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Abstract

Based on his extension of the classical argument of Einstein, Podolsky and Rosen, Schrödinger

observed that, in certain quantum states associated with pairs of particles that can be far

away from one another, the result of the measurement of an observable associated with one

particle is perfectly correlated with the result of the measurement of another observable

associated with the other particle. Combining this with the assumption of locality and
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1 INTRODUCTION

some “no hidden variables” theorems, we showed in a previous paper [11] that this yields

a contradiction. This means that the assumption of locality is false, and thus provides us

with another demonstration of quantum nonlocality that does not involve Bell’s (or any other)

inequalities. In [11] we introduced only “spin-like” observables acting on finite dimensional

Hilbert spaces. Here we will give a similar argument using the variables originally used by

Einstein, Podolsky and Rosen, namely position and momentum.

1 Introduction

In 1935, Einstein, Podolsky and Rosen (EPR) argued that quantum mechanics is in-

complete by considering two particles in one dimension moving in opposite directions

and whose joint wave function (see (3.2.1) below) was such that the measurement of

the position of one of the particles immediately determined the position of the other

particle and, similarly, the measurement of the momentum of one of the particles im-

mediately determined the momentum of the other one.

Since, said EPR, a measurement made on one particle obviously could not possibly

influence the physical state of the other particle, situated far away from the first parti-

cle, and since the wave function of both particles specifies neither the position nor the

momentum of those particles, this quantum mechanical description of the state of both

particles provided by this wave function must be incomplete in the sense that other

variables, such as the values of the positions and momenta of both particles, must be

included in a complete description of that physical system.

EPR’s argument had been widely misunderstood and misrepresented or ignored

by almost everybody at that time. But not by Schrödinger, who, in his “cat paper,”

originally published in German [34], as well as in the papers [35, 36], understood the

“paradox” raised by EPR and deepened the perplexity that it causes.

Schrödinger showed that for certain states, called now maximally entangled (see

Subsection 2.1), it is not just that the positions and the momenta of the particles are

perfectly correlated. He showed that, for every observable associated with the first

particle, there is another observable associated with the second particle such that the
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1 INTRODUCTION

results of the measurements of both observables are perfectly correlated.

In [11], following [24, 25], we explained that, if one assumes locality, meaning that

there is no effect whatsoever on the state of the second particle due to a measurement

carried out on the first particle (when both particles are sufficiently spatially separated),

there must exist what we call a “non-contextual value map” v which assigns to each

observable A a value v(A) that pre-exists its measurement and is simply revealed by it.

The word “non-contextual” refers to the fact that, since it pre-exists the measurement,

the value v(A) does not depend on the procedure used to measure A.

However several theorems, originally due to Bell [3] and to Kochen and Specker [27],

preclude the possibility of a non-contextual value map.5 Since the existence of this map

is a logical consequence of the assumption of locality and of the perfect correlations,

the assumption of locality is false.

In this paper, we first summarize the arguments of our previous paper [11] (Section

2). We then turn to the EPR paper as well as related work by Einstein alone and

Schrödinger (Section 3). Next, we provide a proof of nonlocality similar to the one

of Section 2, but using only functions of the EPR variables, namely positions and

momenta (Section 4). This argument relies on a theorem of Robert Clifton [14].

We then consider what happens in Bohmian mechanics (Section 5): in that theory,

particles have, at all times, both a position and a momentum and one might therefore

think that this would imply the existence of a non-contextual value-map for functions

of those variables. We explain however, through an analysis of what a measurement of

momentum means in that theory, that this is not the case. Finally we briefly discuss

how nonlocality manifests itself in Bohmian mechanics.

For a discussion of the relationship between this work and previous ones, including

[26, 37, 12, 20, 13, 1], see Section 7 of [11].

5 In the literature on quantum mechanics, these theorems are often called “no hidden variables”

theorems. But we prefer the expression “inexistence of a non-contextual value map” because, as we

will discuss in Section 5, the expression “hidden variables” is really a misnomer.
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2 PROOF OF NONLOCALITY BASED ON PERFECT
CORRELATIONS

2 Proof of nonlocality based on perfect correlations

We will first discuss special quantum states, called maximally entangled, for pairs of

physical systems that can possibly be located far apart, and having the property that,

for each quantum observable of one of the systems, there is an associated observable of

the other one such that the result of the measurement of that observable is perfectly

correlated with the result of the measurement on the first one.

2.1 Maximally entangled states

Consider a finite dimensional (complex) Hilbert spaceH, of dimensionN , and orthonor-

mal bases ψn and φn in H (we will assume below that all bases are orthonormal). A

unit vector Ψ in H⊗H is maximally entangled if it is of the form

Ψ =
1√
N

N∑
n=1

ψn ⊗ φn. (2.1.1)

Since we are interested in quantum mechanics, we will refer to those vectors as

maximally entangled states and we will associate, by convention, each space in the

tensor product with a “physical system,” namely we will consider the set {φn}Nn=1 as a

basis of states for physical system 1 and the set {ψn}Nn=1 as a basis of states for physical

system 2.

Now, given a maximally entangled state, one can associate to each operator of the

form 1 ⊗ O (meaning that it acts non-trivially only on particle 1) an operator of the

form Õ ⊗ 1 (meaning that it acts non-trivially only on particle 2). Here 1 denotes the

identity operator on H.

Define the operator U mapping H to H by setting

Uφn = ψn, (2.1.2)

∀n = 1, . . . , N , and extending U to an anti-linear operator on all of H:

U(
N∑
n=1

cnφn) =
N∑
n=1

c∗nUφn =
N∑
n=1

c∗nψn (2.1.3)

where ∗ denotes the complex conjugate.
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Using the operator U , the state Ψ in (2.1.1) can be written as:

Ψ =
1√
N

N∑
n=1

Uφn ⊗ φn. (2.1.4)

It is easy to check that this formula is the same for any basis, see [11, eq. 3.1.8].

U thus determines, and is uniquely determined by, a maximally entangled state Ψ.

Given such a state Ψ, and hence U , we may associate to every operator of the form

1⊗O an operator of the form Õ ⊗ 1 by setting

Õ = UOU−1. (2.1.5)

Suppose φn are eigenstates of O, with eigenvalues λn,

Oφn = λnφn. (2.1.6)

Then, the states ψn = Uφn are eigenstates of Õ, also with eigenvalues λn:

Õψn = λnψn. (2.1.7)

This implies and is in fact equivalent to the following relationship between the operators

O and Õ:

(O ⊗ 1− 1⊗ Õ)Ψ = 0, (2.1.8)

directly expressing the fact that, in the state Ψ, O⊗1 and 1⊗Õ are perfectly correlated.

We may summarize this as follows:

Theorem 2.1: Consider a finite dimensional Hilbert space H, of dimension N , and a

maximally entangled state Ψ ∈ H ⊗ H. Then, for any self-adjoint operator O acting

on H, there exists a self-adjoint operator Õ acting on H such that (2.1.8) holds.

Remarks

1. A simple example of a maximally entangled state is:

|Ψ〉 =
1√
2

(
| ↑〉| ↓〉 − | ↓〉| ↑〉

)
, (2.1.9)

where the right factors refer to system 1 and left ones to system 2. That state,

according to ordinary quantum mechanics, means that the spin measured on
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system 1 will have equal probability to be up or down, but is perfectly anti-

correlated with the spin measured on system 2.

In the notation of (2.1.1), one has:

φ1 = | ↑>, φ2 = | ↓>, ψ1 = −| ↓>, ψ2 = | ↑>,

and therefore,

U | ↑> = −| ↓>,

U | ↓> = | ↑> .

If one takes

O =

 1 0

0 −1

 (2.1.10)

which corresponds to the spin operator for system 1 and has eigenvectors φ1 with

eigenvalue 1 and φ2 with eigenvalue −1, one computes that

Õ = UOU−1 =

 −1 0

0 1

 = −O, (2.1.11)

which means that the spin operator for systems 1 and 2 are perfectly anti-

correlated, since Õ is minus the spin operator for system 2.

We will use later the following:

2. Products of maximally entangled states are maximally entangled states: If one has

two Hilbert spaces H1, H2, and two maximally entangled states Ψi ∈ Hi ⊗ Hi,

i = 1, 2, then it is easy to check that the state Ψ = Ψ1 ⊗ Ψ2 is maximally

entangled in H ⊗H, where H = H1 ⊗H2 (under the canonical identification of

(H1 ⊗H1)⊗ (H2 ⊗H2) with H⊗H).

Let us now see what this notion of maximally entangled state implies for quantum

measurements.

Suppose that we have a pair of physical systems, whose states belong to the same

finite dimensional Hilbert space H. And suppose that the quantum state Ψ of the pair

is maximally entangled, i.e. of the form (2.1.1).
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Any observable acting on system 1 is represented by a self-adjoint operator O, which

has therefore a basis of eigenvectors. Since the representation (2.1.4) of the state Ψ

is valid in any basis, we may choose, without loss of generality, as the set {φn}Nn=1 in

(2.1.1) the eigenstates of O. Let λn be the corresponding eigenvalues, see (2.1.6).

If one measures that observable O, the result will be one of the eigenvalues λn, each

having equal probability 1
N

. If the result is λk, the (collapsed) state of the system after

the measurement, will be ψk⊗φk. Then, the measurement of observable Õ, defined by

(2.1.5, 2.1.2), on system 2, will necessarily yield the value λk.

Reciprocally, if one measures an observable Õ on system 2 and the result is λl,

the (collapsed) state of the system after the measurement, will be ψl ⊗ ψl, and the

measurement of observable O on system 1 will necessarily yield the value λl.

To summarize, we have derived the following consequence of the quantum formal-

ism:

Principle of Perfect Correlations. In any maximally entangled quantum state,

of the form (2.1.1), there is, for each operator O acting on system 1, an operator Õ

acting on system 2 (defined by (2.1.5, 2.1.2)), such that, if one measures the physical

quantity represented by operator Õ on system 2 and the result is the eigenvalue λl of

Õ, then, measuring the physical quantity represented by operator O on system 1 will

yield with certainty the same eigenvalue λl, and vice-versa.6

2.2 Schrödinger’s “Theorem”

The following property will be crucial in the rest of the paper.

Locality. If systems 1 and 2 are spatially separated from each other, then measuring

an observable on system 1 has no instantaneous effect whatsoever on system 2 and

measuring an observable on system 2 has no instantaneous effect whatsoever on system

1.

Finally, we must also define:

Non-contextual value-maps. Let H be a finite dimensional Hilbert space and

6 The correlations mentioned here are often called anti-correlations, for example when Õ = −O, as

in the example of the spin in remark 1 above.
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let A be the set of self-adjoint operators on H. Suppose H is the quantum state space

for a physical system and A is the set of quantum observables. Suppose there are

situations in which there are observables A for which the result of measuring A is

determined already, before the measurement. Suppose, that is, that A has, in these

situations, a pre-existing value v(A) revealed by measurement and not merely created

by measurement. Of course, this implies that for every experiment EA measuring A,

the result v(EA) of that experiment, in the situation under consideration, must be v(A).

And suppose finally that the situation is such that we have a pre-exiting value v(A)

for every A ∈ A.

We would then have a non-contextual value-map, namely a map v : A → R that

assigns the value v(A) to any experiment associated with what is called in quantum

mechanics a measurement of an observable A. There can be different ways to mea-

sure the same observable. The value-map is called non-contextual because all such

experiments, associated with the same quantum observable A, are assigned the same

value.

This notion of value-map is not a purely mathematical one, since it involves the

notion of an experiment that measures a quantum observable A, which we have not

mathematically formalized. However, we shall need only the following obvious purely

mathematical consequence of non-contextualitty.

A non-contextual value-map has the fundamental property that, if Ai, i = 1, . . . , n,

are mutually commuting self-adjoint operators on H, [Ai, Aj] = 0, ∀i, j = 1, . . . , n,

then, if f is a function of n variables and B = f(A1, . . . , An), then

v(B) = f(v(A1), . . . , v(An)). (2.2.1)

It is a well-known property of quantum mechanics that, since all the operators

A1, . . . , An, B commute, they are simultaneously measurable and the result of those

measurements must satisfy (2.2.1).

But, and this is what we emphasized in [11], (2.2.1) follows trivially from the non-

contextualilty of the value-map. Indeed, a valid quantum mechanical way to measure

the operator B = f(A1, . . . , An) is to measure A1, . . . , An and, denoting the results
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λ1, . . . , λn, to regard λB = f(λ1, . . . , λn) as the result of a measurement of B . Since,

by the non-contextuality of the map v, all the possible measurements of B must yield

the same results, (2.2.1) holds.

Thus, once one has a non-contextual value-map, one does not even need to check

(2.2.1).

Now we will use the perfect correlations and locality to establish the existence of

a non-contextual value-map v, for a maximally entangled quantum state of the form

(2.1.1) or, equivalently, (2.1.4). By the principle of perfect correlations, or any operator

O on system 1, there is an operator Õ on system 2, defined by (2.1.5, 2.1.2), which is

perfectly correlated with O through (2.1.8).

Thus, if we were to measure Õ, obtaining λl, we would know that

v(O) = λl (2.2.2)

concerning the result of then measuring O. Therefore, v(O) would pre-exist the mea-

surement of O. But, by the assumption of locality, the measurement of Õ, associated

with the second system, could not have had any effect on the first system, and thus,

this value v(O) would pre-exist also the measurement of Õ and this would not depend

upon whether Õ had been measured. Letting O range over all operators on system 1,

we see that there must be a non-contextual value-map O → v(O).

To summarize, we have shown:

Schrödinger’s “Theorem”. Let A be the set of self-adjoint operators on the compo-

nent Hilbert spaceH of a physical system in a maximally entangled state (2.1.1). Then,

assuming locality and the principle of perfect correlations, there exists a non-contextual

value-map v : A → R.

Remark

We put “Theorem” in quotation marks because the statement concerns physics

and not just mathematics. Its conclusions are nevertheless inescapable assuming

the hypothesis of locality and the empirical validity of the principle of perfect

correlations, a principle which is, as we showed, a consequence of the quantum

formalism.
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2.3 The non-existence of non-contextual value-maps

The problem posed by the non-contextual value-map v whose existence is implied by

Schrödinger’s “theorem” is that such maps simply do not exist (and that is a purely

mathematical result). Indeed, one has the:

“Theorem”: Non-existence of non-contextual value-maps. Let A be the set of

self-adjoint operators on the Hilbert space H of a physical system. Then there exists

no non-contextual value-map v : A → R.

This “theorem” is an immediate consequence of the following theorem, since (2.3.1,

2.3.2) are consequences of (2.2.1).7

Theorem 2.2: Let H be a finite dimensional Hilbert space of dimension at least three,

and let A be the set of self-adjoint operators on H. There does not exist a map

v : A → R such that:

1) ∀O ∈ A,

v(O) is an eigenvalue of O (2.3.1)

2) ∀O,O′ ∈ A with [O,O′] = OO′−O′O = 0, and for any real valued function f of

two real variables,

v(f(O,O′)) = f(v(O), v(O′)). (2.3.2)

See [11] for a discussion of the proof of the theorem, which is a consequence of

stronger theorems, originally due to John Bell [3] and to Kochen and Specker [27],

with simplified proofs of Theorem 2.2 due to David Mermin [28], and to Asher Peres

[31, 32].

7 This is obvious for (2.3.2), a special case of (2.2.1). For (2.3.1) we observe that, since O is self-

adjoint, we can write O =
∑
i λiPλi where Pλi is the projector on the subspace of eigenvectors of

eigenvalue λi of O and thus we have that f(O) =
∑
i f(λi)Pλi

. If we choose any f whose range is the

set of eigenvalues of O and is such that f(λi) = λi ∀i, we have that O = f(O) and, by (2.2.1), we

obtain that v(O) = v(f(O)) = f(v(O)) and thus v(O) is an eigenvalue of O.
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2.4 Nonlocality

The conclusion of Schrödinger’s “theorem” and of the “Theorem” on the non-existence

of non-contextual value-maps plainly contradict each other. So, the assumptions of

at least one of them must be false. Moreover, the stronger Theorem 2.2 is a purely

mathematical result. To derive Schrödinger’s “theorem,” we assume only the perfect

correlations and locality. The perfect correlations are an immediate consequence of

quantum mechanics. The only remaining assumption is locality. Hence we can deduce:

Nonlocality “Theorem”. The locality assumption is false.

See [11, sections 5, 7] for a discussion of the relation between this proof and other

proofs of nonlocality.

3 The Original EPR Argument

Let us now turn to the original EPR argument [18] and explain its connection to the

notion of locality. EPR gave both a general argument and a specific example.

3.1 EPR’s general setup

For their general argument, EPR considered a system of two particles, 1 and 2, in one

dimension, that may be far apart and a physical quantity represented by a self-adjoint

operator O that acts on system 1. We shall assume that O has an orthonormal basis

of eigenvectors φn(x1) with eigenvalues λn.

One can then write the joint state of both particles as:

Ψ(x1, x2) =
∞∑
n=1

ψn(x2)φn(x1), (3.1.1)

where ψn(x2) are the (x2 dependent) coefficients of that expansion.8

8 This ressembles a maximally entangled state, like (2.1.1), but it is not one because the sum in

(3.1.1) extends to infinity and, for (3.1.1) to be a maximally entangled state, the set {ψn}∞n=1 should

be orthonormal. But then the norm of (3.1.1) would be infinite and thus (3.1.1) would not belong the

the Hilbert space.

11



3 THE ORIGINAL EPR ARGUMENT

After a measurement of O on system 1, if the result is λl, then the state collapses

to ψl(x2)φl(x1), i.e. φl(x1) for the first particle and ψl(x2) for the second.

If, on the other hand, one considers a physical quantity represented by an oper-

ator O′ that acts on system 1, and one assumes that O′ has eigenvectors φ′s(x1) and

eigenvalues µs, one can write the joint state as:

Ψ(x1, x2) =
∞∑
s=1

ψ′s(x2)φ′s(x1) (3.1.2)

After a measurement of O′ on system 1, if the result is µk, then the state collapses

to ψ′k(x2)φ′k(x1), i.e. φ′k(x1) for the first particle and ψ′k(x2) for the second.

We will discuss the implications of that observation after giving the concrete exam-

ples of the operators considered by EPR.

3.2 The example of position and momentum

For their specific example, EPR introduced a two particle wave function9:

ΨEPR(x1, x2) =

∫ ∞
−∞

exp(i(x1 − x2 + x0)p)dp (3.2.1)

(putting ~ = 1). This can be written, by analogy with (3.1.1), i.e. with sums replaced

by integrals, as:

ΨEPR(x1, x2) =

∫ ∞
−∞

ψp(x2)φp(x1)dp (3.2.2)

with: φp(x1) = exp(ix1p), and ψp(x2) = exp(−i(x2 − x0)p).

9 This is a generalized wave function, which means that it is not an element of the Hilbert space

L2(R2), but rather a distribution, namely a linear function acting on a space of smooth functions that

decay rapidly at infinity (see [33, Section 5.3] for a short introduction to distributions). We will not

try to be rigorous about these generalized functions here, but we will give a regularized version of the

same wave function in Subsection 3.6.
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It will be useful to introduce the Fourier transform of a wave function Ψ:

Ψ̂(p1, p2) =
1

2π

∫
exp(−i(p1x1 + p2x2))Ψ(x1, x2)dx1dx2, (3.2.3)

whose inverse is:

Ψ(x1, x2) =
1

2π

∫
exp(i(p1x1 + p2x2))Ψ̂(p1, p2)dp1dp2. (3.2.4)

EPR took the operator O to be the momentum operator

P1 = −i d
dx1

acting on the first particle and on a suitable set of functions (see [33, Chapter VIII] for

precise definitions).

We know that φp(x1) = exp(ix1p) is a (generalized) eigenstate of P1 of eigenvalue

p, and ψp(x2) = exp(−i(x2−x0)p) is a (generalized) eigenstate of eigenvalue −p of the

momentum operator

P2 = −i d
dx2

acting on the second particle.

Alternatively, Pj, j = 1, 2, can be defined by its action on Ψ̂(p1, p2):

PjΨ(x1, x2) =
1

2π

∫
exp(i(p1x1 + p2x2))pjΨ̂(p1, p2)dp1dp2 , j = 1, 2 . (3.2.5)

EPR took the operator O′ to be the position operator Q1 = x1 acting on the first

particle.

Using a standard identity for distributions (
∫∞
−∞ exp(ixp)dp = 2πδ(x)) one can write

the state (3.2.1), as:

ΨEPR(x1, x2) = 2πδ(x1 − x2 + x0)

= 2π

∫ ∞
−∞

δ(x− x2 + x0)δ(x1 − x)dx

=

∫ ∞
−∞

ψ′x(x2)φ′x(x1)dx, (3.2.6)

with ψ′x(x2) =
√

2πδ(x − x2 + x0) and φ′x(x1) =
√

2πδ(x1 − x). The last formula is

analogous to (3.1.2).

13
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The (generalized) eigenfunctions of the operatorQ1 = x1 are φ′x(x1) =
√

2πδ(x1−x),

with eigenvalue x, and ψ′x(x2) =
√

2πδ(x − x2 + x0) is a (generalized) eigenvector of

the operator Q2 = x2, with eigenvalue x+ x0.

Therefore, depending on whether we choose to measure the operator O or O′ on

the first particle, one can produce two different states, ψp(x2) = exp(−i(x2−x0)p) and

ψ′x(x2) =
√

2πδ(x− x2 + x0), for the second particle, which can be, in principle, as far

as one wants from the first one.

Moreover, the states ψp(x2) = exp(−i(x2 − x0)p) and ψ′x(x2) =
√

2πδ(x− x2 + x0)

are (generalized) eigenfunctions of two non-commuting operators, P2 and Q2.

3.3 The conclusions of the EPR Paper by EPR

Since EPR assumed no actions at a distance, they concluded that the values of two non

commuting observables, like P2 and Q2, for the second particle, far away from where the

measurements on the first particle take place, must have “simultaneous reality” when

the system is in the quantum state (3.2.1). Thus, say EPR, quantum mechanics, i.e.,

the description provided by the state (3.2.1), is an incomplete description of physical

reality.

But they could have made a simpler argument: considering only one variable is

enough to show that quantum mechanics is incomplete. Indeed, I can know the position

of the second particle by measuring the position of the first one. If that measurement,

being made far away from the second particle, does not affect the state of the second

particle, then the position of that second particle (which is left undetermined by the

state (3.2.1)) must exist independently of any measurement on the first particle.

And, since one can reason by exchanging the two particles, one can also know the

position of the first particle by measuring the one of the second particle, so that the

position of the first particle must also exist independently of any measurements.

Of course, they could have made the same argument about the momentum of either

particle, but there was no need to bring in both quantities.
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3.4 The Conclusions of the EPR Paper By Einstein

In a June 19, 1935 letter to Schrödinger, Einstein complained that the EPR paper

had been written by Podolsky “for reasons of language” and that the main point “was

buried, so to speak, by erudition” ([19]).

Then Einstein explains what is, for him, the main point: in the notation used here,

see (3.1.1), if one measures quantity O on system 1, the state collapses to some state

ψl(x2) for the second particle. Similarly, if one measures a quantity O′ on system 1,

see (3.1.2), the state collapses to some different state ψ′k(x2) for the second particle.

For the state ΨEPR, (3.2.2, 3.2.6) one obtains either a state of the form ψp(x2) =

exp(−i(x2−x0)p), if one measures the momentum of the first particle or a state of the

form ψ′x(x2) =
√

2πδ(x− x2 + x0), if one measures the position of the first particle.

The fact that one can obtain two different states for the second particle by acting

on the first particle, far away from the second one, proves that the wave function

description in quantum mechanics is incomplete (assuming of course locality) since a

more complete description would be provided by both states together.

Einstein said that “he could not care less” [21, p. 38] about the fact that those

states, ψp(x2) = exp(−i(x2 − x0)p) and ψ′x(x2) =
√

2πδ(x − x2 + x0), are or are not

eigenstates of some observable (related to the second particle).

This is indeed different, and simpler, than the conclusion of the EPR paper, but it

is still more complicated than the argument that we gave in Subsection 3.3.

3.5 Schrödinger’s extension of EPR

What Schrödinger did in his 1935 paper10 [34] , and in [35, 36], was to reflect on the

EPR paper [18]. He introduced what we call here maximally entangled states and

concluded that the value of every observable O for the first system can be determined

by the measurement of the corresponding observable Õ on the second system, distant

from the first one. That puzzled him a lot. Of course, like EPR, Schrödinger always

10 This paper remained famous for his example of the cat that is “both dead and alive”, but that

example will not concerned us here.
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3 THE ORIGINAL EPR ARGUMENT

assumed locality.

To illustrate his puzzlement, Schrödinger used the following example. Let O be

the energy of the harmonic oscillator, O = 1
2
(p2 + ω2x2) with p = −i d

dx
. It is well

known that the eigenvalues of the operator O are of the form ω(n+ 1
2
), n = 0, 1, 2, . . . .

But, argued Schrödinger, if those values can be determined by measuring a similar

operator Õ acting on a distant system, they must pre-exist the measurement of O, and

that should hold true for every value of ω. But, by the EPR reasoning, the values

of the position x and the momentum p of the first system can also be determined by

measuring either the operator x̃ or the operator p̃ on the second system, so the values

of x and p must also pre-exist their measurements. But it is impossible for the quantity

1
2
(p2 + ω2x2) to belong to the set {ω(n + 1

2
)|n = 0, 1, 2, . . . }, for arbitrary values of ω

and any given values of x and p.

It is interesting to compare Schrödinger’s attitude to that of von Neumann a little

before 1935 [39] (von Neumann’s book was published in German in 1932 but translated

into English only in 1955); von Neumann proved a“no hidden variable theorem”similar

in its conclusion to our theorem 2.2, but by making the much stronger assumption that

(2.3.2) holds even for non-commuting operators O and O′, at least for the function

f(x, y) = x + y, and he concluded that the “value-map” cannot exist. If one assumes

that (2.3.2) holds for non-commuting operators, then it is very simple to prove the

non-existence of a value-map. Take O = 1√
2
σx, O

′ = 1√
2
σy, where σx and σy are the

Pauli matrices corresponding to the spin along the x and y axes. Then O+O′ = σx+σy√
2

corresponds to the spin at an angle of 45◦ between the x and y axes. All the Pauli

matrices have eigenvalues equal to ±1 and so does O+O′. Thus v(O) = v(O′) = ± 1√
2
,

and we have v(O)+v(O′) = ±
√

2 or 0. But we also have v(O+O′) = v
(
(σx+σy)/

√
2
)

=

±1. Thus equation (2.3.2) cannot hold for this choice of O and O′ and f(x, y) = x+ y.

If Schrödinger had reasoned like von Neumann he would also have derived a “no

hidden variable theorem,” using his example of the harmonic oscillator: Indeed, if

O = 1
2
(p2 + ω2x2), and one applies (2.3.2) even to non-commuting operators, one gets

v(O) = 1
2
(v(p)2 + ω2v(x)2) = ω(n + 1

2
) for some n = 0, 1, 2, . . . , which, as Schrödinger

observed, would be impossible for arbitrary v(p), v(x) and ω. But Schrödinger’s goal

16



3 THE ORIGINAL EPR ARGUMENT

was not to prove that a value-map was impossible, since the point of his “theorem”

was to show that it existed (assuming locality of course). He was just baffled by the

situation: recognizing that this relationship between values suggested by the form of

O = 1
2
(p2 + ω2x2) could not always hold, he wondered what relationship, if any, might

exist among the relevant values. Of course, had Schrödinger made the (unwarranted)

assumption of von Neumann and applied (2.3.2) to non-commuting operators, he would

have been even more baffled, since he would probably have been led to question the

locality assumption.

Finally, note that in 1966, much later than 1935, John Bell constructed in [3] an

explicit counter-example to von Neumann’s conclusions, by giving a simple example of

a“hidden variables theory”that reproduces the quantum mechanical results for a single

spin operator (but, of course, without satisfying (2.3.2) for non-commuting operators).

Bohmian mechanics (see Section 5) also provides a counter-example to von Neumann’s

conclusions, but a more comprehensive one.

3.6 A regularized EPR state

A way to avoid dealing with generalized functions or distributions such as (3.2.1, 3.2.6)

is to put a cutoff both in the spatial and the momentum variables, x and p. A convenient

way to do that is to require that x take values in a finite (but arbitrarily large) box

on a lattice of (arbitrarily small) spacing a, which amounts to putting a cutoff in the

momentum variable p.

So, let x ∈ Λa = [−L,L] ∩ aZ, or x = na, n ∈ Z, |n| ≤ M ,with M = [L
a
], and [·]

denoting the integer part.

Let Λ̂a be the dual of Λa:

Λ̂a = {p =
2πk

a(2M + 1)
, k ∈ Z, |k| ≤M}.

Then, one has the orthogonality relation: ∀x ∈ Λa∑
p∈Λ̂a

exp(±ixp) =
√

2M + 1δa,L(x) ≡ (2M + 1)δx,0, (3.6.1)

where δx,0 is the Kronecker delta.

17
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And, ∀p ∈ Λ̂a,∑
x∈Λa

exp(±ixp) =
√

2M + 1δa,L(p) ≡ (2M + 1)δp,0. (3.6.2)

Let, ∀x1, x2, x0 ∈ Λa,

Ψa,L
EPR(x1, x2) =

∑
p∈Λ̂a

exp(i(x1 − x2 + x0)p), (3.6.3)

where the sum x1 − x2 + x0 is modulo 2aM .

Using (3.6.1),

Ψa,L
EPR(x1, x2) =

√
2M + 1δa,L(x1 − x2 + x0) (3.6.4)

can be written as:

Ψa,L
EPR(x1, x2) =

∑
x∈Λa

δa,L(x− x2 + x0)δa,L(x1 − x). (3.6.5)

One can also introduce the finite Fourier transform:

Ψ̂(p1, p2) =
1

2M + 1

∑
x1,x2∈Λa

exp(−i(x1p1 + x2p2))Ψ(x1, x2) (3.6.6)

whose inverse is:

Ψ(x1, x2) =
1

2M + 1

∑
p1,p2∈Λ̂a

exp(i(x1p1 + x2p2))Ψ̂(p1, p2). (3.6.7)

The analogues of the operators P1, P2, Q1, Q2 of Subsection 3.2 are:

PjΨ(x1, x2) =
∑

p1,p2∈Λ̂a

exp(i(x1p1 + x2p2))pjΨ̂(p1, p2), j = 1, 2, (3.6.8)

and

QjΨ(x1, x2) = xjΨ(x1, x2), j = 1, 2. (3.6.9)

These operators have proper (not generalized) eigenvectors:

Pj exp(−i(x1p1 + x2p2)) = pj exp(−i(x1p1 + x2p2)) (3.6.10)
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and

Qjδa,L(x1 − x0,1)δa,L(x2 − x0,2) = x0,jδa,L(x1 − x0,1)δa,L(x2 − x0,2). (3.6.11)

Thus, if one applies the collapse rule for the measurement of the observable P1 to

Ψa,L
EPR(x1, x2), when the observed value is p, the resulting state will be proportional to

exp(i(x1−x2 +x0)p), meaning that the state of the second particle will be proportional

to exp(−i(x2 − x0)p). And, if one applies the collapse rule for the measurement of the

observable Q1 to Ψa,L
EPR(x1, x2), when the observed value is x, the resulting state will

be proportional to δa,L(x− x2 + x0)δa,L(x1 − x), meaning that the state of the second

particle will be proportional to δa,L(x− x2 + x0).

4 Proof of nonlocality using the EPR Variables

Given a state like (3.2.1, 3.2.6), we can almost repeat the arguments of Section 2 in

order to prove nonlocality. First observe that one has an analogue of a Schrödinger

theorem. Consider a generalized state for four particles in one dimension:

δ(x1 − x3 + x0)δ(x2 − x4 + x0), (4.1)

which is just the product of two copies of the EPR state (up to a 4π2 factor, see

(3.2.6)), one for the pair of particles (1, 3), the other for the pair of particles (2, 4).

Alternatively, one may regard this as a state of two particles in two dimensions, with

coordinates (x1, x2) and (x3, x4). In our previous notation, system 1 will consist of

particles 1 and 2 and system 2 will consist of particles 3 and 4.11

One may also replace that state by its regularized version, see (3.6.4):

δa,L(x1 − x3 + x0)δa,L(x2 − x4 + x0). (4.2)

11 We need two copies of the EPR state only in order to prove Theorem 4.1 below.
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By Remark 2 in Subsection 2.1, the state (4.2) is maximally entangled and so the

state (4.1) is also (formally) maximally entangled.12

We need to introduce standard operators Q1, Q2, Q3, Q4, that act as multiplication

on a suitable set of functions in L2(R4):

QjΨ(x1, x2, x3, x4) = xjΨ(x1, x2, x3, x4) , j = 1, 2, 3, 4 , (4.3)

and operators P1, P2, P3, P4 that act by differentiation on a suitable set of functions

in L2(R4):

PjΨ(x1, x2, x3, x4) = −i ∂
∂xj

Ψ(x1, x2, x3, x4) , j = 1, 2, 3, 4 . (4.4)

Or, using the Fourier transform (3.2.3) of Ψ (for four variables):

PjΨ(x1, x2, x3, x4) =

1

(2π)2

∫
exp(i(p1x1 + p2x2 + p3x3 + p4x4))pjΨ̂(p1, p2, p3, p4)dp1dp2, dp3dp4,(4.5)

for j = 1, 2, 3, 4.

Consider the eight operator Q1, Q2, Q3, Q4, P1, P2, P3, P4, defined by (4.3) and

(4.4, 4.5).

Let B be the set of products of analytic functions of one of the operators Q1, Q2, P1,

P2 defining a self-adjoint operator, and let B̃ be the set of sums of products of analytic

functions of one of the operators Q3, Q4, P3, P4 defining a self-adjoint operator.

Given the maximally entangled state (4.1), for every operator Õ ∈ B̃, there is a

corresponding (in the sense of the Principle of Perfect Correlations) operator O ∈ B,

and vice-versa. (For x0 = 0, O is obtained by changing in Õ the index 3 to 1 and

the index 4 to 2). And, by Schrödinger’s theorem, assuming locality, there is a non-

contextual value-map v : B → R that satisfies (2.2.1) and therefore also the property

(2.3.2).

However this is contradicted by a theorem of Robert Clifton [14], proven in the

appendix.

12 Formally, since the state itself is not a vector in a finite dimensional Hilbert space. But, since we

are not concerned here with mathematical rigor, we will put aside that issue.
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Theorem 4.1: Non-existence of pre-existing values for positions and momenta.

Consider the set of analytic functions of one of the operators Q1, Q2, P1, P2. And

let B be the set of products of such functions defining a self-adjoint operator. Then,

there does not exist a map

v : B → R (4.6)

such that:

1)

v(f(O)) = f(v(O)), (4.7)

for any real valued function f of a real variable.

2) ∀O,O′ ∈ B with [O,O′] = OO′ −O′O = 0, (2.3.2) for f(x, y) = xy holds:

v(OO′) = v(O)v(O′). (4.8)

In particular, there cannot exist a non-contextual value-map.

So, combining the EPR argument with the previous theorem, we again establish

nonlocality, without using Bell’s inequalities.

The logic is the same as in Section 2:

1 EPR show that the perfect correlations plus locality imply that the values of

some physical quantities (the values v(O) of the operators O ∈ A in Section 2.3

or the operators O ∈ B here), must exist independently of whether one measures

them or not, and that defines a non-contextual value-map.

2 Theorems 2.2 or 4.1 show that merely assuming the existence of such a map leads

to a contradiction.

Therefore the locality assumption is false!
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5 What happens in Bohmian mechanics?

In Bohmian mechanics, or pilot-wave theory, the complete state of a closed physical

system composed of N particles is a pair (|quantum state>, X), where |quantum state>

is the usual quantum state (given by the tensor product of wave functions with some

possible internal states), and X = (X1, . . . , XN) is the configuration representing the

positions of the particles (that exist, independently of whether one “looks” at them or

one measures them; each Xi ∈ R3).13

These positions are the “hidden variables” of the theory, in the sense that they are

not included in the purely quantum description |quantum state>, but they are not at

all hidden: it is only the particles’ positions that one detects directly, in any experiment

(think, for example, of the impacts on the screen in the two-slit experiment). So the

expression “hidden variables” is really a misnomer, at least in the context of Bohmian

mechanics.

Both objects, the quantum state and the particles’ positions, evolve according to

deterministic laws, the quantum state guiding the motion of the particles. Indeed, the

time evolution of the complete physical state is composed of two laws (we consider, for

simplicity, spinless particles):

1. The wave function evolves according to the usual Schrödinger’s equation.

2. The particle positions X = X(t) evolve in time according to a guiding equation

determined by the quantum state: their velocity is a function of the wave function. If

one writes14:

Ψ(x1, . . . , xN) = R(x1, . . . , xN)eiS(x1,...,xN ),

then:

dXk(t)

dt
= ∇kS(X1(t), . . . , XN(t)), (5.1)

13 For elementary introductions to this theory, see [10, 38] and for more advanced ones, see [5, 7, 8,

9, 15, 16, 17, 23, 30]. There are also pedagogical videos made by students in Munich, available at:

https://cast.itunes.uni-muenchen.de/vod/playlists/URqb5J7RBr.html.
14 We use lower case letters for the generic arguments of the wave function and upper case ones for

the actual positions of the particles.
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where ∇k is the gradient with respect the coordinates of the k-th particle.

In order to understand why Bohmian mechanics reproduces the usual quantum

predictions, one must use a fundamental consequence of that dynamics, equivariance:

If the probability density ρt0(x) for the initial configuration Xt0 is given by ρt0(x) =

|Ψ(x, t0)|2, then the probability density for the configuration Xt at any time t is given

by

ρt(x) = |Ψ(x, t)|2, (5.2)

where Ψ(x, t) is a solution to Schrödinger’s equation. This follows easily from equation

(5.1).

Because of equivariance, the quantum predictions for the results of measurements

of any quantum observable are obtained if one assumes that the initial density satisfies

ρt0(x) = |Ψ(x, t0)|2. The assertion that configurational probabilities at any time t0 are

given by this “Born rule” is called the quantum equilibrium hypothesis. The justification

of the quantum equilibrium hypothesis – and, indeed, a clear statement of what it

actually means – is a long story, too long to be discussed here (see [15]).

In Bohmian mechanics, particles have a velocity at all times and therefore they have

what we would be inclined to call a momentum (mass × velocity). So one might ask,

what sort of probability does Bohmian mechanics supply for the latter: will it agree

with the quantum mechanical probability for momentum? The answer, as we will see

in the next subsection, is no!

One may also ask: isn’t having both a position and a velocity at the same time

contradicted by Heisenberg’s inequalities? Moreover, since Bohmian mechanics is de-

terministic, the result of any quantum experiment must be pre-determined by the initial

conditions of the system being measured and of the measuring device. But why doesn’t

that provide a non-contextual value-map whose existence is precluded by Theorem 4.1?

We will discuss these issues in the following subsections and this will also provide an

example of how nonlocality manifests itself in Bohmian mechanics.
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5.1 The measurement of momentum in Bohmian mechanics

To understand what is going on, we should analyze “momentum measurements,” i.e.,

what are called momentum measurements in standard quantum mechanics. Consider

a simple example, namely a particle in one space dimension with initial wave function

Ψ(x, 0) = π−1/4 exp(−x2/2). Since this function is real, its phase S = 0 and the particle

is at rest (by equation (5.1): dX(t)
dt

= ∂S(X(t),t)
∂x

). Nevertheless, the measurement of

momentum p must have, according to the usual quantum predictions, a probability

distribution whose density is given by the square of the Fourier transform of Ψ(x, 0),

i.e. by |Ψ̂(p)|2 = π−1/2 exp(−p2). Isn’t there a contradiction here? Isn’t there a clear

disagreement with the quantum predictions?

In order to answer this question, one must focus on the quantum mechanical mea-

surement of momentum. One way to do this is to let the particle move freely and to

detect its asymptotic position X(t) as t → ∞. Then, one sets p = lim
t→∞

X(t)

t
(putting

the mass m = 1).

Consider the free evolution of the initial wave function at t0 = 0, Ψ(x, 0) =

π−1/4 exp(−x2/2). The solution of Schrödinger’s equation with that initial condition

is:

Ψ(x, t) =
1

(1 + it)1/2

1

π1/4
exp

[
− x2

2(1 + it)

]
, (5.1.1)

and thus

|Ψ(x, t)|2 =
1√

π
[
1 + t2

] exp

[
− x2

1 + t2

]
. (5.1.2)

If one writes Ψ(x, t) = R(x, t) exp
[
iS(x, t)

]
, one gets (up to a t-dependent con-

stant):

S(x, t) =
tx2

2(1 + t2)
, (5.1.3)

and the guiding equation (5.1) becomes:

d

dt
X(t) =

tX(t)

1 + t2
, (5.1.4)

whose solution is:

X(t) = X(0)
√

1 + t2. (5.1.5)
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This gives the explicit dependence of the position of the particle as a function of

time. If the particle is initially at X(0) = 0, it does not move; otherwise, it moves

asymptotically, when t→∞, as X(t) ∼ X(0)t. Thus, p = limt→∞X(t)/t = X(0).

Now, assume that we start with the quantum equilibrium distribution:

ρ0(x) = |Ψ(x, 0)|2 = π−1/2 exp(−x2).

This is the distribution of X(0). Thus, the distribution of p = limt→∞X(t)/t = X(0)

will be π−1/2 exp(−p2) = |Ψ̂(p, 0)|2. This is the quantum prediction! But the detection

procedure (measurement of X(t) for large t) does not measure the initial velocity

(which is zero with probability 1).

Remarks

1. Although the particles do have, at all times, a position and a velocity, there is no

contradiction between Bohmian mechanics and the quantum predictions and, in

particular, with Heisenberg’s uncertainty principle. The latter is simply a relation

between variances of results of measurements. It implies nothing whatsoever

about what exists or does not exist outside of measurements, since those relations

are simply mathematical consequences of the quantum formalism which, strictly

speaking, dictates only what takes place during a measurement.

2. Bohmian mechanics shows that what are called measurements of quantum ob-

servables other than positions are typically merely interactions between a mi-

croscopic physical system and a macroscopic measuring device whose statistical

results coincide with the quantum predictions.

To use a fashionable expression, one might say for both Bohmian mechanics and

standard quantum mechanics, values of most observables are emergent. But it is

only in Bohmian mechanics that one can understand how that emergence comes

about.
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5.2 The contextuality of the momentum measurements in

Bohmian mechanics

The reader might nevertheless worry that there is in fact an intrinsic property of

the particle that is revealed in a momentum measurement, for example its original

position, since, as we showed in the previous subsection, p = limt→∞X(t)/t = X(0)

in the simple case considered there. Of course, if one were to measure the position

one would also find an intrinsic property of the particle (namely its position!).15 But

doesn’t that contradict our Theorem 4.1 (our example could of course be formulated

in two dimensions by taking a product of wave functions of the form (5.1.1))? After

all, the latter theorem asserts that there does not exist a value-map that assigns to a

quantum system pre-existing values that are revealed by quantum measurements and

here we seem to have just defined such a map.

However, as we shall explicitly show, the map provided by Bohmian mechan-

ics would be contextual (see the Appendix for the concrete operators that we use

in the proof of Theorem 4.1). In particular the value v(O) will depend on which

other operators O′, O′′, . . . , one measures together with O. Hence relations like (4.8)

that are needed to prove Theorem 4.1 will not be valid: for example, if one writes

v(OO′) = v(O)v(O′) and v(OO′′) = v(O)v(O′′), the value v(O) will in general be

different in the two relations.

We will now show in particular that the measurement of momentum is contextual,

using a modified version of the example given by (5.1.1).

Take that quantum state (5.1.1) and write Ψ0(x) for Ψ(x, 0). Consider the corre-

sponding Gaussian wave functions:

Ψ+k(x) = Ψ0(x)eikx (5.2.1)

and

Ψ−k(x) = Ψ0(x)e−ikx (5.2.2)

15 The fact that the measurements of both the momentum and the position reveal the same intrinsic

property may sound strange but that is just a peculiarity of the example considered here.

26



5 WHAT HAPPENS IN BOHMIAN MECHANICS?

where k > 0. We will assume below that k is large.

Consider first the initial wave function Ψ+k(x) = Ψ0(x)eikx. This is a right-moving

Gaussian wave packet moving with speed k. Thus at time t it will be centered at kt.

Explicitly, the solution of Schrödinger’s equation is:

Ψ+k(x, t) =
1

(1 + it)1/2

1

π1/4
exp

(
ikx− ik2t

2
− (x− kt)2

2(1 + it)

)
, (5.2.3)

which can also been seen immediately from (5.1.1) using Galilean invariance. For this

wave packet we have that p = limt→∞
X(t)
t
≈ k for k >> 1.

Now form an N = 2 entangled state Ψ from the wave functions (5.2.1, 5.2.2)16:

Ψ(x, y) = A[Ψ+k(x)Ψ+k(y) + Ψ−k(x)Ψ−k(y)], (5.2.4)

with A the normalization constant. Let O = Px. Consider two different experiments

that measure O:

Experiment1(O): measure O alone by the procedure described in Subsection 5.1,

with result corresponding to the solution to the guiding equation (5.1) associated with

the solution of Schrödinger’s equation.

Experiment2(O) : first measure at time 0 the position Qy of the second particle,

then measure O by the above procedure.

For Experiment1(O), we claim that the result is

v(Experiment1(O)) ≈ sgn (X(0) + Y (0))k (5.2.5)

for k large.

To prove (5.2.5), introduce the variables:

w =
x+ y√

2
,

z =
x− y√

2
. (5.2.6)

16 This state ressembles a maximally entangled one, but it does not fit the definition of maximally

entangled, since the Hilbert space here in infinite dimensional.
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In terms of these variables, we can rewrite (5.2.4) as

Ψ(w, z) = A(Ψ+k′(w) + Ψ−k′(w))Ψ0(z). (5.2.7)

with k′ =
√

2k.

So the solution of Schrödinger’s equation factorizes into a function Ψ(w, t) of (w, t)

and a function Ψ̃(z, t) of (z, t). We have that Ψ̃(z, t) is given by (5.1.1) with x replaced

by z, while for Ψ(w, t) we get a sum of two wave functions like (5.2.3), one with k

replaced by k′, the other with k replaced by −k′:

Ψ(w, t) = A(Ψ+k′(w, t) + Ψ−k′(w, t)) (5.2.8)

with Ψ±k′(w, t) of the form (5.2.3).

For large t, |Ψ(w, t)|2 is a sum of two more or less non-overlapping terms, one

corresponding to the part of the wave function with k′ (whose support is around k′t),

the other one corresponding to the part of the wave function with −k′ (whose support

is around −k′t):

|Ψ(w, t)|2 ≈ A2(|Ψ+k′(w, t)|2 + |Ψ−k′(w, t)|2). (5.2.9)

Since the solution of Schrödinger’s equation factorizes into a function of (w, t) and

one of (z, t), the guiding equations (5.1) for W (t) and Z(t) are decoupled. For Z(t) we

obtain a solution like (5.1.5) (Z(t) ≈ Z(0)t as t→∞).

To analyze W (t), note that one property of the dynamics (5.1) is that, in one

dimension, trajectories cannot cross.17 Since there is a symmetry between the two

parts of the wave function (5.2.8) (upon reflection, Ψ+k′ becomes Ψ−k′ ), if the initial

condition W (0) > 0, the particle must stay on the right, while if W (0) < 0, the

particle must stay on the left. Moreover, by equivariance, the particle evolves so as

to be in the support of |Ψ(w, t)|2, which, by (5.2.9), consists of two non-overlapping

terms supported around ±k′t for large t. So, for large k and large times, we get that

W (t) ≈ sgnW (0)k′t = sgnW (0)
√

2kt.

17 That is because there is a unique solution of the first order equation (5.1) if the position is fixed

at a given time.
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Rewriting what we’ve found in terms of the X(t) and Y (t) variables, we get that

X(t) = W (t)+Z(t)√
2
≈ 1√

2
(sgnW (0)

√
2kt+Z(0)t) and thus, v(Experiment1(O)) = limt→∞

X(t)
t
≈

sgn (X(0) + Y (0))k, for k large, which is (5.2.5).

For Experiment2(O), if Y is the result of the measurement of Qy, the wave function

(5.2.4) collapses, yielding for the wave function of the x system18:

Ψ(x) = A(Y )(c+(Y )Ψ+k(x) + c−(Y )Ψ−k(x)). (5.2.10)

with c±(Y ) = Ψ±k(Y ) and A(Y ) the normalization coefficient.

The solution of Schrödinger’s equation with this initial condition is again a sum

of two wave functions like (5.2.3), one with +k, the other with −k, multiplied by

coefficients c±(Y ):

Ψ(x, t) = A(Y )(c+(Y )Ψ+k(x, t) + c−(Y )Ψ−k(x, t)), (5.2.11)

where Ψ±k(x, t) of the form (5.2.3).

We can now more or less reason as we just did for the Ψ(w, t) given by (5.2.8),

except that because of the coefficients c±(Y ) there is no symmetry here between the

two parts of the wave function—unless the complex exponentials in c±(Y ) are real

(i.e. eikY = ±1). Nonetheless, the effect of the coefficients in (5.2.11) is merely to

replace the cos kx, which would arise there if c±(Y ) > 0 (i.e. eikY = 1), by its translate

cos(kx + kY ). Thus the |Ψ|2 probability of the interval [Xm,∞) will be 1/2 for some

Xm with |Xm| < π
2k

.19 Thus, by no-crossing and equivariance, we get that for large

times X(t) ≈ sgn (X(0))kt for k >> 1, and thus

v(Experiment2(O)) = lim
t→∞

X(t)

t
≈ sgn (X(0))k. (5.2.12)

Comparing (5.2.5) and (5.2.12), we see that the measurement of momentum is

contextual, since it may depend on whether or not one measures another operator Qy

together with O = Px.

18 In Bohmian mechanics, in fact, there is an actual collapse of the (conditional) wave function of a

system upon measurement; see [8, Sect. 6.1], [4].
19 In fact, Xm must lie between 0 and the nearest maximum of cos2(kx+ kY ).
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5.3 An example of nonlocality in Bohmian mechanics

It would go far beyond the scope of this paper to really explain how nonlocality appears

in Bohmian mechanics in general, but we saw an example of nonlocality in Bohmian

mechanics in the previous subsection: the particles with coordinates x and y having

the entangled quantum state (5.2.4), can be (in principle) as far apart as one wants and

the result of the measurement of O = Px will depend on whether or not one measures

Qy before measuring Px, and, since the time interval between these two measurements

can be arbitrarily small, we have indeed here an example of an instantaneous action at

a distance. Here we should regard the measurement of Px as taking a (large but) finite

time, and x and y as referring to different (distant) origins.

The fact that Bohmian mechanics is nonlocal is obviously a merit rather than a

defect, since we know that any theory accounting for the quantum phenomena must

be nonlocal, as shown in Sections 2-4 (and many other places).

6 Summary and conclusions

Both EPR and Schrödinger argued that the quantum mechanical description of a sys-

tem by its wave function is incomplete in the sense that other variables must be intro-

duced in order to obtain a complete description. Their argument was very simple: if I

can determine the result of a measurement carried at one place by doing another mea-

surement far away from that place, then that result must pre-exist its measurement.

The wave function alone does not tell us what that result is. Therefore, the quantum

mechanical description of a system by its wave function is incomplete.

However, there was a crucial assumption in the reasoning of EPR and Schrödinger,

which was too obvious for them to question it: that doing a measurement at one place

cannot possibly affect instantaneously the physical situation far away, or what is now

called the assumption of locality.

The history of the EPR–Schrödinger argument is complicated, because although

their conclusion about incompleteness of quantum mechanics was right, their assump-

tion of locality was not. The completion of quantum mechanics was found by de Broglie
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in 1927 and developed by Bohm in 1952. Bohm showed that one may consistently as-

sume that particles have trajectories and explained on that basis how to understand

measurements as consequences of the theory and not, as they are in ordinary quantum

mechanics, as a deus ex machina [7].

The falsity of the locality assumption was shown by John Bell in 1964 [2] and by

subsequent experiments. Bell first recalled that, if one assumes locality, then, as the

EPR argument correctly showed, there must exist other variables than the quantum

state to characterize a physical system. But then Bell showed that the distribution of

those variables must satisfy some contraints that are violated by quantum predictions,

predictions that were later verified experimentally (see [22] for a survey).

Here and in [11] we give a simpler argument, but using the maximally entangled

states introduced by Schrödinger: for those states, one can, for each observable asso-

ciated to one system, construct another observable associated to the second system,

possibly far away from the first one, such that the results of the measurement of both

observables are perfectly correlated. Then, assuming locality, those results must pre-

exist their measurement. But assuming that, in general, observables have values before

their measurement leads to a contradiction. Hence, the assumption of locality is false.

The difference between this paper and [11] is that here we use the position and

momentum variables used by EPR, while in [11] we used spin variables, such as those

in terms of which the EPR argument was reformulated by Bohm [6].

Next one might ask how Bohmian mechanics deals with this impossibility of the

pre-existence of measurement results prior to measurements, since it is a deterministic

theory, and in such a theory everything is pre-determined by the initial condition. In

[11] we reviewed that the measurements of spin variables are contextual, in fact should

not properly be called measurements at all. Here we illustrate the contextuality of

momentum. In both cases, the contextuality is linked to nonlocality, as it must be,

since as explained here and in [11], if locality were true, then measurements must

(sometimes) be non-contextual. Bohmian mechanics is an extremely natural version

of quantum mechanics, involving the obvious ontology evolving the obvious way. A

proper appreciation of the role of contextuality in Bohmian mechanics can help dispel
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the widespread uneasy feeling that somehow there must be something amiss in that

theory.

A Appendix: Proof of Clifton’s Theorem 4.1

The proof we give here is taken from a paper by Wayne Myrvold [29], which is a

simplified version of the result of Robert Clifton [14] and is similar to proofs of David

Mermin [28], and to Asher Peres [31, 32] in the case of spins. We note that the same

proof would apply to the regularized EPR state of Subsection 3.6.

Proof of Theorem 4.1

We will need the operators Uj(b) = exp(−ibQj), Vj(c) = exp(−icPj), j = 1, 2, with

Qj, Pj defined by formulas (4.3), (4.4), but acting in L2(R2) instead of L2(R4), and

b, c ∈ R. They act as

Uj(b)Ψ(x1, x2) = exp(−ibxj)Ψ(x1, x2) , j = 1, 2 , (A.1)

which follows trivially from (4.3), and

V1(c)Ψ(x1, x2) = Ψ(x1 − c, x2) , (A.2)

and similarly for V2(c). Equation (A.2) follows from (4.4) by expanding both sides

in a Taylor series, for functions Ψ such that the series converges, and by extending

the unitary operator V2(b) to more general functions Ψ (see, e.g., [33, Chap. 8] for an

explanation of that extension).

We choose now the following functions of the operators Qi, Pi :

A1 = cos(aQ1) , A2 = cos(aQ2) , B1 = cos
πP1

a
, B2 = cos

πP2

a
, (A.3)

where a is an arbitrary constant, and the functions are defined by (A.1), (A.2), and

the Euler relations:

cos(aQj) =
exp(iaQj) + exp(−iaQj)

2
,

cos
πPj
a

=
exp(iπPj/a) + exp(−iπPj/a)

2
,

(A.4)
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for j = 1, 2. Note that A1, A2, B1, B2 are self-adjoint. By applying (4.8) several times

to pairs of commuting operators made of products of such operators, we will derive a

contradiction.

We have the relations

[A1, A2] = [B1, B2] = [A1, B2] = [A2, B1] = 0 , (A.5)

since the relevant operators act on different variables.

We can also prove:

A1B1 = −B1A1 , A2B2 = −B2A2 . (A.6)

To show (A.6), note that, from (A.1) and (A.2), one gets

Uj(b)Vj(c) = exp(−ibc)Vj(c)Uj(b) , (A.7)

for j = 1, 2, which, for bc = ±π, means

Uj(b)Vj(c) = −Vj(c)Uj(b) . (A.8)

Now use (A.4) to expand the product cos(aQj) cos(πPj/a), for j = 1, 2, into a sum of

four terms; each term will have the form of the left-hand side of (A.7) with b = ±a,

c = ±π/a, whence bc = ±π. Then applying (A.8) to each term proves (A.6).

The relations (A.5) and (A.6) imply that

[A1A2, B2B1] = 0 (A.9)

since two anticommutations (A.6) suffice to move theB’s to the left of theA’s. Similarly

we have that

[A1B2, A2B1] = 0. (A.10)

We also have, using (A.6) once, that

A1A2B2B1 = −A1B2A2B1. (A.11)

Thus, with C = (A1A2)(B2B1) and D = (A1B2)(A2B1), we have that

C = −D. (A.12)
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Now suppose there is a value map v as described in Theorem 4.1. Then, from (4.7)

with f(x) = −x, we have that

v(C) = −v(D). (A.13)

But by (A.5), (A.9) and (A.10), we also have, by (4.8), that

v(C) = v(A1A2)v(B2B1) = v(A1)v(A2)v(B2)v(B1) (A.14)

and

v(D) = v(A1B2)v(A2B1) = v(A1)v(B2)v(A2)v(B1). (A.15)

Thus v(C) = v(D). This is a contradiction unless v(C) = 0, i.e. unless at least one of

v(Ai), v(Bi), i = 1, 2 vanishes. But, by (4.7),

v(Ai) = cos(av(Qi))

and

v(Bi) = cos(
π

a
v(Pi)),

and thus a can be so chosen that v(Ai) and v(Bi) are all nonvanishing. �
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