can
arise in which time-reversal symmetry is violated; as discussed there, these cases
involve complex coefficients in the IBC [such as ¢ in (3)) and () or ¢ in (22))] that
have different phases at different boundaries (or for different a-particles).

Global phase factor. A basic symmetry of all Bell-type processes with IBC is that
if we change the wave function by a global phase factor, ¢, = €%, with ¢ € R,
then the process associated with 1) coincides with that associated with 1), as can
be seen from the fact that e’® cancels out of ||, out of the Bohmian velocity, and
out of the jump rate , , , or . Since this cancelation would also
occur if the phase factor were time-dependent, it follows further that the addition
of a constant E to the Hamiltonian, which leads to a change in the wave function
by a time-dependent global phase factor e *#*/" has no effect on the process.

Symmetries of Fuclidean Space. The IBC process for Model 1 (with moving -
particles) is invariant under all symmetries of Euclidean 3-space (translations,
rotations, inversion @ — —a, and their composites). This is perhaps rather ob-
vious; it means that if ¢ evolves according to H and (Q;)ier is the associated
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28.

process, then for any a € R3 and R € O(3) (i.e., a rotation including, possibly, a
space inversion), 1 defined by

@Zt(acl,...,acm,yl,...,yn) = @Dt(R:cl +a,...,Rx,, +a, Ry, —{—a,...,Ryn—l—a)
. (93)
also evolves according to H, and the process (Q;)cr defined by

Q=T(Qu), (94)
with T : Q@ — Q defined by

T(Xi,...,XmY1,....Y,) = (RX:+a,...,RX,,+a,RY +a,...,RY ,+a),
(95)
is the associated process. The model is also invariant under time translations.
Gauge invariance. In Model 1, a gauge transformation does not affect the process
;. In more detail, suppose we introduce an external magnetic field into Model 1
by replacing all derivatives V, in (82a]) and by Vg, —ieA(x;), where A is
the vector potential and e the electric charge of the x-particles. Now the gauge
transformation corresponding to the function f : R3 — R,

A=A+ Vf (96)

and
w(wlu o s Ly, Y, e 7yn) = eZZief(wi)w(wlv ey Ty Yy, - 7yn) ) (97>

leads to a wave function ¢ that obeys the same equations as ¢ but with A instead
of A, and the process associated with ¢ coincides with that associated with .

Permutation invariance. Given that Q = (x1,...,Tm,Yy,---,Y,), any permuta-
tion of the &’s among themselves and the y’s among themselves will not change
the process starting from () except for the labeling of the particles; this situation
is the same as in Bohmian mechanics (without particle creation), discussed in
[I7, BI]. Specifically, let @ be such a permutation of Q; the solution of Bohm’s
equation of motion from initial configuration Q is the same as that from @Q up
to relabeling, the time at which Q, hits the boundary is the same as for @), the
configurations that @, and Q, then jump to are permutations of each other, the
rate of emitting a y-particle is the same for Q, as for @Q;, and the configurations
they jump to in that event are also permutations of each other. Put differently,
the Bell-type process with IBC for Model 1 can be defined just as well on the space
of unordered configurations,

{(QmQy) ¢, CR? g, CR® #q, < 00, #q, < 00,¢, N gy = Q)}- (98)
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4.2 Galilean Symmetry

Bohmian mechanics for a fixed number of particles is invariant under Galilean boosts,
as discussed in, e.g., [23, [I]. However, Model 1, along with the jump process @Q;, fails to
be Galilean covariant. In this section, we elucidate why that is, how Galilean symmetry
is related to local conservation of mass, why mass is not conserved in Model 1, and how
Model 1 can be so modified as to become invariant under the action of the Galilean
group (i.e., the group of symmetries of Galilean space-time; see, e.g., [2]). The result,
which we will call Model 1, is an IBC version of the QFT known as the “Galilean
invariant Lee model” (GILM) [41], 52, 15] (see [40}, 53] for the original Lee model). As
a by-product, our consideration provides an alternative way of arriving at the GILM.
We show here that the IBC process that we set up for the GILM is Galilean covariant
as well, so the theory satisfies Galileo’s principle of relativity. This result shows that
the concepts of IBC and Bell-type QFT are compatible with Galilean symmetry. It can
also be regarded as providing a deeper justification for the name “Galilean invariant Lee
model.”[]

In order to show that Model 1 breaks Galilean symmetry, we start from the usual
transformation formula for wave functions; it says that under a Galilean boost with
relative velocity v € R?, i.e., under the space-time coordinate transformation

(t,@) = (t,x + vt), (99)

the wave function ¢ : R*N xR, — C of N particles in non-relativistic quantum mechanics
transforms according to

N
wt(wh s amN> = eXp |:% Zml(v T %vzt) ¢t(m1 —vl,..., TNy — 'Ut) ) (100)
=1

where m; is the mass of the i-th particle. As we will elucidate, in a setup with particle

creation, this formula requires the conservation of mass. However, in Model 1, particles
get created and annihilated according to the particle reaction

r2x4y. (101)

Mass is not conserved in this reaction, simply because a particle of mass m, gets replaced
by two particles of total mass m, + m, > m,, or vice versa. Mass conservation can be
restored by assuming a particle reaction of the form

TS24y (102)

"In [19], some of us had written about a variant of Model 1 with UV cut-off that the reason why
Galilean boost covariance fails “is that, roughly speaking, a photon gets created with wave function
¢ which cannot be Galilean invariant. [...] even with the cutoff removed, i.e., for p(y) = d(y), the
quantum dynamics [i.e., the evolution of the wave function] is not Galilean invariant.” These statements
are not quite on target because the issue is not so much that the wave function ¢ cannot be Galilean
invariant (an issue that would actually disappear when replacing ¢(y) by §(y) as boosts amount to a
time-dependent translation in momentum space and the Fourier transform of § is translation invariant)
but the non-conservation of mass. In fact, once the mass conservation is restored in the GILM, one can
also introduce a UV cut-off without violating Galilean covariance [41].
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with
My =My + My, . (103)

That is, an z-particle, when emitting a y-particle, mutates into a z-particle with lesser
mass, while a z-particle, when absorbing a y-particle, mutates into an z-particle with
greater mass. Kq.s and summarize the GILM in a nutshell; in the original
Lee model [40, 53], m, and m, were assumed to be infinite, so that the x- and =z-
particles do not move. (If we wish, we can introduce further particle species w, ... of
mass m,, = m, —m, etc. (provided that is still positive) and reactions z < w + y etc..
However, for the sake of simplicity, we will assume here that a z-particle cannot emit
any particles—it can only absorb a y-particle and thereby mutate into an z-particle. In
particular, z’s cannot emit y’s, and z’s cannot absorb y’s.)

4.2.1 Galilean Covariance and Conservation of Mass

We now explain in terms of Model 1 why Galilean covariance requires the conservation
of mass. (A different reasoning is described in [3].) The reason is orthogonal to the
issue of UV divergence and thus easiest explained in terms of the original, naive, formal
Hamiltonian of which Model 1 is a precise interpretation,

( orlg@b)(x Y) (z,y) +nEy(z,y)

+ gVn+1 Zzb (v, z))
2253 Ju(z.y\y;). (104)
=1 j=1
As an abbreviation, let
Ty(x)=x+vt, Ti(z,y)= (T, ..., ixwn, Ty, ... Tiy,) - (105)

The obvious extension of the transformation law ((100) to a wave function ¥ on the
configuration space Q = Uy, n,R¥™ x R3" of a variable number of particles reads

Ui(z,y) = e @Y 4y (T, (2, y)) (106)

with the additional phase o given by

1 - g M
an(eyy) = v (Do mami+ > myy, ) = 0%, (107)
i=1 j=1
where
M = mm, +nm, (108)
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is the total mass of all particles in the configuration (z,y). The fact that the difference

1 My 9
D) — oz, y) = —v - myz; — —Lvt 109
O%(l‘, (y7 4y )) at(’x y) hv mym 2h ( )
is nonzero has the consequence that the second line in (104)) transforms differently than

it should: It implies that the Schrodinger equation
thop) = Hy (110)

does not hold for ¢ if v # 0. A problem of the same type arises from the third line of
. This is the point where Galilean covariance fails.

In order to obtain Galilean covariance, we need that the additional phase « is the
same at any two configurations related by a creation or annihilation event. This is
equivalent to saying that the mass is conserved during particle creation and annihilation.

4.2.2 Galilean Covariant Model

We thus consider a variant of Model 1, which we will call Model 1" and in which the
configuration space is

o= UUem=UUUm) xRS (1)
m=0n=0¢=0 m=0n=0¢=0

so that the wave function ¢, : @ — C is of the form ¢ (x,y, z) with x = (@1,...,Tn),
y=(Yy,.---,Y,), and z = (21,..., z¢); ¥ is symmetric against permutation of y’s, anti-
symmetric against permutation of x’s, and anti-symmetric against permutation of z’s.
The formal Hamiltonian of Model 1’ is given by

n

( orlgw)(x Y,z) = Z v quvz) + nE0¢
j:l
(n+1)(¢+1) i
b OOEDED §™ gyttt (o 2y (g, ) (2, m0)
i=1
n J4
+ DOELN N (1) (2 — y) (s z)iy \ g2 \ )
=1 k=1
(112)
The transformation law reads
&t(ia Y, Z) = eiat(x?yVZ) ¢t (Ttil(a’} Y, Z)) (113>
with
Ti(z,y,2) = (L, ... Ti@m, Ty, .. .. Try,, Tiz1, - ... Trze) - (114)
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and the additional phase « given by

M M
at('ray?'z) = f’v q-— %’UZt (115>

where q is the center of mass of the configuration (x,y, 2),

m n l
— % (Z MaL2; + Z myy; + Z mzzk> , (116)
i=1 j=1 k=1

and M is the total mass of all particles in this configuration,
M =mm, +nmy, + Im, . (117)

Note that any configuration obtained from (z,y, z) through an emission or absorption
event, i.e., (z\ @; (y, :); (z,2;)) or ((z,2,);y\y;;2\ zx) when y; = 2y, has the same
center of mass g and the same total mass M, and thus the same a4, as (x,y, z). Also,
permutations (of the z-particles among themselves etc.) do not change .

Now a straightforward calculation shows that the Schrédinger equation (110]) for 1
implies that for w on the non-rigorous level.

4.2.3 1IBC and Corresponding Hamiltonian

We now describe an IBC version of Model 1’; which is believed to also rigorously define
a Hamiltonian [35], B6]. The IBC is given by

lin gy = 2l 0@y 2) = S (@) v G a), (1)

(yjyzk)g)(w»w

where p,, is the harmonic mean of m, and m.,

z = 119
Hy m, + my (119)
The corresponding Hamiltonian is given by
n ¢
(H)(w,y,2) = ZV S VR U= Y V4 nEy
Jj=1 k=1
9/ D)) S .
+ e Z £+ +1, x Y, 2 )
=1
n l
+ LN N () (2 - y) Y (w2 \ g2\ 2k) (120)
j=1 k=1

The transformation law is still given by (113]). Since two configurations connected
H

by the reaction © S z + y, viz., (z,y,2) and (z\ @;; (y, z;); (2, 2;)), have the same g

and M and thus the same oy, ¥ satisfies the IBC (118) if ¢y does and evolves according
to H if ¢, does.
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4.2.4 Jump Process

For Model 1/, this process is defined analogously to that for Model 1 in Section 3.5
Between jumps, the configuration ¢); moves according to Bohm’s equation of motion.
Whenever a y-particle and a z-particle meet, they get replaced by an z-particle. Con-
versely, the i-th z-particle spontaneously decays into a y and z (departing in directions
w and —w, respectively) with rate

I3 Im™* [C*—l,z’(xa Y, Z) CO,i('CEa Y, Z)]
s (2, y, 2)|?

This completes the definition of the process (Q¢)t>¢, for arbitrary initial time ¢,. Since
for two different choices of ¢y, t; < t;, the process (Q});> has the same distribution as
the restriction of the process (Q;)tztg to times ¢ > t{, all the processes obtained for any
choice of ty fit together to form a process (Q;)cr for all times.

We now state the covariance under Galilean boosts: The process (Qt)teR defined by

Qe = Ty (Q1) (122)

has the same distribution as the process associated with 1. Let us say this in more detail.
A Galilean boost is a mapping of Galilean space-time to itself and therefore maps any
particle world line to another world line, and any path R — Q in configuration space
(which corresponds to several world lines in space-time) to another path in configuration
space; it therefore maps any probability distribution over the set of paths in Q (i.e., any
stochastic process in Q) to another such distribution (i.e., another stochastic process).
The claim is that the process (Q;);er associated with the wave function ¢ gets mapped to
the process associated with a suitable wave function w, in fact, w is just the transformed
wave function given by (113 -

Indeed, this follows from the following four facts: (i) That ¢ obeys the Schrodinger
equation with H given by , as discussed in Section m (ii) The well known fact
that Bohm’s equation of motion transforms in the right way. (iii) The jumps z +y — x
do not cause a problem. (iv) The jump rate for the reaction x — z + y is the
same for 9, at Ti(x,y, z) as for ¢ at (z,y, z). This is because, when passing from 1 to
¥, both c_1, and cp; change by the same phase factor exp(ic:(z,y, 2)).

We have already discussed invariance under space and time translations, reflections,
and time reversal, so that the time evolution is invariant under the full Galilean group.

In a sense, the Galilean covariance of the Bohmian version of the theory provides
the full justification of the claim of Galilean covariance of the IBC Hamiltonian. For
trajectories in space-time (and thus also those in the configuration space considered
here), it is unambiguous how they transform under an element g of the Galilean group;
it is not just any old action of the Galilean group, it is the action that must be applied
if the paths are to be taken seriously as the paths of particles in space. In contrast,
the transformation behavior of the wave function is not per se prescribed; the ultimate
reason why is the correct transformation behavior under boosts is that the jump
process associated with ¢ is the transform of the jump process associated with .

dw. (121)

O¢ dz(-() =
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5 Comparison with Known Bell-Type QFTs

The IBC processes J; defined in previous sections have striking similarities with the
process provided by Bell-type QFTs with UV cut-off, which is why we call them Bell-
type processes with IBC. The similarities include that both processes have jumps; that
the pieces between the jumps are solutions of Bohm’s equation of motion; that the
configuration is |¢|?* distributed at every time; that both theories are time reversible;
and that the jump rates are governed by a law involving the wave function . More
specifically, since the jump rate in a Bell-type QFT with UV cut-off is given by [19] 20,
211, 22]

Im* (¢ P(dg) H,P(dg')| )

(V| P(dq")|)

with P(-) the configuration operators (a projection-valued measure (PVM) on config-
uration space acting on Hilbert space) and Hj the interaction Hamiltonian, or, in the
notation of the present paper, by

o(q — dg) =2 (123)

Im* [¢(q)" (g H:ld') ()]
[ (q)[?

it is striking that both jump rate formulas, (124]) and, say, for Model 4, are of the
form

oi(q = dq) =2 dq (124)

Im*A(q,q)
WP

with A(q,q’) a complex-valued sesqui-linear expression in ¢ that is linear in ¢ (q’) and
conjugate-linear in 1(q); viz., for (124)),

Alq.q) = 29(q)* (alHild") (), (126)
and for , using the IBC ,

N 38— (2,0) (00(0)) U(¢) if ¢ =2 e QW
Alg.q) = {oo;(q—:c) if f = (2,0) € QO

oi(¢ — dq) = (125)

(127)

In contrast to , the jump rate is not uniquely determined by reversibility, equiv-
ariance of [|?, and the Markov property. Rather, it is uniquely selected by demanding
in addition (i) the standard current property [21, 22] that the probability currents associ-
ated with the jumps agree with the standard quantum-mechanical formula, and (ii) the
minimality property that jump rates are as low as possible.

It would be of interest to have a general definition or construction of Bell-type
processes that includes the old ones for QFTs with cut-off as well as the IBC processes.
Another connection between the two is that the Bell-type process with IBC can be
regarded as a limiting case of a Bell-type process on a lattice; this is what we turn to
now.
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6 Process on a Lattice

Bell [4] originally proposed his jump process for QFTs on a lattice. We now outline how
Model 4 can be discretized, why the corresponding process is a special case of Bell’s jump
process, and how a suitable continuum limit can be taken that leads back to the IBC
process. It is well known [57, 67, 9, 68] (though not on a rigorous level) that Bohmian
mechanics is a limiting case of Bell’s lattice process.

A mnatural discretization of Model 4 goes as follows. Choose a lattice Wldth e > 0.
The discretized configuration space O is the union of O = ¢7Z and Q® = = {(z,y) €
eZ? : y > 0}, a countable set, with measure 1 given by f({z}) = ¢ and p({(z,y)}) = ¢
The Hilbert space 5 = Lz(é C, ,E) has inner product

Wloy= > evW@)oW@+ > 9@, y) 6P (x,y). (128)

zeQM) (m,y)eé(2)

2

We obtain the discrete Hamiltonian H from by means of several replacements: re-
place the second derivative 9? by the lattice Laplacian

Ay =72 (h(a +e) = 20(2) + v(x - 2)) (129)
replace the first derivative 9,1®(z,0) by

= (¥ (e,2) = 0 (@,0)) (130)

and replace @ (z,0) by (2mg/h*)y™(z), thus building in the IBC (3). That is,
(H)D(2) = L A0 — 2@ (2, ¢) + 229D (1) (131a)
(HY)P(z,y) = =22 (A, + A )@ fory >e (131b)

(H) (@,¢) = — 22 (B0 (w,2) + 302 (2,2) — Z9P(3,¢) + B V(@)
(131c)

The Hamiltonian H is formally self-adjoint, and the Correspondlng Bell _process (Qt)
jumps at random times from one lattice site to another. Given Qt =q € Q the rate of
jumping to q € Qi is, in agreement with (| - ) for H; = H given by

, o Imt [(e) (gl Hlg) ()]
7= D) = T R R

with |¢’) the Kronecker delta function at ¢'.
Now consider the continuum limit ¢ — 0. In Q@ away from the boundary, the

process converges to a solution of Bohm’s equation of motion. When @); reaches (x,¢) €

Q®@ . the rate of jumping to z € QW is

o ™ [V (@)* (—g) P (a,¢)]

oi((z,e) =) =7 |p@ (x,)|? &2

(132)

(133)
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Since ¢ (z,e) — 232V (z) approximates €d,1)® (z,0) and hence is of order ¢, the
numerator of the right-hand side of is of order ¢, so (133)) is of order e7!, so the
waiting time is of order €, so in the limit @t immediately jumps to NQ(I) when reaching
the boundary of Q®. Once @ is in QW it can jump either along oW or to 9@, The
matrix elements (g|H|z) with ¢ € QY come from the A, in (I31a]), are nonzero only
for nearest neighbors, and lead to Bohm’s equation of motion in the limit, as long as
no jump to Q@ occurs. Given @Q; = x € Q, the only possible jump to Q@ is one to
(x,€), and the rate for that is

oI [¥P(z,6)* (—g) V()]
" [P ()| e ’

oi(z — (z,2)) = (134)

where the numerator is again of order ¢, so the jump rate is of order 1, with the con-
sequence that the jump remains stochastic in the limit. To compute the limiting rate,
note that

(2, ) = P (x,0) + £ 9, (x,0) (135)
= 229y (z) + £ 0,9 (,0), (136)
w0 Im* [0,6)(z,0)* (—g) ¥ (x)]
. m z,0)" (—g X
ll_r)r(l) oi(z — (z,6)) =2 Y I ’ (137)

in agreement with the jump rate of the IBC process. This completes our reasoning
to the effect that the continuum limit of Bell’s lattice process for the Hamiltonian H is
the IBC process of Section [2.2]

7 General Setup for Codimension-1 Boundaries

In previous sections, we defined the IBC processes for several specific models. Now, in
contrast, we give a general definition of the IBC process, if only for the case in which
the boundary has codimension 1; a preliminary description was provided in [28].

7.1 For Schrodinger Operators

We use the setup and notation described in [65], where the general IBC for a given
configuration space with boundary of codimension 1 was formulated, taking the config-
uration space Q to be a finite or countable union of disjoint Riemannian manifolds with
boundary (with the masses included in the Riemannian metric), and the wave functions
to be cross-sections of some Hermitian vector bundle E over Q.

We now specify the process for the IBC and Hamiltonian given in [65]. The process
will again be such that the configuration point, when hitting a boundary at ¢ € 9Q,
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jumps to an interior point ¢ = f(¢') in a different sector. The Bohmian equation of

motion reads:
dQ . Im(¥(a), Ve(),
—=h (¢=@Q). (138)
dt (¥():¥(a)),
(Here the gradient V4 is the E-valued vector field obtained from the E-valued 1-form
that is the covariant derivative of ¥ by “raising the index” using the Riemann metric
[17,18], and (-, -), is the inner product in E,.) The jump rate formula reads: If f(¢') = ¢,

then
Im* (¥(q"), 0,(d"))
(V(q),v(q))

where v, is the measure on f~!(q) defined by the Riemannian metric [65]. This completes
the definition of the IBC process (Q;). The Hamiltonian is formally self-adjoint, and
the [¢|? distribution is equivariant, as can be seen by a calculation analogous to that of
Section (using the known corresponding result [17, [18] for Bohmian mechanics in a
Riemannian manifold without boundary).

ol(q—dq)=nh

vy(dq') , (139)

q

Remark.

29. Heisenberg picture vs. Schrodinger picture. We have formulated our models in the
Schrodinger picture, regarding vectors in Hilbert space as functions v on config-
uration space Q that change over time. This is perhaps the simplest and most
natural view, but not the only possible. We can also define the process @); in
terms of a vector i) in an abstract Hilbert space 7, a Hamiltonian H that is
a self-adjoint operator on s, and a projection-valued measure (PVM) P on Q
acting on 7 playing the role of the position (or configuration) operators; in case
A = L[*(Q), the configuration PVM is provided by P(dq) = |¢){q| dq. In terms of
A, ), H, and P, Bohm’s equation of motion can be reformulated [22] as follows:
For a coordinate function z : @ — R,

dz=(Q,)  Im([P(dq)[H, [, =(q')P(dq)]|¥)
dt (V[ P(dq)|4)

Likewise, the jump rate law can be written, for ¢ € 0Q, as
Im™ (| P(dq)[H, [, dist(q",0Q) P(dq")]|¢))
(V[P (f(dq))s)
with the function dist(¢”,0Q) = distance of ¢” from 0Q. The formulas and

(141) are neutral towards the Schrodinger versus Heisenberg picture, and can be
applied as well in the Heisenberg picture.

(¢ = Q). (140)

Sl

o(flq) = q) = — (141)
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7.2 For Dirac Operators

When the Dirac equation is used instead of the non-relativistic Schrodinger equation,
that is, the Dirac Hamiltonian H; = —icha - V + Smc? instead of the Laplace operator
—(R?/2m)V?, then IBCs can be set up as well [51], and a Bohm-type process Q; can be
defined in much the same way as in the previous sections, as we elucidate now for the
case of codimension-1 boundaries. The general definition of the jumps is still as follows:
Whenever the Bohmian trajectory in configuration space Q, defined by [§]

aQ _ j(q)
dt (¢(q),¢(q))

q

(¢ =CQ) (142)

with j the probability current, reaches the boundary 0Q at some point ¢ € 0Q, it
jumps to f(¢'). Conversely, from any interior point ¢); = ¢, the process spontaneously
jumps to a boundary point ¢’ € f~*(q) with rate

jn(q,)Jr
(v(q),v(q))

q

oi(q — dq') = ve(dq') (143)

in analogy to the formula for the non-relativistic Schrodinger case. Here, j,, means
the component inward-normal to the boundary of the probability current, and v, the
measure on f~1(q) defined by the Riemannian metric. It follows in the same way as
in the non-relativistic case (see Sections and [7)) that |¢|? is equivariant. Explicit
formulas for H, j, and the IBC are given in [51].
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