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Abstract

I will contrast the two main approaches to the foundations of statistical mechanics:
the individualist (Boltzmannian) approach and the ensemblist approach (associated
with Gibbs). I will indicate the virtues of each, and argue that the conflict between
them is perhaps not as great as often imagined.

1 Introduction

It is well known that the foundations of quantum mechanics are highly controversial.
So too are the foundations of statistical mechanics, though it is not quite so widely
recognized that this is so. Perhaps the main source of the controversy and confusion
is the role played by probability in the subject. In fact probability plays a variety
of roles in the foundations of statistical mechanics, roles whose differences are not
always well appreciated.

The very notion of probability brings with it a strong suggestion of uncertainty,
ignorance, and strength of belief, and hence of subjectivity. Thus one could easily
form the impression that subjectivity plays a crucial role in our understanding of
statistical mechanics, and in the thermodynamics—including in particular its second
law, about entropy increase—to which statistical mechanics gives rise.
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Indeed, John von Neumann [1, p. 400], who made profound contributions to the
foundations of quantum statistical mechanics, has written the following:

The time variations of the entropy are then based on the fact that the
observer does not know everything, that he cannot find out (measure) ev-
erything which is measurable in principle.

Von Neumann’s statement falls within the framework of what has been called the en-
semblist view on the foundations of statistical mechanics, often associated with Josiah
Willard Gibbs [2]. This view is in contrast with the individualist view associated with
Ludwig Boltzmann.

Here are a couple of statements by Schrödinger in which he expresses his strong
support for the Boltzmannian view:

The spontaneous transition from order to disorder is the quintessence
of Boltzmann’s theory . . . This theory really grants an understanding and
does not . . . reason away the dissymetry of things by means of an a priori
sense of direction of time . . . No one who has once understood Boltzmann’s
theory will ever again have recourse to such expedients. It would be a
scientific regression beside which a repudiation of Copernicus in favor of
Ptolemy would seem trifling. [3]

. . . no perception in physics has ever seemed more important to me
than that of Boltzmann—despite Planck and Einstein. [4]
(Schrödinger)

And here is a statement of Boltzmann [5] himself:

I have . . . emphasized that the second law of thermodynamics is from
the molecular viewpoint merely a statistical law. Zermelo’s paper shows
that my writings have been misunderstood; . . . Poincaré’s theorem, which
Zermelo explains at the beginning of his paper, is clearly correct, but his
application of it to the theory of heat is not. . . . Thus, when Zermelo
concludes, from the theoretical fact that the initial states in a gas must
recur – without having calculated how long a time this will take – that the
hypotheses of gas theory must be rejected or else fundamentally changed,
he is just like a dice player who has calculated that the probability of a
sequence of 1000 one’s is not zero, and then concludes that his dice must
be loaded since he has not yet observed such a sequence!

Note that in this quote Boltzmann makes several references to probability and related
notions, suggesting an ensemblist character. Nonetheless, as should become clear,
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the statement lies entirely within the individualist view about the foundations of
statistical mechanics.

In what follows I shall focus only on classical statistical mechanics. While the
case of quantum statistical mechanics would involve some important differences, for
the purpose of what I wish to convey here these differences would not be relevant. I
shall also choose units for which Boltzmann’s constant k = 1.

2 Individualist and ensemblist approaches to

our understanding of thermal equilibrium

So what exactly does it mean for a system, say a gas in a box, to be in thermal
equilibrium? There are two views about this, corresponding to two different attitudes
towards the foundations of statistical mechanics: individualist and ensemblist.

For an individualist, a system is in thermal equilibrium if it is in an appropriate
pure state, given by a suitable point in phase space. For an ensemblist, it is in thermal
equilibrium if it is in an appropriate statistical state or ensemble, given by a suitable
probability measure on phase space.

2.1 Equilibrium

We shall focus here on the notion of equilibrium for the simple case of a classical gas
in a box Λ ⊂ R3 consisting of N atoms of a single type. We shall assume that the
internal structure of the atoms can be ignored, so that each atom may be regarded
as a point particle.

2.1.1 Individualist

A pure state then corresponds to the positions q1, . . . , qN and the momenta p1, . . . ,pN
of the particles, which together form the microstate of the system, a point

X = (q1, . . . , qN ,p1, . . . ,pN )

in the phase space
Γ = ΛN × R3N = (Λ× R3)N

of the gas. (We shall usually assume that the particles all have mass m = 1, so that
we needn’t distinguish between velocities and momenta.)

An important quantity associated with the system is its energy, given by a function
H(X) on its phase space. The energy is typically a sum of a kinetic energy term,
depending only on the momenta, and a potential energy term, depending only on the
positions. However, we shall not be too concerned here with the form of H.
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Since the energy is a constant of the motion we often regard it as given, and we
then usually focus on the energy surface

ΓE = {X : H(X) = E}

corresponding to energy E, instead of the entire phase space Γ .
In addition to the energy E, the particle number N , and the volume V = |Λ|,

where | | denotes volume, there are other macrovariables—for example, those that
convey the density profile—that are relevant to the notion of thermal equilibrium:
The phenomenon that lies behind the notion of a system being in equilibrium is
the fact that the system tends to evolve into a state in which such macrovariables
no longer seem to change in a noticeable way. An example of such macrovariables,
relevant especially for a low density gas, will be described in Section 2.3.

Give an appropriate choice of macrovariables one lumps together microstates for
which these variables have more or less the same value, to obtain a partition

ΓE =
⋃
ν

Γν (1)

of the energy surface into a collection of macrostates Γν . We can think of this partition
as corresponding to the relation of macroscopic equivalence. The points in the same
macrostate Γν are more or less indistinguishable from a macroscopic perspective.

In Figure 1 we have depictions of two rather different partitions of the energy
surface into macrostates. Both involve a special macrostate, indicated by “Eq”,
bigger than all the others. This dominant macrostate, for a gas in a box, is in fact
so very dominant that it occupies almost the entire energy surface. The depiction
on the right is thus much more appropriate than the one on the left. But it too is
unrealistic since only the dominant macrostate would be visible if the macrostates
were drawn to scale.

The special dominant macrostate is, ipso facto, the equilibrium macrostate. It
happens to be characterized by the uniformity and other properties associated with
equilibrium. According to what has just been said, we have that

|Γeq|
|ΓE |

≈ 1. (2)

For an individualist a system is in thermal equilibrium if its microstate X is in
the equilibrium macrostate, X ∈ Γeq.

2.1.2 Ensemblist

Suppose we more or less know that our system, our gas in a box, is in equilibrium.
This may be because we’ve waited long enough or otherwise somehow come to know
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Figure 1: Two depictions of the partition of ΓE into macrostates

that the system’s macrovariables have their equilibrium values. In this situation we
presumably do not know, nor need to know, the exact microstate X of the system,
about which we are almost surely quite uncertain. We might thus imagine that a
more useful description of a system in thermal equilibrium would be provided, not by
its exact microstate X, but by an ensemble, a probability distribution over possible
microstates.

This is indeed the case, for an individualist as well as for an ensemblist, as will
be explained in Section 3.3. But an ensemblist goes much further. For an ensemblist
the very meaning of a system’s being in thermal equilibrium is essentially connected
with the use of ensembles. For an ensemblist a system is in thermal equilibrium if
its microstate X is in some sense random, with probability distribution given by one
of the fundamental statistical mechanical ensembles, for example the microcanonical
ensemble (24), corresponding to a “uniform” distribution over the energy surface ΓE ,
or the canonical ensemble (25); see Section 3.3.

2.2 Evolution to equilibrium

2.2.1 Ensemblist

Insofar as equilibrium and approach to equilibrium are concerned, an ensemblist
regards the state of a system as given by a probability distribution—for a system
in equilibrium one of the standard ensembles, and for non-equilibrium some other
probability distribution, a non-equilibrium ensemble. One of the advantages of the
ensemblist perspective is that it affords a simple clean mathematical formulation of
what it means for a system to approach equilibrium, namely that in the infinite-time
limit, time-evolving non-equilibrium ensembles µt approach an equilibrium ensemble
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µeq,
µt −→ µeq (3)

as t → ∞. For a sufficiently chaotic dynamical system, this sort of behavior, for
suitable initial non-equilibrium states, can actually occur. The technical term for
this sort of behavior is mixing.

While mixing is a clear mathematical notion, its physical relevance to the problem
at hand is somewhat obscure. What, after all, does the probability distribution µt of
our system at a given time refer to? What in fact is its actual probability distribution?
I’m aware of no plausible answer to this question.

2.2.2 Individualist

Approach to equilibrium for an individualist is mathematically not so simple. An
individualist counterpart to (3), such as

Xt −→ Γeq

in the sense that Xt ∈ Γeq (or is near Γeq) as t→∞, is typically impossible. This is
because of the Poincaré recurrence theorem, which implies that almost all microstates
in a macrostate will return, under the time evolution, to that macrostate, in fact
infinitely often. It will typically not be the case that the system, initially far from
equilibrium, evolves so as to be in, or near, equilibrium for all sufficiently large times.
In fact, even when the system begins in, or near, equilibrium, one expects the system
to fluctuate far from equilibrium after a sufficiently long (probably an incredibly long)
time.

That this is so did not bother Boltzmann, and it should not bother us either. As
Boltzmann [6] wrote:

The applicability of probability theory to a particular case cannot of
course be proved rigorously. . . . Despite this, every insurance company
relies on probability theory. . . . It is completely incomprehensible to me
how anyone can see a refutation of the applicability of probability theory
in the fact that some other argument shows that exceptions must occur
now and then over a period of eons of time; for probability theory itself
teaches just the same thing.

What can occur, and what approach to equilibrium for an individualist does mean,
is this:

Xt ∈ Γeq for by far most (sufficiently large) t (4)

(even when the system is initially not in equilibrium). A sufficient condition for this
is that the classical dynamics of the system be mixing or, in fact, merely ergodic,
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Figure 2: Cells of the one-particle phase space Λ× R3

but this is hardly necessary. While (4) is difficult to prove for any realistic system,
Figure 1 and equation (2) suggest that it should generically hold.

The sort of behavior expressed by (4) is clearly physically relevant, and is, in-
deed, exactly the sort of behavior needed to account for the observed phenomenon of
approach to thermal equilibrium.

2.3 The individualist approach in the simplest case

In his analysis in 1872 of the approach to equilibrium of a low density gas, Boltzmann
chose as macrovariables the 1-particle empirical distribution femp(q,v), conveying
the density of particles in the 1-particle phase space Λ × R3. This is based on a
partition of that space into cells ∆, see Figure 2.3, that are macroscopically small but
microscopically large, and expresses the (normalized) number of particles per unit
volume in each cell: For X = (q1 ,v1 , . . . ,qN ,vN ),

femp(q,v) ≡ fX(q,v) =
nX(∆(q,v))/N

|∆(q,v)|
, (5)

where ∆(q,v) is the cell containing the point (q,v) ∈ Λ×R3, |∆(q,v)| is its volume,
and nX(∆) is the number of particles of the microstate X

(
at locations (qi ,vi)

)
in

∆.
I’ve written fX above in order to emphasize that the empirical distribution here

is a function of the microstate X (not a real-valued function but one whose values
are functions of q and v). Since X is time dependent so is the empirical distribution
fX :

femp(q,v, t) ≡ fX(t)(q,v). (6)
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The exact evolution of femp(q,v, t) is extremely complicated. However, Boltzmann
argued—and non-rigorously showed—that, at low density, this evolution is typically
well approximated (for times that are not too very large) by a much simpler one given
by ft(q,v),

fX(t)(q,v) ≈ ft(q,v), (7)

that obeys Boltzmann’s equation

∂ft
∂t

+ v · ∇qft = Q(ft), (8)

where Q is Boltzmann’s collision kernel, which happens to be quadratic in f and
about which I shall say no more.

The qualification “typically” above (7) refers to the fact that—as a consequence of
time-reversal invariance or of Poincaré recurrence—there are rare exceptional (initial)
microstates X for which the empirical distribution is not well approximated by a
solution to Boltzmann’s equation (8). In 1872 Boltzmann did not realize that this
qualification was necessary. By 1877 he did.

As consequences of Boltzmann’s equation:

• ft(q,v) → feq(q,v) ∼ e−
1
2
mv2/kT as t → ∞, corresponding to the approach to

the equilibrium macrostate. (This has not been entirely proven with complete
mathematical rigor, but there is little doubt that it is true for all practical
purposes.)

• The Boltzmann H-function

H(ft) =

∫
ft(q,v) log ft(q,v)dqdv

is nonincreasing as t increases, and remains constant for f = feq, which min-
imizes H(f). This suggested to Boltzmann that the entropy S of the second
law of thermodynamics, a quantity which is supposed never to decrease for an
isolated thermodynamic system, should be identified microscopically with

S(X) = −NH(fX). (9)

2.4 A wrong turn, suggesting an ensemblist approach

Suppose we regard f = fX not as an empirical distribution but as a probability
distribution, expressing something like, say, ignorance. Here is a natural and probably
not uncommon thought: For a gas at low density the particles should be more or less
independent, since the interactions between them should be rather weak. In this case
the probability distribution % for the entire gas should be the product distribution

%(X) ∼
∏
i

f(qi,vi).
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For such a distribution the right hand side of (9) is in fact the Gibbs entropy SG:

SG(%) = −
∫
%(X) log %(X) dX, (10)

where in general
%(X) ≡ %(q1 ,v1 , . . . ,qN ,vN ).

When % is of the above product form, we have that

SG(%) = −NH(f).

This would seem to suggest that the appropriate extension of Boltzmann’s entropy
formula (9) for a low density gas to higher density should be given by the Gibbs
entropy SG. And insofar as SG is a function of a probability distribution on the phase
space of the gas, an ensemblist approach to the foundations statistical mechanics
would then seem to be appropriate.

2.5 The individualist approach: entropy and macrostates

The Gibbs entropy (10) is a very important concept, useful in a variety of disciplines,
from physics to mathematics to information theory and much else. It is not, however,
the appropriate extension of Boltzmann’s entropy formula (9) to higher density. After
all, fX is an empirical distribution, and thus is determined by the microstate X of
an individual system. Hence the quantity (9) is as well.

Between 1872 and 1877 Boltzmann realized that the appropriate extension of (9)
is the Boltzmann entropy SB, given by

SB(X) = log |ΓX |, (11)

where ΓX is the macrostate containing the system’s microstate X. This of course
depends upon a choice of macrostates Γν , see (1), which in turn depends upon a
sensible choice of macrovariables, the precise details of which do not much matter in
practice.

Boltzmann chose for his analysis the macrovariables fX(q,v). These constitute a
rather large collection of macrovariables: a function of X for each cell ∆ in Figure 2.3,
given by X 7→ fX(q,v) for (q,v) ∈ ∆. The corresponding macrostates are then of
the form

Γf = {X ∈ ΓE | fX(q,v) ≈ f(q,v)}

for suitable choices of prescribed functions f and a suitable sense of ≈. For such
macrostates we have that

ΓX = ΓfX .
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and that
SB(X) = log |ΓfX |.

Boltzmann proceeded then to compute the volume of these macrostates, finding
that, at low density,

|Γf | ∼ e−NH(f), (12)

and thus that
log |Γf | ≈ −NH(f).

Thus, for a low density gas,

SB(X) ≈ −NH(fX)

and (11) is indeed the appropriate extension of (9).
Since for a macroscopic system the number of particles N is very large, say

N ∼ 1020,

it is strongly suggested by (12) that by far most of ΓE is Γfeq , as indicated in Figure 1,
so that Γfeq ≡ Γeq is indeed dominant, i.e., the equilibrium macrostate. In fact, (12)
suggests that the volume of the totality of nonequilibrium microstates, relative to
|Γeq|, is of the incredibly small order 10−10

20
(for N = 1020).

This corresponds to a vast distortion between the microscopic and the macroscopic
levels of description, see Figure 3. On the right we have the f–space, the space of
possible macrostates, associated with the values of the macrovariables f . In this
space there is one special point, one special choice of f , namely feq represented by
the central dot. The arrows on the right represent the trajectories of the Boltzmann
equation, all approaching feq. That they should do so is made almost inevitable by
the corresponding microscopic image on the left, almost all points of which correspond
to the central dot on the right.

With Figure 3 in mind one should carefully read the following statement of Boltz-
mann [5]:

One should not forget that the Maxwell distribution is not a state
in which each molecule has a definite position and velocity, and which
is thereby attained when the position and velocity of each molecule ap-
proach these definite values asymptotically. . . . It is in no way a special
singular distribution which is to be contrasted to infinitely many more
non-Maxwellian distributions; rather it is characterized by the fact that
by far the largest number of possible velocity distributions have the char-
acteristic properties of the Maxwell distribution, and compared to these
there are only a relatively small number of possible distributions that de-
viate significantly from Maxwell’s. Whereas Zermelo says that the number
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Figure 3: On the left we have the microscopic picture, consisting of the microstates X ∈
ΓE, almost all of which are equilibrium microstates, in Γfeq . On the right we have the
macroscopic picture, consisting of the macrostates f and comprising the f–space, with the
dot in the center representing feq. The arrow connecting the pictures represents the link
between the two levels of description, given by the map X 7→ fX that carries almost the
entire image on the left to the central dot on the right (in the N →∞ limit).

of states that finally lead to the Maxwellian state is small compared to all
possible states, I assert on the contrary that by far the largest number of
possible states are “Maxwellian” and that the number that deviate from
the Maxwellian state is vanishingly small.

By “Maxwell distribution” here Boltzmann is referring to feq, and by “velocity dis-
tributions” to microstates X.

2.6 The value of the ensemblist approach

The ensemblist and individualist approaches to the foundations of statistical mechan-
ics are obviously quite different. It should be clear that I believe that the individualist
approach is the correct one. Nonetheless, I also believe that while the ensemblist ap-
proach is conceptually confused, its machinery is quite useful.

For many practical purposes the two approaches agree. For example, if % is
uniform on the macrostate ΓX , it is easy to see that SB(X) = SG(%), see (11).

Moreover, ensembles often provide an individualist with an extremely efficient
means to compute the equilibrium values of macrovariables of interest. For example,
consider the total kinetic energy K (and suppose it is not among the macrovariables
used to specify an equilibrium macrostate—if it were its value would ipso facto be
explicitly given with the specification of the macrostate). Then the equilibrium value
of K will, with negligible error, be given by the microcanonical average of K: For
typical (i.e., by far most) X ∈ Γeq
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K(X) ≈ 〈K〉E (13)

where 〈·〉E denotes the microcanonical average—the average with respect to the mi-
crocanonical ensemble µE , see (24), corresponding to the appropriate uniform distri-
bution over the energy surface ΓE . This is because, just as Γeq is almost all of ΓE ,
by law of large numbers type considerations K should be almost constant as it varies
over the energy surface. Thus its average value should be more or less the same as
its typical value.

There is a respect in which the ensemblist machinery is of even greater value:
it provides a sharp clean model for the thermodynamic formalism. While the exact
relationship among the values of macrovariables for a gas in a box are quite compli-
cated, these values are extremely well approximated by ensemblist values related in
a much simpler way, as described by the thermodynamics formalism. This will be
discussed in the next section.1

3 Thermodynamic ensembles and the thermo-

dynamic formalism

Let us now turn to the crucial issue of how it is that the thermodynamic ensembles—
the Gibbsian approach— efficiently captures the relationships embodied in the ther-
modynamic formalism. We begin with a few words about that formalism.

3.1 Representations

All equilibrium thermodynamic relations are given by a fundamental relation or equa-
tion of the form

S = S(X1, . . . , Xm),

expressing the entropy in terms of a collection of extensive macrovariables Xi. For
example, for the simple sort of gas of atoms in a box that we’ve been considering, we
would have

S = S(U, V,N), (14)

where U is the energy, V the volume, and N the particle (atom) number of the gas.
This is the only case that we shall consider here. The entropy function is assumed in

1For a somewhat similar example, consider Boltzmann’s equation, describing an evolution that is far
simpler than the exact evolution of the empirical distribution fX , and which has a sort of ensemblist
flavor. (Indeed, Boltzmann’s equation is often regarded as describing the evolution, in a suitable limit,
of the one-particle marginal distribution arising from a probability distribution on the N–particle phase
space.)
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thermodynamics (axiomatically) to have certain properties, such as concavity, which
is required for stability, but we shall not discuss these properties here. We shall
discuss instead the partial derivatives of S with respect to its variables, i.e., U , V ,
and N . These partial derivatives yield important “intensive” variables:

∂S/∂U = 1/T, ∂S/∂V = −p/T, and ∂S/∂N = −µ/T,

where T is the temperature, p the pressure, and µ the so-called chemical potential.
What I have just described, involving the entropy as a function of basic extensive

variables, is called the entropy representation. There is another (equivalent) repre-
sentation, called the energy representation, in which the roles of entropy and energy
are exchanged. The fundamental relation in the energy representation is

U = U(S, V,N) (15)

obtained by solving S = S(U, V,N) for U in terms of S, with the other variables
fixed. (It follows from the properties of S that U is convex.) U(S, V,N) contains
exactly the same information as S(U, V,N) (since, in fact, one can be obtained from
the other).

The partial derivatives in the energy representation are simpler:

∂U/∂S = T, ∂U/∂V = −p, and ∂U/∂N = µ. (16)

Equivalently, dU = TdS − pdV + µdN . That dU = TdS − pdV when dN = 0 should
be clear, if we recall the original defining equation for the thermodynamic entropy,
namely dS = dQ/T , where Q refers to heat.

3.2 Subrepresentations

It is often useful to use, for example, temperature as a variable, instead of energy. If
one expresses the energy as

U = U(T, V,N) (17)

(assuming this is possible), this relationship need not provide complete thermody-
namic information: it need not be possible to reconstruct the fundamental relation
(14) or (15) from (17).

But one can reconstruct the fundamental relation from its Legendre transform,
with respect to any combination of its independent variables in both the energy
and entropy representations. (Physicists tend to mean by Legendre transform the
negative of what mathematicians mean by it, and I will be using here the physicist’s
convention.)

The most important subrepresentations are for the energy representation. Two
of the most important of these—important also for our purposes here—are the free
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energy representation and the pressure, or grand canonical, representation. Once
again, both of these involve fundamental relations—from which, say, the energy rep-
resentation can be reconstructed, in fact by a Legendre transform.

The free energy representation expresses the free energy F = U−TS as a function
of T , V , and N :

F = F (T, V,N) (18)

is the fundamental relation in this representation. The function (18) is the Legendre
transform of (15) with respect to S, since ∂U/∂S = T . We then have that

∂F/∂T = −S, ∂F/∂V = −p, and ∂F/∂N = µ. (19)

To obtain the grand canonical (or pressure) representation we form the Legendre
transform of the energy (15) with respect to both S and N , obtaining the grand
canonical potential

G(T, V, µ) = U − TS − µN (20)

regarded as a function of T , V , and µ = ∂U/∂N . We have that

∂G/∂T = −S, ∂G/∂V = −p, and ∂G/∂µ = −N. (21)

This representation is called the pressure representation because the grand canonical
potential per unit volume is minus the pressure p:

G = −pV. (22)

This follows from the extensivity of the energy (15) (i.e, that it is homogeneous of
degree 1), which yields the Euler relation:

U = TS − pV + µN. (23)

(To see this take the derivative with respect to λ of both sides of

U(λS, λV, λN) = λU(S, V,N)

and evaluate at λ = 1. (23) then follows from (16).)
This representation is called the grand canonical representation because it is re-

lated to an important ensemble, the grand canonical ensemble, which I shall soon
describe. In fact, we have three basic ensembles connected to three basic represen-
tations: the microcanonical ensemble is connected to the entropy representation, the
canonical ensemble is connected to the free energy representation, and the grand
canonical ensemble is connected to the pressure representation.2 We shall now turn
to this connection.

2In the canonical ensemble the energy can vary. Similarly, in the grand canonical ensemble also N
can—corresponding to the fact that G is directly a function of µ rather than N .
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3.3 Ensembles and representations

In addition to the microcanonical ensemble

dµE =
1

ZE
dσE/|∇H| (24)

corresponding to the “uniform” distribution on the energy surface ΓE , and the canon-
ical ensemble

dµβ =
1

Zβ
e−βHdX, (25)

a probability measure, on the N -particle phase space Γ = Γ (N), with unconstrained
energy H, there is also the grand canonical ensemble,

dµβ,µ =
1

Zβ,µ
e−β(H−µN)dX, (26)

where now dX refers to the Lebesgue measure on

∞⋃
N=1

Γ (N),

for which the particle number N is also unconstrained.
Here µ is identified with the chemical potential, with corresponding fugacity

z = eβµ

in terms of which (26) becomes

dµβ,µ =
1

Zβ,µ
zNe−βHdX,

i.e., the measure on
⋃
Γ (N) with density

ρ
(N)
β,µ =

1

Zβ,µ
zNe−βH

with respect to the Lebesgue measure on each Γ (N). The partition functions ZE , Zβ,
and Zβ,µ are normalization constants.

In probability theory one often regards normalization constants as somewhat in-
significant. But in the Gibbsian approach to statistical mechanics, the normaliza-
tion constants Z are almost the whole ball game. The partition functions Z for
the three ensembles provide us with the three representations for the fundamental
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thermodynamic relations discussed earlier. In fact, we can more or less identify the
(equilibrium) Boltzmann entropy SB = log |Γeq| with SB(E), the logarithm of ZE ,

SB ' SB(E) = logZE ,

since

ZE =

∫
ΓE

dσE/|∇H| ≡ |ΓE | ' |Γeq|.

Similarly, logZβ and logZβ,µ are simply related to the free energy F (T, V,N) and
the grand canonical potential G(T, V, µ), in fact as follows:

Consider the canonical partition function

Zβ = Zβ(V,N) =

∫
Γ
e−βHdX, (27)

the normalization constant in (25). We have that

Zβ =

∫ ∞
Emin

e−βE |ΓE |dE =

∫ ∞
Emin

e−βEeSB(E)dE. (28)

The integrand is concentrated near an energy Eβ, with small energy spread
∆E ( ∼

√
Eβ). Thus

Zβ ' e−βEeSB(E)∆E

so that
− logZβ ' βEβ − SB(Eβ) = β

(
Eβ − TβSB(Eβ)

)
. (29)

The quantity inside
( )

looks like the free energy. But one should check that

Tβ ≡ 1/β is indeed the temperature T as defined by thermodynamics, namely given
by

∂S/∂E = 1/T. (30)

To do so, let’s maximize the exponent on the right hand side of (28), namely SB(E)−
βE = −β(E − TβSB(E)), and hence in the canonical probability distribution for the
energy, by setting its derivative with respect to E to zero. We obtain

1− Tβ∂SB/∂E = 1− Tβ/T = 0

so that T = Tβ, as desired.
In passing, note that we have just found that the thermodynamic temperature T,

defined by (30), also gives the kinetic energy per unit particle (32kT ) in the familiar
way, since this is given by Tβ (as a consequence of the form of the kinetic energy term
in the formula for the canonical ensemble).
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It follows from (29) that, with negligible error for large systems, we have the
following formula for the individualist free energy:

F = −T logZβ. (31)

We emphasize that −T logZβ, from an individualist perspective, is only a very
good approximation for F , valid for macroscopic systems. From a pure ensemblist
perspective, however, in which the Gibbs entropy is used instead of the Boltzmann
entropy, it is exact: We have, writing 〈 〉β for the expected value with respect to
µβ, that the ensemblist free energy is

〈H〉β + T

〈
log

e−βH

Zβ

〉
β

= 〈H〉β + β−1
(
−β 〈H〉β − logZβ

)
= −β−1 logZβ = −T logZβ.

(32)

The first term on the left is the ensemblist energy, namely, its expected value, while
the second term is minus the temperature T times the Gibbs entropy

SG = SG(%β) = −
∫
Γ
%β log %β dX = −

〈
log

e−βH

Zβ

〉
β

. (33)

(Note that it follows from (29) and (32) that for a large system, in equilibrium at
temperature T , the Boltzmann and Gibbs entropies are more or less the same.)

Similarly, for the grand canonical partition function

Zβ,µ =

∫
⋃

N Γ (N)

e−β(H−µN)dX, (34)

the normalization constant in (26), we have that

Zβ,µ =
∑
N

∫ ∞
E

(N)
min

e−β(E−µN)|Γ (N)
E | dE =

∑
N

∫ ∞
E

(N)
min

e−β(E−µN)eSB(E,N) dE (35)

with the integrand concentrated near (Eβ,µ, Nβ,µ) with small spread in both. We
thus have that

logZβ,µ ' −β(Eβ,µ − µNβ,µ) + SB(Eβ,µ, Nβ,µ)

= −β
(
Eβ,µ − TβSB(Eβ,µ, Nβ,µ)− µNβ,µ

)
,

(36)

with the quantity inside
( )

looking like G. Maximizing the exponent on the right

hand side of (35), or, equivalently, minimizing E − TβSB(E,N)− µN , we find that

∂SB/∂E = 1/Tβ and ∂SB/∂N = −µ/Tβ, (37)
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so that β and µ are indeed the quantities appropriate to the thermodynamic formal-
ism.

It follows from (36) that, with negligible error for large systems, we have the
following formulas for the individualist grand canonical potential and the pressure:

G = −T logZβ,µ (38)

and
p = T (logZβ,µ)/V. (39)

Moreover, just as−T logZβ is exactly the ensemblist free energy, so too are−T logZβ,µ
and T (logZβ,µ)/V, respectively, exactly the ensemblist grand canonical potential and
pressure.

From the very form of the canonical and grand canonical ensembles, it follows that
taking logarithmic derivatives yields the expected values of basic macrovariables: For
example, from (25), (26), (27), and (34) we have that

∂ logZβ/∂β =
∂Zβ/∂β

Zβ
=
−
∫
He−βH dX

Zβ
= −〈H〉β , (40)

and
∂ logZβ,µ/∂µ = β 〈N〉β,µ . (41)

Thus
∂ logZβ/∂T = (∂ logZβ/∂β) ∂β/∂T = 〈H〉β /T

2, (42)

so that, from (31),

∂F/∂T = − logZβ − 〈H〉β /T = −SG ' −SB (43)

using (32). Similarly, from (38),

∂G/∂µ = −Tβ 〈N〉β,µ = −〈N〉β,µ ' −Nβ,µ. (44)

We thus obtain the first equation of (19), and the last equation of (21), exactly as
demanded by the thermodynamic formalism.

4 Summary

Here is the overall picture that we obtain: The thermodynamic formalism involves re-
lations among a variety of macrovariables and intensive variables, with partial deriva-
tives playing an important role. These relations are formally modeled by the ensem-
bles, with the partition functions, parameters such as µ and β, and expected values
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with respect to the ensembles yielding the mock thermodynamic quantities. Even
for small systems one has, I believe, a mock thermodynamics. But for large systems,
because of the law of large numbers, the idealized mock thermodynamics becomes
an enormously good approximation to the exact relations obeyed by the physical
variables (individualist variables) with which we are primarily concerned in physics.

The exact relationships among these variables are presumably extremely com-
plicated. Their ensemblist approximations, however, are much more simply related.
Thus does the Gibbsian ensemblist approach yield a clean idealization describing, for
large systems, the individualist relations in which we are primarily interested.

5 Conclusion

I began by mentioning a similarity between the foundations of statistical mechanics
and the foundations of quantum mechanics: that they are both rather controversial.
Here is another similarity. Most physicists don’t have a clear understanding of what
they themselves really think about these foundational issues. When it comes to quan-
tum mechanics, by far most would say they accept the Copenhagen interpretation.
For statistical mechanics, most would insist on the fundamentality of ensembles.

One reason this might be so is this. Physicists tend to be busy people; they want
and need to obtain practical results about experiments and observable phenomena,
and in order to do so they use the best tools at their disposal. For quantum me-
chanics, the tools are those of the quantum formalism, i.e., what they think of as the
Copenhagen interpretation. For statistical mechanics, the tools are ensemblist tools,
pioneered by Gibbs and, some would argue, also by Boltzmann. So it is quite natural
for physicists to imagine that they are Copenhagenists and ensemblists.

It is of little practical value—for their research and for their professional advance-
ment—for physicists to worry about why their tools work as well as they do and
what those tools actually have to do with the reality that lies beneath observation.
Nonetheless, I do think physicists should do a bit better in this regard. And philoso-
phers of physics should as well: they should pay more careful attention to why physi-
cists do in fact express the views that they do.
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