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Abstract

Bohmian mechanics and the Ghirardi–Rimini–Weber theory provide opposite

resolutions of the quantum measurement problem: the former postulates addi-

tional variables (the particle positions) besides the wave function, whereas the

latter implements spontaneous collapses of the wave function by a nonlinear and

stochastic modification of Schrödinger’s equation. Still, both theories, when un-

derstood appropriately, share the following structure: They are ultimately not

about wave functions but about ‘matter’ moving in space, represented by either

particle trajectories, fields on space-time, or a discrete set of space-time points.

The role of the wave function then is to govern the motion of the matter.
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1 Introduction

Bohmian mechanics (BM) and the Ghirardi–Rimini–Weber (GRW) theory are two quan-

tum theories without observers, and thus provide two possible solutions of the mea-

surement problem of quantum mechanics. However, they would seem to have little in

common beyond achieving the goal of describing a possible reality in which observers

would find, for the outcomes of their experiments, the probabilities prescribed by the

quantum formalism. They are two precise, unambiguous fundamental physical theories

that describe and explain the world around us, but they appear to do this by employing

opposite strategies. In Bohmian mechanics (Bohm, 1952; Bell, 1966; Dürr et al., 1992;

Berndl et al., 1995) the wave function evolves according to the Schrödinger equation

but is not the complete description of the state at a given time; this description involves

further variables, traditionally called ‘hidden variables,’ namely the particle positions.
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In the GRW theory (Pearle, 1976; Ghirardi et al., 1986; Bell, 1987a; Bassi and Ghirardi,

2003), in contrast, the wave function ψ describes the state of any physical system com-

pletely, but ψ collapses spontaneously, thus departing from the Schrödinger evolution.

That is, the two theories choose different horns of the alternative that Bell formulated as

his conclusion from the measurement problem (Bell, 1987a): ‘Either the wave function,

as given by the Schrödinger equation, is not everything, or it is not right.’

The two theories are always presented almost as dichotomical, as in the recent paper

by Putnam (2005). Our suggestion here is instead that BM and GRW theory have much

more in common than one would expect at first sight. So much, indeed, that they

should be regarded as being close to each other, rather than opposite. The differences

are less profound than the similarities, provided that the GRW theory is understood

appropriately, as involving variables describing matter in space-time. These variables

we call the primitive ontology (PO) of the theory, and they form the common structure

of BM and GRW. The gain from the comparison with BM is the insight that the GRW

theory can, and should, be understood in terms of the PO. We think this view in terms

of the PO provides a deeper understanding of the GRW theory in particular, and of

quantum theories without observer in general. To formulate more clearly and advertise

this view is our goal.

After recalling what Bohmian mechanics is in Section 2, we introduce two concrete

examples of GRW theories in Section 3. These examples involve rather different choices

of crucial variables, describing matter in space-time, and give us a sense of the range

of possibilities for such variables. We discuss in Section 4 the notion of the primitive

ontology (PO) of a theory (a notion introduced in (Dürr et al., 1992)) and connect it

to Bell’s notion of ‘local beables’ (Bell, 1976). In Section 4.1 we relate the primitive

ontology of a theory to the notion of physical equivalence between theories. We stress

in Section 4.2 the connection, first discussed in (Goldstein, 1998), between the primitive

ontology and symmetry properties, with particular concern for the generalization of such

theories to a relativistically invariant quantum theory without observers. In Section 4.3

we argue that a theory without a primitive ontology is at best profoundly problematical.

We proceed in Sections 5 to an analysis of the differences between GRW (with primitive

ontology) and BM, and in Section 6 we discuss a variety of possible theories. We consider

in Section 7.1 a ‘no-collapse’ reformulation of one of the GRW theories and in Section 7.2

a ‘collapse’ interpretation of BM. These formulations enable us to better appreciate the

common structure of BM and the GRW theories, as well as the differences, as we discuss

in Section 7.3. We conclude in Section 8 with a summary of this common structure.
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2 Bohmian Mechanics

Bohmian mechanics is a theory of (nonrelativistic) particles in motion. The motion of

a system of N particles is provided by their world lines t 7→ Qi(t), i = 1, . . . , N , where

Qi(t) denotes the position in R
3 of the i-th particle at time t. These world lines are

determined by Bohm’s law of motion (Bohm, 1952; Bell, 1966; Dürr et al., 1992; Berndl

et al., 1995),
dQi

dt
= vψi (Q1, . . . , QN) =

~

mi

Im
ψ∗∇iψ

ψ∗ψ
(Q1 . . . , QN), (1)

where mi, i = 1, . . . , N , are the masses of the particles; the wave function ψ evolves

according to Schrödinger’s equation

i~
∂ψ

∂t
= Hψ , (2)

where H is the usual nonrelativistic Schrödinger Hamiltonian; for spinless particles it is

of the form

H = −
N∑

k=1

~
2

2mk

∇2
k + V, (3)

containing as parameters the masses of the particles as well as the potential energy

function V of the system.

In the usual yet unfortunate terminology, the actual positions Q1, ..., QN of the par-

ticles are the hidden variables of the theory: the variables which, together with the wave

function, provide a complete description of the system, the wave function alone provid-

ing only a partial, incomplete, description. From the point of view of BM, however, this

is a strange terminology since it suggests that the main object of the theory is the wave

function, with the additional information provided by the particles’ positions playing a

secondary role. The situation is rather much the opposite: BM is a theory of particles;

their positions are the primary variables, and the description in terms of them must be

completed by specifying the wave function to define the dynamics (1).

As a consequence of Schrödinger’s equation and of Bohm’s law of motion, the quan-

tum equilibrium distribution |ψ(q)|2 is equivariant. This means that if the configuration

Q(t) = (Q1(t), . . . , QN(t)) of a system is random with distribution |ψt|
2 at some time t,

then this will be true also for any other time t. Thus, the quantum equilibrium hypoth-

esis, which asserts that whenever a system has wave function ψt, its configuration Q(t)

is random with distribution |ψt|
2, can consistently be assumed. This hypothesis is not

as hypothetical as its name may suggest: the quantum equilibrium hypothesis follows,

in fact, by the law of large numbers from the assumption that the (initial) configuration

of the universe is typical (i.e., not-too-special) for the |Ψ|2 distribution, with Ψ the (ini-

tial) wave function of the universe (Dürr et al., 1992). The situation resembles the way

Maxwell’s distribution for velocities in a classical gas follows from the assumption that

the phase point of the gas is typical for the uniform distribution on the energy surface.
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As a consequence of the quantum equilibrium hypothesis, a Bohmian universe, even if

deterministic, appears random to its inhabitants. In fact, the probability distributions

observed by the inhabitants agree exactly with those of the quantum formalism. To

begin to understand why, note that any measurement apparatus must also consist of

Bohmian particles. Calling QS the configuration of the particles of the system to be

measured and QA the configuration of the particles of the apparatus, we can write for

the configuration of the big Bohmian system relevant to the analysis of the measurement

Q = (QS, QA). Let us suppose that the initial wave function ψ of the big system is a

product state Ψ(q) = Ψ(qS, qA) = ψ(qS)φ(qA).

During the measurement, this Ψ evolves according to the Schrödinger equation, and

in the case of an ideal measurement it evolves to Ψt =
∑

α ψα φα, where α runs through

the eigenvalues of the observable measured, φα is a state of the apparatus in which

the pointer points to the value α, and ψα is the projection of ψ to the appropriate

eigenspace of the observable. By the quantum equilibrium hypothesis, the probability

for the random apparatus configuration QA(t) to be such as to correspond to the pointer

pointing to the value α is ‖ψα‖
2. For a more detailed discussion see (Dürr et al., 1992,

2004b).

3 Ghirardi, Rimini, and Weber

The theory proposed by Ghirardi, Rimini and Weber (1986) is in agreement with the

predictions of nonrelativistic quantum mechanics as far as all present experiments are

concerned (Bassi and Ghirardi, 2003); for a discussion of future experiments that may

distinguish this theory from quantum mechanics, see Section V of (Bassi and Ghirardi,

2003). According to the way in which this theory is usually presented, the evolution of

the wave function follows, instead of Schrödinger’s equation, a stochastic jump process

in Hilbert space. We shall succinctly summarize this process as follows.

Consider a quantum system described (in the standard language) by an N -‘particle’1

wave function ψ = ψ(q1, ..., qN ), qi ∈ R
3, i = 1, . . . , N ; for any point x in R

3 (the ‘center’

of the collapse that will be defined next), define on the Hilbert space of the system the

collapse operator

Λi(x) =
1

(2πσ2)3/2
e−

( bQi−x)2

2σ2 , (4)

where Q̂i is the position operator of ‘particle’ i. Here σ is a new constant of nature of

order of 10−7m.

Let ψt0 be the initial wave function, i.e., the normalized wave function at some time

t0 arbitrarily chosen as initial time. Then ψ evolves in the following way:

1We wish to emphasize here that there are no particles in this theory: the word ‘particle’ is used

only for convenience in order to be able to use the standard notation and terminology.
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1. It evolves unitarily, according to Schrödinger’s equation, until a random time

T1 = t0 + ∆T1, so that

ψT1 = U∆T1ψt0 , (5)

where Ut is the unitary operator Ut = e−
i
~
Ht corresponding to the standard Hamil-

tonian H governing the system, e.g., given by (3) for N spinless particles, and ∆T1

is a random time distributed according to the exponential distribution with rate

Nλ (where the quantity λ is another constant of nature of the theory,2 of order of

10−15 s−1).

2. At time T1 it undergoes an instantaneous collapse with random center X1 and

random label I1 according to

ψT1 7→ ψT1+ =
ΛI1(X1)

1/2ψT1

‖ΛI1(X1)1/2ψT1‖
. (6)

I1 is chosen at random in the set {1, . . . , N} with uniform distribution. The center

of the collapse X1 is chosen randomly with probability distribution3

P(X1 ∈ dx1|ψT1 , I1 = i1) = 〈ψT1|Λi1(x1)ψT1〉 dx1 = ‖Λi1(x1)
1/2ψT1‖

2dx1. (7)

3. Then the algorithm is iterated: ψT1+ evolves unitarily until a random time T2 =

T1+∆T2, where ∆T2 is a random time (independent of ∆T1) distributed according

to the exponential distribution with rate Nλ, and so on.

In other words, the evolution of the wave function is the Schrödinger evolution in-

terrupted by collapses. When the wave function is ψ a collapse with center x and label

i occurs at rate

r(x, i|ψ) = λ 〈ψ |Λi(x)ψ〉 (8)

and when this happens, the wave function changes to Λi(x)
1/2ψ/‖Λi(x)

1/2ψ‖.

Thus, if between time t0 and any time t > t0, n collapses have occurred at the times

t0 < T1 < T2 < . . . < Tn < t, with centers X1, . . . , Xn and labels I1, . . . , In, the wave

function at time t will be

ψt =
LFn

t,t0ψt0

‖LFn

t,t0ψt0‖
(9)

where Fn = {(X1, T1, I1), . . . , (Xn, Tn, In)} and

LFn

t,t0
= Ut−Tn

ΛIn(Xn)
1/2 UTn−Tn−1ΛIn−1(Xn−1)

1/2 UTn−1−Tn−2 · · ·ΛI1(X1)
1/2 UT1−t0 . (10)

2Pearle and Squires (1994) have argued that λ should be chosen differently for every ‘particle,’ with

λi proportional to the mass mi.
3Hereafter, when no ambiguity could arise, we use the standard notations of probability theory,

according to which a capital letter, such as X, is used to denote a random variable, while the the values

taken by it are denoted by small letters; X ∈ dx is a shorthand for X ∈ [x, x+ dx], etc.
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Since Ti, Xi, Ii and n are random, ψt is also random.

It should be observed that—unless t0 is the initial time of the universe—also ψt0
should be regarded as random, being determined by the collapses that occurred at

times earlier that t0. However, given ψt0 , the statistics of the future evolution of the

wave function is completely determined; for example, the joint distribution of the first

n collapses after t0, with particle labels I1, . . . , In ∈ {1, . . . , N}, is

P
(
X1 ∈ dx1, T1 ∈ dt1, I1 = i1, . . . , Xn ∈ dxn, Tn ∈ dtn, In = in|ψt0

)
=

λne−Nλ(tn−t0)‖Lfn

tn,t0ψt0‖
2 dx1dt1 · · · dxndtn , (11)

with fn = {(x1, t1, i1), . . . , (xn, tn, in)} and Lfn

tn,t0 given, mutatis mutandis, by (10).

This is, more or less, all there is to say about the formulation of the GRW theory

according to most theorists. In contrast, GianCarlo Ghirardi believes that the descrip-

tion provided above is not the whole story, and we agree with him. We believe that,

depending on the choice of what we call the primitive ontology (PO) of the theory, there

are correspondingly different versions of the theory. We will discuss the notion of prim-

itive ontology in detail in Section 4. In the subsections below we present two versions

of the GRW theory, based on two different choices of the PO, namely the matter density

ontology (in Section 3.1) and the flash ontology (in Section 3.2).

3.1 GRWm

In the first version of the GRW theory, denoted by GRWm, the PO is given by a field:

We have a variable m(x, t) for every point x ∈ R
3 in space and every time t, defined by

m(x, t) =
N∑

i=1

mi

∫

R3N

dq1 · · · dqN δ(qi − x)
∣∣ψ(q1, . . . , qN , t)

∣∣2 . (12)

In words, one starts with the |ψ|2–distribution in configuration space R
3N , then obtains

the marginal distribution of the i-th degree of freedom qi ∈ R
3 by integrating out all

other variables qj, j 6= i, multiplies by the mass associated with qi, and sums over i.

GRWm was essentially proposed by Ghirardi and co–workers in (Benatti et al., 1995);4

see also (Goldstein, 1998).

The field m(·, t) is supposed to be understood as the density of matter in space at

time t. Since these variables are functionals of the wave function ψ, they are not ‘hidden

variables’ since, unlike the positions in BM, they need not be specified in addition to the

4They first proposed (for a model slightly more complicated than the one considered here) that

the matter density be given by an expression similar to (12) but this difference is not relevant for our

purposes.
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wave function, but rather are determined by it. Nonetheless, they are additional ele-

ments of the GRW theory that need to be posited in order to have a complete description

of the world in the framework of that theory.

GRWm is a theory about the behavior of a field m(·, t) on three-dimensional space.

The microscopic description of reality provided by the matter density field m(·, t) is not

particle-like but instead continuous, in contrast to the particle ontology of BM. This is

reminiscent of Schrödinger’s early view of the wave function as representing a continuous

matter field. But while Schrödinger was obliged to abandon his early view because of

the tendency of the wave function to spread, the spontaneous wave function collapses

built into the GRW theory tend to localize the wave function, thus counteracting this

tendency and overcoming the problem.

A parallel with BM begins to emerge: they both essentially involve more than the

wave function. In one the matter is spread out continuously, while in the other it

is concentrated in finitely many particles; however, both theories are concerned with

matter in three-dimensional space, and in some regions of space there is more than in

others.

You may find GRWm a surprising proposal. You may ask, was it not the point of

GRW — perhaps even its main advantage over BM — that it can do without objects

beyond the wave function, such as particle trajectories or matter density? Is not the

dualism present in GRWm unnecessary? That is, what is wrong with the version of the

GRW theory, which we call GRW0, which involves just the wave function and nothing

else? We will return to these questions in Section 4.3. To be sure, it seems that if there

was nothing wrong with GRW0, then, by simplicity, it should be preferable to GRWm.

We stress, however, that Ghirardi must regard GRW0 as seriously deficient; otherwise

he would not have proposed anything like GRWm. We will indicate in Section 4.3 why

we think Ghirardi is correct. To establish the inadequacy of GRW0 is not, however, the

main point of this paper.

3.2 GRWf

According to another version of the GRW theory, which was first suggested by Bell

(1987a, 1989), then adopted in (Kent, 1989; Goldstein, 1998; Tumulka, 2006a,b; Allori

et al., 2005; Maudlin, forthcoming), and here denoted GRWf, the PO is given by ‘events’

in space-time called flashes, mathematically described by points in space-time. This

is, admittedly, an unusual PO, but it is a possible one nonetheless. In GRWf matter is

neither made of particles following world lines, such as in classical or Bohmian mechanics,

nor of a continuous distribution of matter such as in GRWm, but rather of discrete

points in space-time, in fact finitely many points in every bounded space-time region,

see Figure 1.

In the GRWf theory, the space-time locations of the flashes can be read off from the
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Figure 1: A typical pattern of flashes in space-time, and thus a possible world according

to the GRWf theory

history of the wave function given by (9) and (10): every flash corresponds to one of the

spontaneous collapses of the wave function, and its space-time location is just the space-

time location of that collapse. Accordingly, equation (11) gives the joint distribution of

the first n flashes, after some initial time t0. The flashes form the set

F = {(X1, T1), . . . , (Xk, Tk), . . .}

(with T1 < T2 < . . .).

In Bell’s words:

[...] the GRW jumps (which are part of the wave function, not something

else) are well localized in ordinary space. Indeed each is centered on a par-

ticular spacetime point (x, t). So we can propose these events as the basis of

the ‘local beables’ of the theory. These are the mathematical counterparts

in the theory to real events at definite places and times in the real world (as

distinct from the many purely mathematical constructions that occur in the

working out of physical theories, as distinct from things which may be real

but not localized, and distinct from the ‘observables’ of other formulations

of quantum mechanics, for which we have no use here). A piece of matter

then is a galaxy of such events. (Bell, 1987a)

That is, Bell’s idea is that GRW can account for objective reality in three-dimensional

space in terms of space-time points (Xk, Tk) that correspond to the localization events

(collapses) of the wave function. Note that if the number N of the degrees of freedom in

the wave function is large, as in the case of a macroscopic object, the number of flashes is
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also large (if λ = 10−15 s−1 and N = 1023, we obtain 108 flashes per second). Therefore,

for a reasonable choice of the parameters of the GRWf theory, a cubic centimeter of solid

matter contains more than 108 flashes per second. That is to say that large numbers of

flashes can form macroscopic shapes, such as tables and chairs. That is how we find an

image of our world in GRWf.

Note however that at almost every time space is in fact empty, containing no flashes

and thus no matter. Thus, while the atomic theory of matter entails that space is not

everywhere continuously filled with matter but rather is largely void, GRWf entails that

at most times space is entirely void.

According to this theory, the world is made of flashes and the wave function serves

as the tool to generate the ‘law of evolution’ for the flashes: equation (8) gives the rate

of the flash process —the probability per unit time of the flash of label i occurring at

the point x. For this reason, we prefer the word ‘flash’ to ‘hitting’ or ‘collapse center’:

the latter words suggest that the role of these events is to affect the wave function,

or that they are not more than certain facts about the wave function, whereas ‘flash’

suggests rather something like an elementary event. Since the wave function ψ evolves

in a random way, F = {(Xk, Tk) : k ∈ N} is a random subset of space-time, a point

process in space-time, as probabilists would say. GRWf is thus a theory whose output

is a point process in space-time.5

3.3 Empirical Equivalence Between GRWm and GRWf

We remark that GRWm and GRWf are empirically equivalent, i.e., they make always and

exactly the same predictions for the outcomes of experiments. In other words, there is

5An anonymous referee has remarked that according to GRWf with the original parameters, in a

single living cell there might occur as few as one flash per hour, so that the cell is empty of matter

for surprisingly long periods, quite against our intuition of a cell as a rather classical object. We make

a few remarks to this objection. First, one should of course be careful with the language: there is

presumably no cell in GRWf, though the structure of the wave function (on configuration space—even

though there are no configurations) might suggest otherwise. Second, it all depends on the choice of

the parameters λ and σ, and, as long as experiments have not fixed their values, this cell argument may

indeed be an argument for a choice different from GRW’s original one (say, with larger λ and larger

σ). We do not wish to argue here for any particular choice. Third, while most people might expect a

cell to be real in much the same way as (say) a cat, one would not necessarily expect this of a single

atom. Thus, it seems quite conceivable that, at some critical scale between that of atoms and that of

cats, the ontological character of objects changes—as indeed it does in GRWf because of the limited

resolution of matter given by the space-time density of flashes (e.g., in water approximately one flash

every 20 micrometers every second). The cell example shows that the critical scale in GRWf is larger

than one might have expected, and thus that GRWf is a mildly quirky picture of the world. But this

mild quirkiness should be seen in perspective. In comparison, many other views about quantum reality

are heavily eccentric, as they propose that reality is radically different from what we normally think

it is like: e.g., that there exist parallel worlds, or that there exists no matter at all, or that reality is

contradictory in itself.
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no experiment we could possibly perform that would tell us whether we are in a GRWm

world or in a GRWf world, assuming we are in one of the two. This should be contrasted

with the fact that there are possible experiments (though we cannot perform any with

the present technology) that decide whether we are in a Bohmian world or in a GRW

world.

The reason is simple. Consider any experiment, which is finished at time t. Consider

the same realization of the wave function on the time interval [0, t], but associated with

different primitive ontologies in the two worlds. At time t, the result gets written

down, encoded in the shape of the ink; more abstractly, the result gets encoded in the

position of some macroscopic amount of matter. If in the GRWf ontology, this matter

is in position 1, then the flashes must be located in position 1; thus, the collapses are

centered at position 1; thus, the wave function is near zero at position 2; thus, by (12)

the density of matter is low at position 2 and high at position 1; thus, in GRWm the

matter is also in position 1, displaying the same result as in the GRWf world.

We will discuss empirical equivalence again in Section 7.3.

4 Primitive Ontology

The matter density field in GRWm, the flashes in GRWf, and the particle trajectories

in BM have something in common: they form (what we have called) the primitive

ontology of these theories. The PO of a theory—and its behavior— is what the theory

is fundamentally about. It is closely connected with what Bell called the ‘local beables’:

[I]n the words of Bohr, ‘it is decisive to recognize that, however far the

phenomena transcend the scope of classical physical explanation, the account

of all evidence must be expressed in classical terms’. It is the ambition of

the theory of local beables to bring these ‘classical terms’ into the equations,

and not relegate them entirely to the surrounding talk. (Bell, 1976)

The elements of the primitive ontology are the stuff that things are made of. The wave

function also belongs to the ontology of GRWm, GRWf and BM, but not to the PO:

according to these theories physical objects are not made of wave functions6. Instead,

the role of the wave function in these theories is quite different, as we will see in the

following.

In each of these theories, the only reason the wave function is of any interest at all

is that it is relevant to the behavior of the PO. Roughly speaking, the wave function

tells the matter how to move. In BM the wave function determines the motion of the

6We would not go so far as Dowker and Herbauts (2005) and Nelson (1985), who have suggested

that, physically, the wave function does not exist at all, and only the PO exists. But we have to admit

that this view is a possibility, in fact a more serious one than the widespread view that no PO exists.
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particles via equation (1), in GRWm the wave function determines the distribution of

matter in the most immediate way via equation (12), and in GRWf the wave function

determines the probability distribution of the future flashes via equation (11).

We now see a clear parallel between BM and the GRW theory, at least in its versions

GRWm and GRWf. Each of these theories is about matter in space-time, what might

be called a decoration of space-time. Each involves a dual structure (X , ψ): the PO

X providing the decoration, and the wave function ψ governing the PO. The wave

function in each of these theories, which has the role of generating the dynamics for

the PO, has a nomological character utterly absent in the PO. This difference is crucial

for understanding the symmetry properties of these theories and therefore is vital for

the construction of a Lorentz invariant quantum theory without observers, as we will

discuss in Section 4.2.

Even the Copenhagen interpretation (orthodox quantum theory, OQT) involves a

dual structure: what might be regarded as its PO is the classical description of macro-

scopic objects which Bohr insisted was indispensable — including in particular pointer

orientations conveying the outcomes of experiments — with the wave function serving

to determine the probability relations between the successive states of these objects. In

this way, ψ governs a PO, even for OQT. An important difference, however, between

OQT on the one hand and BM, GRWm, and GRWf on the other is that the latter are

fully precise about what belongs to the PO (particle trajectories, respectively continuous

matter density or flashes) whereas the Copenhagen interpretation is rather vague, even

noncommittal, on this point, since the notion of ‘macroscopic’ is an intrinsically vague

one: of how many atoms need an object consist in order to be macroscopic? And, what

exactly constitutes a ‘classical description’ of a macroscopic object?

Therefore, as the example of the Copenhagen interpretation of quantum mechan-

ics makes vivid, an adequate fundamental physical theory, one with any pretension to

precision, must involve a PO defined on the microscopic scale.

4.1 Primitive Ontology and Physical Equivalence

To appreciate the concept of PO, it might be useful to regard the positions of particles,

the mass density and the flashes, respectively, as the output of BM, GRWm and GRWf,

with the wave function, in contrast, serving as part of an algorithm that generates

this output. Suppose we want to write a computer program for simulating a system

(or a universe) according to a certain theory. For writing the program, we have to

face the question: Which among the many variables to compute should be the output

of the program? All other variables are internal variables of the program: they may

be necessary for doing the computation, but they are not what the user is interested

in. In the way we propose to understand BM, GRWm, and GRWf, the output of the

program, the result of the simulation, should be the particle world lines, the m(·, t)

12



field, respectively the flashes; the output should look like Figure 1. The wave function,

in contrast, is one of the internal variables and its role is to implement the evolution for

the output, the PO of the theory.

Moreover, note that there might be different ways of producing the same output,

using different internal variables. For example, two wave functions that differ by a

gauge transformation generate the same law for the PO. In more detail, when (external)

magnetic fields are incorporated into BM by replacing all derivatives ∇k in (1) and (2)

by ∇k− iekA(qk), where A is the vector potential and ek is the electric charge of particle

k, then the gauge transformation

ψ 7→ ei
P

k ekf(qk)ψ , A 7→ A+ ∇f (13)

does not change the trajectories nor the quantum equilibrium distribution. As another

example, one can write the law for the PO in either the Schrödinger or the Heisenberg

picture. As a consequence, the same law for the PO is generated by either an evolving

wave function and static operators or a static wave function and evolving operators. In

more detail, BM can be reformulated in the Heisenberg picture by rewriting the law of

motion as follows:

dQi

dt
= −

1

~
Im

〈ψ|P (dq, t)[H, Q̂i(t)]|ψ〉

〈ψ|P (dq, t)|ψ〉
(q = Q(t)) , (14)

where H is the Hamiltonian (e.g., for N spinless particles given by (3)), Q̂i(t) is the

(Heisenberg-evolved) position operator (or, more precisely, triple of operators corre-

sponding to the three dimensions of physical space) for particle i and P (·, t) is the

projection–valued measure (PVM) defined by the joint spectral decomposition of all

(Heisenberg-evolved) position operators (Dürr et al., 2005b).

We suggest that two theories be regarded as physically equivalent when they lead

to the same history of the PO. Conversely, one could define the notion of PO in terms

of physical equivalence: The PO is described by those variables which remain invariant

under all physical equivalences. We discuss this issue in more detail in Sections 7.1 and

7.2, when presenting some examples.

What is ‘primitive’ about the primitive ontology? That becomes clear when we

realize in what way the other objects in the theory (such as the wave function, or the

magnetic field in classical physics) are non–primitive: One can explain what they are

by explaining how they govern the behavior of the PO, while it is the entities of the PO

that make direct contact with the world of our experience. We can directly compare the

motion of matter in our world with the motion of matter in the theory, at least on the

macroscopic scale. The other objects in the theory can be compared to our world only

indirectly, by the way they affect the PO.7

7While the notion of PO is similar to Bell’s notion of local beables, it should be observed that not all
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4.2 Primitive Ontology and Symmetry

The peculiar flash ontology was invented by Bell in 1987 as a step toward a relativistic

GRW theory. He wrote in (Bell, 1987a) about GRWf:

I am particularly struck by the fact that the model is as Lorentz invariant

as it could be in the nonrelativistic version. It takes away the ground of my

fear that any exact formulation of quantum mechanics must conflict with

fundamental Lorentz invariance.

What Bell refers to in the above quotation is the following. An analogue of the relativity

of simultaneity, i.e. of the invariance of the dynamics under boosts, in the framework

of a nonrelativistic theory is the invariance under relative time translations for two very

distant systems. Bell (1987a, 1989) verified by direct calculation that GRWf has this

symmetry. However, it it is important here to appreciate what this invariance means.

To say that a theory has a given symmetry is to say that

The possible histories of the PO, those that are allowed by the theory, when

transformed according to the symmetry, will again be possible histories for

the theory, and the possible probability distributions on the histories, those

that are allowed by the theory, when transformed according to the symmetry,

will again be possible probability distributions for the theory.

Let us explain.

• ‘The possible histories of the PO, those that are allowed by the theory. . . ’ We

give some examples, involving Galilean invariance. In classical mechanics the

meaning is straightforward: the PO is that of particles, described by their positions

in physical space, a history of this PO corresponds to a collection of particle

trajectories—the trajectories Qi(t), i = 1, . . . , N , in a universe of N particles—

and a history is allowed if the particles obey Newton’s law, i.e., if miQ̈i(t) =

Fi(Q1(t), ..., QN(t)), where Fi is the Newtonian force acting on the ith particle.

The theory is defined once the form of Fi is specified (for example, that the force

is the Newtonian gravitational force).

Consider now BM: also here the PO is that of particles and a possible history of the

PO—one that is allowed by BM—is a history described by the particle trajectories

local beables, such as the electric and magnetic fields in classical electrodynamics, need to be regarded

as part of the PO. Moreover, the very conception that the PO must involve only local beables (i.e., be

represented by mathematical objects grounded in familiar three-dimensional space) could in principle

be questioned; this is, however, a rather delicate and difficult question that will be briefly addressed in

Section 4.3 but that deserves a thorough analysis that will be undertaken in a separate work (Allori et

al., unpublished,b).
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Qi(t), i = 1, . . . N , which satisfy equation (1) for some wave function ψ satisfying

equation (2). The theory is defined once the Hamiltonian H in (2) is specified (for

example, as given by (3), for a choice of the potential V ).

• ‘. . . when transformed according to the symmetry. . . ’ Since the PO is represented

by a geometrical entity in physical space (a decoration of space-time, as we have

said earlier), space-time symmetries naturally act on it, for example transforming

trajectories Qi(t) to trajectories Q̃i(t). For example, under a Galilean boost (by a

relative velocity v), in classical mechanics as well as in BM, the trajectories Qi(t)

transform into the boosted trajectories Q̃i(t) = Qi(t) + vt.

• ‘. . . will again be possible histories for the theory. . . ’ Notice that Qi(t) and Q̃i(t)

may arise in BM from different wave functions. In other words, the wave function

must also be transformed when transforming the history of the PO. However, while

there is a natural transformation of the history of the PO, there is not necessarily a

corresponding natural change of the wave function. The latter is allowed to change

in any way, solely determined by its relationship to the PO. For example, consider

again a Galilean boost (by a relative velocity v) in BM: the boosted trajectories

Q̃i(t) = Qi(t) + vt form again a solution of (1) and (2) with ψ replaced by the

transformed wave function8

ψ̃t(q1, . . . , qN) = exp
(
i
~

N∑

i=1

mi(qi · v −
1
2
v2t)

)
ψt(q1 − vt, . . . , qN − vt). (15)

Since the trajectories of the PO transformed according to the symmetry are still

solutions, BM is symmetric under Galilean transformation, even though the cor-

responding wave function has to undergo more than a simple change of variables

in order to make this possible.

• ‘. . . and the possible probability distributions on the histories, those that are al-

lowed by the theory. . . ’ In a deterministic theory, a probability distribution on the

histories arises from a probability distribution on the initial conditions. In BM,

a probability distribution on histories is possible if there exists a wave function

ψ such that the given distribution is the one induced on solutions to (1) by the

probability distribution |ψ(q1, . . . , qN)|2 at some initial time.

More interesting is the case of nondeterministic theories. For these theories, i.e.,

for theories involving stochasticity at the fundamental level, the law for the PO

amounts to a specification of possible probability distributions, for example by

8Under this transformation V = V (q1, . . . , qN ) in (2) must be replaced by Ṽ = V (q1−vt, . . . , qN−vt).

For V arising from the standard two-body interactions, we have that V = Ṽ , and hence the theory is

invariant.
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specifying the generator, or transition probabilities, of a Markov process. For

example, in GRWm the history of the PO is the mass density field m(·, ·), and a

probability distribution on the histories of this PO is possible if it is the distribution

induced on m(·, ·), according to equation (12), by some wave function ψ with

probability law given, say, by (11) (and (9)). The case of GRWf is analogous:

a probability distribution for the flashes F = {(Xk, Tk) : k ∈ N} is possible if

induced by (11) for some wave function ψ.

• ‘. . . when transformed according to the symmetry, will again be possible probability

distributions for the theory.’ The probability distribution on the histories, when

transformed according to the symmetry, is the distribution of the transformed his-

tories. In other words, the action of a transformation on every history determines

the transformation of a probability distribution on the space of histories. As in the

deterministic case, the wave function is allowed to change in any way compatible

with its relationship to the PO. For example, consider the Galilean invariance of

GRWf: let ψ and ψ̃ be two initial wave functions related as in (15), that is, by the

usual formula for Galilean transformations in quantum mechanics. Let Gt denote

the transformation operator in (15) at time t, such that ψ̃t = Gtψt. A simple

calculation shows that

Λi(x+ vt)1/2Gt = GtΛi(x)
1/2.

As a consequence, the distribution (7) of the (spatial location of the) first flash

arising from ψ̃T1 is that arising from ψT1 shifted by vT1, and the post-collapse wave

functions (6) are still related by the appropriate Gt operator, i.e.,

ψ̃T1+ = GT1ψT1+.

Thus, the joint distribution of flashes arising from ψ̃ is just the one arising from

ψ shifted by vt for every t.

Going back to the work of Bell mentioned in the beginning of this section (Bell,

1987a), what Bell had to do for GRWf, and what he did, was to confirm the invariance

under relative time translations of the stochastic law for F = {(Xk, Tk) : k ∈ N}, the

galaxy of flashes. And more generally the invariance of GRWf directly concerns the

stochastic law for the PO; it concerns the invariance of the law for the wave function

only indirectly, contrary to what is often, erroneously, believed. Under a space-time

symmetry the PO must be transformed in accord with its intrinsic geometrical nature,

while wave functions (and other elements of the non-primitive ontology, if any) should

be transformed in a manner dictated by their relationship to the PO.

Moreover, note that there is no reason to believe that when changing the PO of

a theory the symmetry properties of the theory will remain unchanged. Actually, the
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opposite is true. This fact was pointed out in (Goldstein, 1998) and has recently been

emphasized also in (Tumulka, 2006a), in which it has been shown that GRWf, without

interaction, can be modified so as to become a relativistic quantum theory without

observers.9 In that paper the stochastic law for the galaxy of the flashes in space-time,

the PO of GRWf, with suitably modified, Lorentz-invariant equations, has been shown

explicitly to be relativistically invariant (see also Tumulka, 2006c). Hence, GRWf is

Lorentz invariant, but GRWm is not. Thus, one should not ask whether GRW as such

is Lorentz invariant, since the answer to this question depends on the choice of PO for

GRW. For details see (Maudlin, forthcoming). Similar results to those of (Tumulka,

2006a) have been obtained also by Dowker and Henson (2004) for a relativistic collapse

theory on the lattice (see also Dowker and Herbauts, 2004, 2005).

We conclude with some remarks on OQT. Here the relevant PO consists, rather

vaguely of course, of the ‘pointer variables’ registering the results of experiments that

are spoken of as measurements of quantum observables. Though OQT provides neither

detailed histories of the PO nor probability distributions thereof, it does provide prob-

ability distributions for the results of measurements registered by the PO, which are

given by the appropriate spectral measures for the self-adjoint operators representing

the observables. In particular, the mean value of the result of the measurement E of the

quantum observable represented by the self-adjoint operator A for a system in the state

ψ is

< A >ψ=
〈ψ |Aψ〉

〈ψ |ψ〉
. (16)

Now consider the action of a symmetry on the experiment E : it transforms E to the

experiment Ẽ arising from the natural action of the symmetry on the physical processes

defining E . If E is a measurement of the operator A—that is, if the probability distri-

bution of the results of E are given by the spectral measures for A—then Ẽ will be a

measurement of the operator Ã arising from A under the symmetry. While E and Ẽ

are of course (usually) different experiments, it is obvious from their relationship that

the distribution of the results of E when the system is in the state ψ is the same as the

distribution of the results of Ẽ when the transformed system is in the transformed state

ψ̃. In particular, where E is a measurement of A, we have that

< A >ψ=
〈ψ |Aψ〉

〈ψ |ψ〉
=

〈ψ̃ |Ãψ̃〉

〈ψ̃ | ψ̃〉
=< Ã >ψ̃ . (17)

9To put this result into perspective, note that the absence of interaction does not make the prob-

lem trivial. On the contrary, the main difficulty with devising a relativistic quantum theory without

observers arises already in the non-interacting case: To specify a law for the PO that is relativistic

but nonlocal. Note further that it would not have sufficed to specify a Lorentz-invariant evolution law

for ψ (entailing suitable collapse) while leaving open the law for the PO. Finally, note that for GRWm

and BM it is not known how to make them “seriously” relativistic, i.e. without the incorporation of

additional structure that yields a foliation of space-time.
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According to the analysis of Wigner (1939) and Bargmann (1954), these transformations

on wave functions and operators are given by unitary or anti-unitary operators U , i.e.,

ψ̃ = Uψ, Ã = UAU−1, where U is an element of a unitary-projective representation of

the symmetry group.

Note that while the distribution of the result of the experiment is, for trivial reasons,

unaffected by the symmetry transformation, the macroscopic PO is in fact transformed.

For example, a rotated experiment will involve a rotated ‘pointer position,’ or a rotated

computer printout. But what the pointer is pointing to, and what the printout says,

will not change. In other words, the numerical result Z of an experiment E should not

be confused with the macroscopic configuration M of the pointer variables, the PO of

OQT, the former being indeed a function of the latter, i.e., Z = f(M), with the function

f expressing the ‘calibration’ of the experiment. In Ẽ , the rotated experiment, the PO

(the pointer orientation) changes together with the calibration: the pointer points in a

different direction M̃ and the scale f is rotated into f̃ such that f̃(M̃) = f(M).

Thus, when all is said and done, although the PO of OQT is rather vague and

imprecise, insofar as symmetry is concerned the situation is indeed analogous to that of

theories, such as BM or GRWf, having a clear and exactly specified PO: also for OQT the

possible probability distributions on the PO, those that are allowed by the theory, when

transformed according to the symmetry, will again be possible probability distributions

for the theory.

4.3 Without Primitive Ontology

Now let us turn to the question: What is wrong with GRW0, the bare version of GRW,

which involves just the wave function and nothing else? Why does one need a PO at all?

Our answer is that we do not see how the existence and behavior of tables and chairs

and the like could be accounted for without positing a primitive ontology—a description

of matter in space and time.

The aim of a fundamental physical theory is, we believe, to describe the world around

us, and in so doing to explain our experiences to the extent of providing an account of

their macroscopic counterparts, an account of the behavior of objects in 3-space. Thus

it seems that for a fundamental physical theory to be satisfactory, it must involve, and

fundamentally be about, ‘local beables,’ and not just a beable such as the wave function,

which is non-local: In the words of Bell (1987a)

[...] the wave function as a whole lives in a much bigger space, of 3N dimen-

sions. It makes no sense to ask for the amplitude or phase or whatever of

the wave function at a point in ordinary space. It has neither amplitude nor

phase nor anything else until a multitude of points in ordinary three-space

are specified.
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In contrast, if a law is, like the GRW process in Hilbert space, about a mathematical

object, like ψ, living in some abstract space, like R
3N , it seems necessary to have or

to add something more in order to make contact with a description in 3-space. For

example, formulations of classical mechanics utilizing configuration space R
3N or phase

space R
6N (such as Euler–Lagrange’s or Hamilton’s) are connected to a PO in 3-space

(particles with trajectories) by the definitions of configuration space and phase space.

If, as we believe, a PO given by local beables is so crucial for a theory to make sense as

a fundamental physical theory, one might wonder how GRW0 could be taken seriously

by so many serious people (see, e.g., Albert, 1992, 1996; Nicrosini and Rimini, 2003;

Lewis, 2005). One reason, perhaps, is that if the wave function ψ is suitably collapsed,

i.e., concentrated on a subset S of configuration space such that all configurations in S

look macroscopically the same, all corresponding for example to a pointer pointing in

the same way, then we can easily imagine what a world in the state ψ is macroscopically

like: namely like the macrostate defined by configurations from S. For example, when

in GRW0 the wave function is concentrated near q, where q is a configuration describing

a pointer pointing to the value a, it is easy to feel justified in concluding that there is a

pointer that is pointing to the value a, and to forget that we are dealing with a theory

for which there exists no arrangement of stuff in physical three-dimensional space at all.

Since the macroscopic description does not depend on whether the PO consists of

world lines, flashes, or a continuous distribution of matter, and since the reasoning

does not even mention the PO, it is easy to overlook the fact that a further law needs

to be invoked, one which prescribes how the wave function is related to the PO, and

implies that for wave functions such as described, the PO is such that its macroscopic

appearance coincides (very probably) with the macroscopic appearance of configurations

in S. To overlook this step is even easier when focusing very much on the measurement

problem, whose central difficulty is that the wave function of object plus apparatus, if

it evolves linearly, typically becomes a superposition of macroscopically distinct wave

functions like ψ which thus contains no hint of the actual outcome of the experiment.

Interestingly enough, after having underlined the importance of local beables for

a fundamental physical theory, Bell proposed GRW to be about ‘stuff’ in configura-

tion (3N -dimensional) space. In his celebrated analysis of the quantum measurement

problem (Bell, 1990), he wrote:

The GRW-type theories have nothing in their kinematics but the wavefunc-

tion. It gives the density (in a multidimensional configuration space!) of

stuff. To account for the narrowness of that stuff in macroscopic dimensions,

the linear Schrödinger equation has to be modified, in the GRW picture by

a mathematically prescribed spontaneous collapse mechanism. [Emphasis in

the original.]

He made a similar remark to Ghirardi (quoted by the latter in (Bassi and Ghirardi,
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2003, p. 345)) in a letter dated October 3, 1989:

As regards ψ and the density of stuff, I think it is important that this density

is in the 3N -dimensional configuration space. So I have not thought of

relating it to ordinary matter or charge density in 3-space. Even for one

particle I think one would have problems with the latter. So I am inclined

to the view you mention ‘as it is sufficient for an objective interpretation’

... And it has to be stressed that the ‘stuff’ is in 3N -space—or whatever

corresponds in field theory.

As we have indicated already, we don’t understand this proposal, which clearly suffers

from the difficulties discussed above. Whoever suggests that matter exists not in 3-space

but in 3N -space must bridge the gap between an ontology in 3N -space and the behavior

of objects in 3-space. Strategies for doing so have in fact been proposed; see (Albert,

1996) for a proposal and (Monton, 2002) for a critique. For the reasons mentioned

above, we do not believe that they can succeed.

4.4 Primitive Ontology and Quantum State

It is well known that in OQT the quantum state is naturally projective. That is, quantum

states are best regarded as mathematically represented by rays in the system’s Hilbert

space H , i.e. by the elements of the projective space P(H ), consisting of equivalence

classes of wave functions ψ ∈ H differing by a multiplicative constant. This follows

from the rule (16) for the mean value of an observable represented by a self-adjoint

operator A for a system in the state ψ. Wave functions ψ differing by a multiplicative

constant give the same mean value to all observables A.

Similarly, in BM the quantum state is naturally projective: it follows from (1) that

wave functions differing by a multiplicative constant are associated with the same vector

field, and thus generate the same dynamics for the PO.10

In GRWf the quantum state is also naturally projective. Of course, for general ψ

(not necessarily normalized), instead of (8) the rate for the flashes should be given by

r(x, i|ψ) = λ
〈ψ |Λi(x)ψ〉

〈ψ |ψ〉
. (18)

In GRWm wave functions differing by a multiplicative constant of modulus 1 define

the same evolution of the mass density field (12). If the wave function is multiplied

by a more general constant, in order to ensure the same evolution of the mass density

the right hand side of (12) could be divided by 〈ψ|ψ〉. But this is perhaps unnecessary,

10And insofar as probabilities are concerned, if ψ is not normalized, these are given by |ψ(q)|2/〈ψ|ψ〉,

which is projective.
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since universal mass densities that differ only by a multiplicative constant are arguably

physically equivalent.

GRW0, involving only wave functions, does not allow us to make the same kind of

argument; it is thus not clear for GRW0 why ψ should be regarded as projective, though

the structure of GRW0 is compatible with doing so.

To sum up, the projective nature of the quantum state can be regarded as a conse-

quence of the axioms of OQT, BM, GRWm and GRWf, but not of GRW0.

5 Differences between BM and GRW

We have stressed the similarity between BM and GRW. There are, of course, also signif-

icant differences. Perhaps the most obvious is that in BM the Schrödinger evolution is

exact, but not in GRW. However, this difference is not so crucial. In fact we will present

in Section 7.1 a reformulation of GRWf in which the Schrödinger evolution is exact.

A related important difference is that the empirical predictions of BM agree exactly

and always with those of the quantum formalism (whenever the latter is unambiguous)

while the predictions of the GRW theory don’t. (The latter agree only approximately

and in most cases.) In particular, one can empirically distinguish BM from the GRW

theory. (However, no decisive test could as yet be performed; see (Bassi and Ghirardi,

2003) for details.) The empirical disagreement between the two theories is usually

explained by appealing to the fact that in one theory the wave function obeys the

Schrödinger evolution while in the other it does not. However, especially in light of

the reformulation of GRWf we shall describe in Section 7.1, the empirical inequivalence

between the two theories should be better regarded as having a different origin. Though

we shall elaborate on this issue in Section 7.3, we shall anticipate the mathematical roots

of such a difference in Section 5.2 (which however may be skipped on a first reading of

this paper).

A difference in the mathematical structure of GRWf (and OQT) on the one hand and

BM (but also GRWm) on the other concerns the probability distribution that each of the

these theories defines on its space of histories of the PO. This probability distribution is

a quadratic functional of the initial ψ for GRWf and OQT, but not for BM and GRWm.

This feature is at the origin of why GRWf can be modified so as to become a fully

relativistically invariant theory (see the end of Section 4.2). It will be discussed in the

following subsection, which, however, will not be needed for understanding the rest of

the paper.
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5.1 Primitive Ontology and Quadratic Functionals

It is worth noting a feature of the mathematical structure of GRWf that it shares with

OQT, but that is absent in, for example, BM and GRWm. It concerns the dependence on

the (initial) wave function ψ of the probability distribution P
ψ that the theory defines

on its space Ω of histories of the PO. In BM, Ω is the space of continuous paths in

configuration space R
3N , and the measure P

ψ corresponds to the quantum equilibrium

measure, and is concentrated on a 3N -dimensional submanifold of Ω, namely the solu-

tions of Bohm’s equation (1). In GRWf, Ω is the space of discrete subsets of space-time

(possibly with labels 1, . . . , N), and the measure P
ψ is given by (11). In GRWm, Ω is

a space of fields on space-time, and P
ψ the image under the mapping ψ 7→ m given by

(12) of the distribution of the Markov process (ψt)t≥0.

In GRWf and OQT, but not in BM or GRWm, P
ψ is a quadratic functional of ψ.

More precisely, in GRWf and OQT it is of the form

P
ψ(·) = 〈ψ|E(·)ψ〉 (19)

where E(·) is the positive-operator-valued measure (POVM) on Ω that can be read off

from (11) for GRWf, and is the POVM associated with the results of a sequence of

measurements for OQT (see, e.g., Dürr et al., 2004b). Neither GRWm nor BM share

this property. The easiest way of seeing this begins with noting that (19) entails that

any two ensembles of wave functions (corresponding to probability measures µ, µ′ on the

unit sphere S of Hilbert space) with the same density matrix,

ρ̂µ =

∫

S

µ(dψ) |ψ〉〈ψ| = ρ̂µ′ , (20)

lead to the same distribution

Pµ(·) =

∫

S

µ(dψ) P
ψ(·) = tr(E(·)ρ̂µ) = Pµ′(·) (21)

on Ω. This is notoriously not true in BM (Bell, 1980). It is not true in GRWm either, as

one easily checks, for example by considering, at just one single time, the following two

ensembles of wave functions for Schrödinger’s cat: µ gives probability 1
2

to 2−1/2(|dead〉+

|alive〉) and 1
2

to 2−1/2(|dead〉 − |alive〉), while µ′ gives 1
2

to |dead〉 and 1
2

to |alive〉.

One can say that the essence of this difference between these theories lies in different

choices of which quantity is given by a simple, namely quadratic, expression in ψ:

• the probability distribution P
ψ of the history of the PO both in GRWf and OQT,

see (19)

• the probability distribution ρψ of the PO at time t in BM,

ρψ(q, t) = |ψ(q, t)|2 (22)
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• the PO itself at time t in GRWm,

m(x, t) = 〈ψt|Λ̃(x)ψt〉 with Λ̃(x) =
N∑

i=1

mi δ(x− Q̂i) . (23)

Note in particular the rather different roles that ‘|ψ|2’ can play for different quantum

theories and different choices of the PO.

5.2 Primitive Ontology and Equivariance

In Section 2 we have recalled the notion of the equivariance of the probability distribution

|ψ|2 and indicated how it is the key notion for establishing the empirical agreement

between BM and the predictions of the quantum formalism (whenever the latter are

unambiguous). The equivariance of |ψ|2 expresses the mutual compatibility, with respect

to |ψ|2, of the Schrödinger evolution of the wave function and the Bohmian motion of

the configuration.

It would seem natural to expect that for GRWf we also have equivariance, but rela-

tive to the (stochastic) GRW evolution of the wave function instead of the Schrödinger

evolution. However, the concept of the equivariance of the distribution |ψ|2 is not di-

rectly applicable in this case: in fact, for GRWf there is no random variable Q(t) whose

distribution could agree or disagree with a |ψt|
2 distribution (or any other quantum me-

chanical distribution), since GRWf is a theory of flashes, not particles, and as such yields

no nontrivial random variable that can be regarded as associated with a fixed time t. In

this framework it seems natural to consider the notion of a time–translation equivariant

distribution, in terms of which we may provide a generalized notion of equivariance as

follows: Let Ωt be the space of possible histories of the PO for times greater than or equal

to t. In trajectory theories like BM, Ωt is the space of continuous paths [t,∞) → Q,

where Q is the configuration space; in flash theories like GRWf it is the space of finite–

or–countable subsets of the half space-time [t,∞)×R
3. Consider an association ψ 7→ P

ψ

where P
ψ is a probability measure on Ω0 that is compatible with the dynamics of the

theory. We say that this association is equivariant relative to a deterministic evolution

ψ 7→ ψt if S⋆t P
ψ = P

ψt , where ⋆ denotes the action of the mapping on measures and St is

a suitably defined time shift.11 More generally, for an evolution that may be stochastic,

we say that the association is equivariant relative to the evolution if

S⋆t P
ψ = EP

ψt , (24)

where E denotes the average over the random ψt. With this definition, BM is equivariant

relative to the Schrödinger evolution, and GRWf and GRWm are equivariant relative to

the GRW evolution.
11In order to define St properly, let Rt, t > 0, be the restriction mapping Ω0 → Ωt, and Tτ the time

translation mapping Ωt → Ωt+τ . Then St = T−t ◦Rt : Ω0 → Ω0 is the time shift.
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Particles Fields Flashes

Deterministic BM BQFT, Sm

Indeterministic SM, BTQFT, BMW, GRWp GRWm GRWf, Sf, Sf′

Table 1: Different possibilities for the PO of a theory are presented: particles, fields and

flashes. These different primitive ontologies can evolve according to either deterministic or

stochastic laws. Corresponding to these possibilities we have a variety of physical theories:

Bohmian mechanics (BM), Bohmian quantum field theory (BQFT), a mass density field theory

with Schrödinger evolving wave function (Sm), stochastic mechanics (SM), Bell-type quantum

field theory (BTQFT), Bell’s version of many-worlds (BMW), a particle GRW theory (GRWp),

GRW theory with mass density (GRWm), GRW theory with flashes (GRWf), and two theories

with flashes governed by Schrödinger (or Dirac) wave functions (Sf and Sf′). For a detailed

description of these theories, see the text.

6 A Plethora of Theories

One may wonder whether some primitive ontologies (flashes and continuous matter

density) work only with GRW-type theories while others (particle trajectories) work

only with Bohm-type theories. This is not the case, as we shall explain in this section.

6.1 Particles, Fields, and Flashes

Let us analyze, with the aid of Table 1, several possibilities: there can be at least

three different kinds of primitive ontologies for a fundamental physical theory, namely

particles, fields, and flashes. Those primitive ontologies can evolve either according to

a deterministic or to a stochastic law and this law can be implemented with the aid of

a wave function evolving either stochastically or deterministically.

BM is the prototype of a theory in which we have a particle ontology that evolves

deterministically according to a law specified by a wave function that also evolves de-

terministically. The natural analog for a theory with particle ontology with indeter-

ministic evolution is stochastic mechanics (SM), in which the law of evolution of the

particles is given by a diffusion process while the evolution of the wave function, the

usual Schrödinger evolution, remains deterministic (see Nelson, 1985; Goldstein, 1987,

for details). Another example involving stochastically evolving particles with a deter-

ministically evolving wave function is provided by a Bell-type quantum field theory

(BTQFT) in which, despite the name, the PO is given by particles evolving indetermin-

istically to allow for creation and annihilation (for a description, see Dürr et al., 2004a,

2005b; Bell, 1986). Another possibility for a stochastic theory of particles is a theory

GRWp in which the particle motion is governed by (1) but with a wave function that

obeys a GRW-like evolution in which the collapses occur exactly as in GRW except that,
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once the time and label for the collapse has been chosen, the collapse is centered at the

actual position of the particle with the chosen label, rather than at random according

to equation (7). (A garbled formulation of this theory is presented in (Bohm and Hiley,

1993, p. 346).)

What in Table 1 we call a Bohmian quantum field theory (BQFT) involves only

fields, evolving deterministically (Bohm, 1952; Struyve and Westman, 2006). Another

example is provided by the theory Sm in which the PO is given by the mass density

field (12) but evolving with a Schrödinger wave function — always evolving according

to Schrödinger’s equation, with no collapses. GRWm provides an example of a theory of

fields that evolve stochastically.

Concerning theories with flashes, these are inevitably stochastic, and GRWf, in which

the flashes track the collapses of the wave function, is the prototype. However, there

are also theories with flashes in which the wave function never collapses. Such theories

are thus arguably closer to BM than to GRWf. We consider two examples.

In the first example, denoted by Sf,12 the PO consists of flashes with their distribution

determined by a Schrödinger wave function ψ = ψ(q1, . . . , qN), that evolves always

unitarily, as in BM, according to the N–‘particle’ Schrödinger evolution (2). The flashes

are generated by the wave function exactly as in GRWf. Thus, the algorithm, whose

output is the flashes, is the same as the one described in Section 3, with steps 1., 2. and

3., with the following difference: the first sentence in step 2. is dropped, since no collapse

takes place. In other words, in Sf flashes occur with rate (8) but are accompanied by no

changes in the wave function.13 (This flash process defines, in fact, a Poisson process

in space-time—more precisely, a Poisson system of points in R
4 × {1, . . . , , N}—with

intensity measure r((x, t), i) = r(x, i|ψt) given by (8).) Note that, in contrast to the

case of GRWf, one obtains a well defined theory by taking the limit σ → 0 in (4), that is

by replacing Λi(x) in (8) with Λ̃i(x) given by Λ̃i(x) = δ(Q̂i−x), where Q̂i is the position

operator of the i-th ‘particle.’

Our last example (Sf′) is the following. Consider a nonrelativistic system of N

noninteracting quantum particles with wave function satisfying the Schrödinger equation

i~
∂ψ

∂t
= −

N∑

i=1

~
2

2mi

∇2
iψ +

N∑

i=1

Vi(qi)ψ , (25)

12Here S stands for Schrödinger (evolution). Using this notation we have that BM = Sp.
13Accordingly, equation (11) is replaced by

P
(
X1 ∈ dx1, T1 ∈ dt1, I1 = i1, . . . ,Xn ∈ dxn, Tn ∈ dtn, In = in|ψt0

)

= λne−Nλ(tn−t0)
n∏

k=1

〈ψtk |Λik(xk)ψtk〉 dx1dt1 · · · dxndtn ,

where Λi(x) is the collapse operator given by (4).
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and suppose that, as in GRWf, each of the flashes is associated with one of the particle

labels 1, . . . , N . Given the flashes up to the present, the next flash occurs with rate Nλ,

and has a label I ∈ {1, . . . , N} that is randomly chosen with uniform distribution. If

this flash occurs at time TI , its location X is random with probability distribution

P(X ∈ dXI |I, TI , {Xk, Tk}k 6=I) = N
∣∣ψ(X1, T1, . . . , XN , TN)

∣∣2 dXI , (26)

where N is a normalizing factor, ψ = ψ(q1, t1, . . . , qN , tN) is a multi-time wave function

evolving according to the set of N equations

i~
∂ψ

∂ti
= −

~
2

2mi

∇2
iψ + Vi(qi)ψ (27)

for every i ∈ {1, . . . , N}, and Tk and Xk are, for k 6= I, the time and location of the

last flash with label k. The reason that this model is assumed to be noninteracting

is precisely to guarantee the existence of the multi-time wave function in (26). Sf′ is

an example of a theory with a flash ontology that arguably is empirically equivalent to

OQT (unlike GRWf)—at least, it would be if it were extended to incorporate interactions

between particles—and avoids the many-worlds character of Sf (see Section 6.2 below).

A provisional moral that emerges is that relativistic invariance might be connected

with a flash ontology, since GRWf is the only theory in Table 1 (except for Sm and

Sf, which have a rather extraordinary character that we discuss in Section 6.2 below)

of which we know how it can be made relativistically invariant without postulating a

preferred foliation of space-time (or any other equivalent additional structure). Finally,

note that all the theories in Table 1 are empirically equivalent (suitably understood) to

OQT except GRWm, GRWf, and GRWp.

6.2 Schrödinger Wave Functions and Many-Worlds

A rather peculiar theory representing the world as if it were, at any given time, a

collection of particles with classical configuration Q = (Q1, . . . , QN) is Bell’s version of

many-worlds (BMW) (Bell, 1981). In BMW the wave function ψ evolves according to

Schrödinger’s equation and (Bell, 1981)

instantaneous classical configurations . . . are supposed to exist, and to be

distributed . . . with probability |ψ|2. But no pairing of configurations at

different times, as would be effected by the existence of trajectories, is sup-

posed.

This can be understood as suggesting that the configurations at different times are not

connected by any law. It could also be regarded as suggesting that configurations at

different times are (statistically) independent, and that is how we shall understand it

here. The world described by BMW is so radically different from what we are accustomed
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to that it is hard to take BMW seriously. In fact, for example, at some time during the

past second, according to BMW, there were on the earth dinosaurs instead of humans,

because of the independence and the fact that, in any no-collapse version of quantum

theory, there are parts of the wave function of the universe in which the dinosaurs have

never become extinct. In this theory, the actual past will typically entirely disagree

with what is suggested by our memories, by history books, by photographs and by

other records of (what we call) the past.

Also Sf and Sm, though they are simple mathematical modifications of GRWf and

GRWm respectively, provide very different pictures of reality, so different indeed from

what we usually believe reality should be like that it would seem hard to take these

theories seriously. In Sf and Sm, apparatus pointers never point in a specific direction

(except when a certain direction in OQT would have probability more or less one), but

rather all directions are, so to speak, realized at once. As a consequence, one is led to

conclude that their predictions don’t agree with those of the quantum formalism. Still,

it can be argued that these theories do not predict any observable deviation from the

quantum formalism: there is, arguably, no conceivable experiment that could help us

decide whether our world is governed by Sf or Sm on the one hand or by the quantum

formalism on the other. The reason for this surprising claim is that Sf and Sm can be

regarded as many-worlds formulations of quantum mechanics. Let us explain.

At first glance, in an Sf or Sm world, the after-measurement state of the apparatus

seems only to suggest that matter is very spread out. However, if one considers the

flashes, governed by the rate (8), or the mass density (12), that correspond to macro-

scopic superpositions, one sees that they form independent families of correlated flashes

or mass density associated with the terms of the superposition, with no interaction be-

tween the families. The families can indeed be regarded as comprising many worlds,

superimposed on a single space-time. Metaphorically speaking, the universe according

to Sf or Sm resembles the situation of a TV set that is not correctly tuned, so that one

always sees a mixture of two channels. In principle, one might watch two movies at the

same time in this way, with each movie conveying its own story composed of temporally

and spatially correlated events.

Thus Sf and Sm are analogous to Everett’s many-worlds (EMW) formulation of quan-

tum mechanics (Everett, 1957), but with the ‘worlds’ explicitly realized in the same

space-time. Since the different worlds do not interact among themselves—they are, so

to speak, reciprocally transparent—this difference should not be regarded as crucial.

Thus, to the extent that one is willing to grant that EMW entails no observable devia-

tion from the quantum formalism, the same should be granted to Sf and Sm. Moreover,

contrarily to EMW, but similarly to BMW, Sf and Sm have a clear PO upon which

the existence and behavior of the macroscopic counterparts of our experience can be

grounded.
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This ontological clarity notwithstanding, in Sf and Sm reality is of course very dif-

ferent from what we usually believe it to be like. It is populated with ghosts we do not

perceive, or rather, with what are like ghosts from our perspective, because the ghosts

are as real as we are, and from their perspective we are the ghosts. We plan to give a

more complete discussion of Sf and Sm in a future work.

We note that the theory Sm is closely related to—if not precisely the same as—the

version of quantum mechanics proposed by Schrödinger (1926). After all, Schrödinger

originally regarded his theory as describing a continuous distribution of matter (or

charge) spread out in physical space in accord with the wave function on configura-

tion space (Schrödinger, 1926). He soon rejected this theory because he thought that it

rather clearly conflicted with experiment. Schrödinger’s rejection of this theory was per-

haps a bit hasty. Be that as it may, according to what we have said above, Schrödinger

did in fact create the first many-worlds theory, though he probably was not aware that

he had done so. (We wonder whether he would have been pleased if he had been).14

7 The Flexible Wave Function

In this section we elaborate on the notion of physical equivalence by considering phys-

ically equivalent formulations of GRWf and BM for which the laws of evolution of the

wave function are very different from the standard ones. We conclude with some remarks

on the notion of empirical equivalence.

7.1 GRWf Without Collapse

As a consequence of the view that the GRW theory is ultimately not about wave functions

but about either flashes or matter density, the process ψt in Hilbert space (representing

the collapsing wave function) should no longer be regarded as playing the central role

in the GRW theory. Instead, the central role is played by the random set F of flashes

for GRWf, respectively by the random matter density function m(·, t) for GRWm. From

this understanding of GRWf as being fundamentally about flashes, we obtain a lot of

flexibility as to how we should regard the wave function and prescribe its behavior. As

we point out in this section, it is not necessary to regard the wave function in GRWf as

undergoing collapse; instead, one can formulate GRWf in such a way that it involves a

wave function ψ that evolves linearly (i.e., following the usual Schrödinger evolution).

14However, Schrödinger did write that (Schrödinger, 1927, p. 120) ‘ψψ̄ is a kind of weight-function in

the system’s configuration space. The wave-mechanical configuration of the system is a superposition

of many, strictly speaking of all, point-mechanical configurations kinematically possible. Thus, each

point-mechanical configuration contributes to the true wave-mechanical configuration with a certain

weight, which is given precisely by ψψ̄. If we like paradoxes, we may say that the system exists, as it

were, simultaneously in all the positions kinematically imaginable, but not ‘equally strongly’ in all.’
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Suppose the wave function at time t is ψt. Then according to equation (8), for GRWf

the rate for the next flash is given by

r(x, i|ψt) = λ‖Λi(x)
1/2ψt‖

2. (28)

Observe that ψt, given by equation (9), is determined by ψt0 and the flashes (Xk, Tk)

that occur between the times t0 and t; it can be rewritten as follows:

ψt =
ΛIn(Xn, Tn; t)

1/2 · · · ΛI1(X1, T1; t)
1/2ψLt

‖ΛIn(Xn, Tn; t)1/2 · · · ΛI1(X1, T1; t)1/2ψLt ‖
(29)

where we have introduced the Heisenberg-evolved operators (with respect to time t)

ΛIk(Xk, Tk; t)
1/2 = Ut−Tk

ΛIk(Xk)
1/2UTk−t = Ut−Tk

ΛIk(Xk)
1/2U−1

t−Tk
(30)

and the linearly evolved wave function

ψLt = Ut−t0ψt0 , (31)

where t0 is the initial (universal) time. By inserting ψt given by equation (29) in (28)

one obtains that

r(x, i|ψt) = λ
‖Λi(x)

1/2ΛIn(Xn, Tn; t)
1/2 · · · ΛI1(X1, T1; t)

1/2ψLt ‖
2

‖ΛIn(Xn, Tn; t)1/2 · · · ΛI1(X1, T1; t)1/2ψLt ‖
2

. (32)

Suppose that the initial wave function is ψt0 , i.e., that the linearly evolved wave

function at time t is ψLt . Then the right hand side of equation (32) defines the conditional

rate for the next flash after time t, given the flashes in the past of t. Note that this

conditional rate thus defines precisely the same flash process as GRWf. In particular,

we have that

PψL
t
(future flashes|past flashes) = P(future flashes|ψt). (33)

The collapsed wave function ψt provides precisely the same information as the linearly

evolving wave function ψLt together with all the flashes. Thus, one arrives at the sur-

prising conclusion that the Schrödinger wave function can be regarded as governing the

evolution of the space-time point process of GRWf, so that GRWf can indeed be re-

garded as a no-collapse theory involving flashes. We say ‘no-collapse’ to underline that

the dynamics of the PO is then governed by a wave function evolving according to the

standard, linear Schrödinger equation (2). However, while the probability distribution

of the future flashes, given the collapsing wave function ψt, does not depend on the past

flashes, given only ψLt it does.

The two versions of GRWf, one using the collapsing wave function ψt and the other

using the non–collapsing wave function ψLt , should be regarded not as two different
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theories but rather as two formulations of the same theory, GRWf, because they lead to

the same distribution of the flashes and thus are physically equivalent. We conclude from

this discussion that what many have considered to be the crucial, irreducible difference

between BM and GRWf, namely that the wave function collapses in GRWf but does not

in BM, is not in fact an objective difference at all, but rather a matter of how GRWf is

presented.

We close this section with a remark. A notable difference between the two presen-

tations of GRWf is that while the GRW collapse process ψt is a Markov process,15 the

point-process F of flashes is generically non–Markovian. In more detail, we regard a

point process in space-time as Markovian if for all t1 < t2,

P
(
future of t2

∣∣past of t2
)

= P
(
future of t2

∣∣strip between t1 and t2
)
, (34)

where ‘future of t2’ refers to the configuration of points after time t2, etc.. To see that

F is non–Markovian, note that the distribution of the flashes in the future of t2 depends

on what happened between time 0 and time t2, while the strip in space-time between t1
and t2 may provide little or no useful information, as it may, for small duration t2 − t1,

contain no flashes at all.16

For a Markovian flash process events in a time interval [t1, t2] are independent of

those in a disjoint time interval [t3, t4], which, as discussed in Section 6, would be rather

unreasonable for a model of our world. In passing, we note that Sf can indeed be regarded

as a sort of Markovian approximation of (the linear version of) GRWf for which, at any

time, the past is completely ignored in the computation of the conditional probability

of future flashes.

7.2 Bohmian Mechanics With Collapse

In Section 7.1 we showed that GRWf can be reformulated in terms of a linearly evolving

wave function. Conversely, BM can be reformulated so that it involves a ‘collapsed’

wave function. In this formulation the evolution of the wave function depends on the

actual configuration. The state at time t is described by the pair (Qt, ψ
C
t ), where

Q = (Q1, . . . , QN) is the (usual) configuration but ψCt : R
3N → C is a different wave

function than usual, a collapsed wave function. Instead of equations (1) and (2), the

15This means that P
(
future

∣∣past & present
)

= P
(
future

∣∣present
)
. In more detail, the distribution of

the ψt for all t > t0 conditional on the ψt for all t ≤ t0 coincides with the distribution of the future

conditional on ψt0 .
16The matter density fieldm(·, t) is generically Markovian, but rather by coincidence: Given the initial

wave function, different patterns of collapse centers between time 0 and time t2 should be expected to

lead to different fields m(·, t2), so that the past (or equivalently ψt2) may be mathematically determined

from m(·, t2).
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state evolves according to

dQi

dt
=

~

mi

Im
ψC∗∇iψ

C

ψC∗ψC
(Q1, . . . , QN) , (35)

which is the same as (1) with ψ replaced by ψC , and

i~
∂ψC

∂t
= −

N∑

i=1

~
2

2mi

(∇i − iÃi)
2ψC + (V + Ṽ )ψC (36)

which is the same as Schrödinger’s equation except for the imaginary pseudo-potentials

(σ ≈ 10−7 m is the same constant as in GRW)

Ãi =
i

σ2
(qi −Qi) , Ṽ = −

i

σ2

N∑

i=1

~
2

mi

(qi −Qi) · Im
ψC∗∇iψ

C

ψC∗ψC
(37)

making equation (36) nonlinear and Q-dependent. A solution t 7→ (Qt, ψ
C
t ) of equations

(35) and (36) can be obtained from a solution t 7→ (Qt, ψt) of equations (1) and (2) by

setting

ψC(q1, . . . , qN) = exp

(
−

N∑

i=1

(qi −Qi)
2

2σ2

)
ψ(q1, . . . , qN) . (38)

This is readily checked by inserting (38) into equations (35) and (36). The ensemble of

trajectories with distribution |ψ|2 cannot be expressed in a simple way in terms of ψC .

Nonetheless, for given initial configuration Q0, we obtain from equations (35) and (36),

with given initial ψC0 , the same trajectory t 7→ Qt as from equations (1) and (2) with

the corresponding ψ0. This may be enough to speak of physical equivalence.

One can read off from (38) that ψC is a collapsed wave function: Whenever ψ

is a superposition (such as for Schrödinger’s cat) of macroscopically different states

with disjoint supports in configuration space, then in ψC all contributions except the

one containing the actual configuration Qt are damped down to near zero. (Still, the

evolution is such that when two disjoint packets again overlap, the trajectories display

an interference pattern.)

Of course, the unitarily-evolving ψt is much more natural than ψCt as a mathematical

tool for defining the trajectory t 7→ Qt; (2) is a simpler equation than (36). Still, the

example shows that we have the choice in BM between using a collapsed wave function

ψC or a spread out wave function ψ.

7.3 Empirical Equivalence and Equivariance

The facts that GRWf can be reformulated so that the wave function evolves linearly, in

the usual manner according to Schrödinger’s equation, and that BM can be reformu-

lated in terms of a collapsed wave function indicate that the disagreement between the
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predictions of the two theories should not be regarded as arising merely from the fact

that they involve different wave function evolutions. It is our contention that the source

of the empirical disagreement between BM and GRWf can be regarded as lying, neither

in their having different evolutions for the wave function, nor in their having different

ontologies, but rather in the presence or absence of equivariance with respect to the

Schrödinger evolution. More explicitly, we claim that a theory is empirically equivalent

to the quantum formalism (i.e., that its predictions agree with those of the quantum

formalism) if it yields an equivariant distribution (defining typicality) relative to the

Schrödinger evolution that can be regarded as ‘effectively |ψ|2.’ Let us explain.

The view we have proposed about the PO of a theory and the corresponding role of

the wave function has immediate consequences for the criteria for the empirical equiva-

lence of two theories, i.e., the statement that they make (exactly and always) the same

predictions for the outcomes of experiments.

Before discussing these consequences, let us note a couple of remarkable aspects of

the notion of empirical equivalence. One is that, despite the difficulty of formulating the

empirical content of a theory precisely (a difficulty mainly owed to the vagueness of the

notion ‘macroscopic’), one can sometimes establish the empirical equivalence of theories;

for example, that of BM and SM or that of GRWm and GRWf; for further examples see

(Goldstein et al., 2005). Another remarkable aspect is that empirical equivalence occurs

at all. One might have expected instead that different theories typically make different

predictions, and indeed the theories of classical physics would provide plenty exam-

ples. But in quantum mechanics empirical equivalence is a widespread phenomenon; see

(Goldstein et al., 2005) for discussion of this point.

Let us turn to the criteria for empirical equivalence. Since the empirical equivalence

of two theories basically amounts to the assertion that the two worlds, governed by

the two theories, share the same macroscopic appearance, we have to focus on how to

read off the macroscopic appearance of a possible world according to a theory. And

according to our view about PO, the macroscopic appearance is a function of the PO—

but not directly a function of the wave function. In cases in which one can deduce the

macroscopic appearance of a system from its wave function, this is so only by virtue of

a law of the theory implying that this wave function is accompanied by a PO with a

certain macroscopic appearance. In short, empirical equivalence amounts to a statement

about the PO. This view is exemplified by our proof of empirical equivalence between

GRWm and GRWf in Section 3.3. In more detail, the position Zt of, say, a pointer at

time (circa) t is a function of the PO: In BM and GRWm it can be regarded as a function

Zt = Z(Qt) of the configuration, respectively as a function Zt = Z(m(·, t)) of the m

field, at time t, whereas in GRWf it is best regarded as a function of the history of flashes

over the past millisecond or so.

Concerning the empirical equivalence between a theory and OQT, we need to ask
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whether the probability of the event Zt = z agrees with the distribution predicted by

standard quantum mechanics. The latter can be obtained from the Schrödinger wave

function ψt for a sufficiently big system containing the pointer by integrating |ψt|
2 over

all configurations in which the pointer points to z. Thus, regardless of what the PO of a

theory is, all that is required for the empirical equivalence between the theory and OQT

is that it provide the correct |ψt|
2 probability distributions for the relevant variables

Zt. When this is so we may speak of an ‘effective |ψt|
2–distribution,’ or of macroscopic

|ψ|2 Schrödinger equivariance. Thus, empirical equivalence to OQT amounts to having

macroscopic |ψ|2 Schrödinger equivariance. (This applies to ‘normal’ theories in which

pointers point; the situation is different for theories with a many-worlds character as

discussed in Section 6.2.)

GRWf (or GRWm) predicts (approximately) the quantum mechanical distribution

only under certain circumstances, including, e.g., that the experimental control over

decoherence is limited, and that the universe is young on the timescale of the ‘univer-

sal warming’ predicted by GRWf/GRWm (see Bassi and Ghirardi, 2003, for details).

Moreover, we know that GRWf, roughly speaking, makes the same predictions as does

the quantum formalism for short times, i.e., before too many collapses have occurred.

Thus, GRWf yields an effective |ψ|2–distribution for times near the initial time t0. Now,

if GRWf were ‘effectively |ψ|2–equivariant,’ its predictions would be the same as those

of quantum theory for all times. It is the absence of this macroscopic |ψ|2 Schrödinger

equivariance that renders GRWf empirically inequivalent to quantum theory and to BM.

We shall elaborate on this in a future work (Allori et al., unpublished,a).

The most succinct expression of the source of the empirical disagreement between

BM and GRWf is thus the assertion that BM is effectively |ψ|2-equivariant relative to

the Schrödinger evolution while GRWf is not. The macroscopic Schrödinger equivariance

of BM follows, of course, from its microscopic |ψ|2 Schrödinger equivariance, while the

lack of macroscopic |ψ|2 Schrödinger equivariance for GRWf follows from the warming

associated with the GRW evolution and the fact that GRWf, as discussed in Section

5.2, is microscopically equivariant relative to that evolution. In fact, it follows from the

GRW warming that there is, for GRWf, no equivariant association ψ 7→ P
ψ with ψ a

Schrödinger-evolving wave function.17

8 What is a Quantum Theory without Observers?

To conclude, we delineate the common structure of GRWm, GRWf, and BM:

17Since the GRWf flash process is non–Markovian, the formulation of the notion of equivariant as-

sociation given in Section 5.2 is not appropriate here; instead, P
ψ should now be understood to be a

probability measure on the space Ω of possible histories of the PO for all times, but one whose condi-

tional probabilities for the future of any time given its past are as prescribed, here by the formula (33).

The association is equivariant if T ⋆−tP
ψ = P

ψt , with Tτ now the time translation mapping on Ω.
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(i) There is a clear primitive ontology, and it describes matter in space and time.

(ii) There is a state vector ψ in Hilbert space that evolves either unitarily or, at least,

for microscopic systems very probably for a long time approximately unitarily.

(iii) The state vector ψ governs the behavior of the PO by means of (possibly stochastic)

laws.

(iv) The theory provides a notion of a typical history of the PO (of the universe), for

example by a probability distribution on the space of all possible histories; from

this notion of typicality the probabilistic predictions emerge.

(v) The predicted probability distribution of the macroscopic configuration at time t

determined by the PO (usually) agrees (at least approximately) with that of the

quantum formalism.

The features (i)–(v) are common to these three theories, but they are also desiderata,

presumably even necessary conditions, for any satisfactory quantum theory without

observers.18
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Theory’, in A. Bassi, D. Dürr, T. Weber and N. Zangh̀ı (eds), Quantum Mechanics:

Are there Quantum Jumps? and On the Present Status of Quantum Mechanics, AIP

Conference Proceedings, 844, American Institute of Physics, pp. 321–39.

Wigner, E.P. [1939]: ‘On Unitary Representations of the Inhomogeneous Lorentz

Group’, Annals of Mathematics, 40, pp. 149–204.

37



Tumulka, R. [2006a]: ‘A Relativistic Version of the Ghirardi–Rimini–Weber Model’,

Journal of Statistical Physics, 125, pp. 821–40.

Tumulka, R. [2006b]: ‘On Spontaneous Wave Function Collapse and Quantum Field

Theory’, Proceedings of the Royal Society A, 462, pp. 1897–908.

Tumulka, R. [2006c]: ‘Collapse and Relativity’, in A. Bassi, D. Dürr, T. Weber and N.
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