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§1. Introduction

We discuss some ideas about quanturn physics which

we think are of relevance for the
future evolution of the field, These ideas,

though old, are either unknown o misunderstood, Our

point here is that a strong realistic position has consequences: it offers a completely natura}

understanding of “standard quantum mechanics®; it fally reveals the nonlocal character of

nature and it guides the search for 2 fundamental unified theory of (he microscopic and
macroscopic world,

We wish to dedicate this paper to D. Bohm, I.S. Bell and to the memory of A. Einstein

£2. Hidden variables

charactey, Admitting hidden variables means admitting

complete. To prove the necessily of hidden wvariables Einstein, Schr.oedinger and other's.

constructed Gedanken-experiments showing that quantum mechan:

ics does not satisfy a bag
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requirement of completeness: A physical theory must contain a description of all physical
systerns with which it means to deal, including the systems involved in the measurement
process, in such a way that no contradiction arises with its basic principles. That the quantum
mechanical treatnient of the measurement process (see e.g. [1} or [2]} does lead to contradictiona
has been emphasized by Bell [3] and Wigner [4].

§3. Beables

Bell, arguing against the obseryable-based quantum theory introduced the name of "be-
able”, as opposed to "observ-ablg?, to describe what is physically real and whose existence does
not depend on observation. The observables, which describe the outcomes of measurements,
should be a construct of beables. The introduction of beables, as building blocks of any
reasonable physical theory, makes explicit the "classical terms” which, according to Bohr, are to
express the results of me.';surements, and eliminates the need for the artificial distinetion

between ”observer” and "observed”, between ordinary physical processes and measurements {5].
¥ poy P

If one accepts the need for a realistic theory, one is confronted with "impossibility
proofs® which, like von Neumann’s or Gleason’s, attempt to show that all hidden variables
theories strongly violate quantum mechanical predictions [6]. Xt is therefore worthwhile to focus
on Bohm’s quantum theory which is a realistic reformulation of nonrelativistic quantwm physics
[7,8).

§4. Bohm's theory

Bohm'’s theory is an elaboration of de Broglie’s pilot wave theory [9): The state of an N

particle system is given by

@ oo Ty $@ 1 0 D) € BN x 2@, 1

the positions of all the particles and the wave function of the systein, with time evolution

.y d
i% d_‘t{) = Hyp @)
% :vﬂﬁlv '--:EN; t) y n=1,.., N (3)

Here H is the hamiltonian of the system and in simple cases has the form
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5. Quantum equilibrium

N 2
H=3% ~ o A+ T V(R0
n=1 n n<j

One has to veflect upon the problem that p(@,, ..., q i t) = j9(c 1 I t)[2 in all

— — . . el s
The vector fields V4, ..., V| are obtained by comparing the continuily equation for the physically relevant situvations, so that the quantum mechanical predictions are not grossly

probability density associated with (3}, violated. The dynamical system (2), (3) is deterministic: for given initial data

(@100}, ..., G l0); $(0)) the future evolution is completely specified. Probabilities enter only
dp

N o —
Bt + 3 Vo (Var) =9, ()
=l

through ignoramce of the initial conditions, therefore p = |$h|° cannot be assumed as a
constiaint. J

. A s . _ 2 e 2 .
with the continuity equation for P = || arising from (2) The situation here is simliar to that of classical statistical mechanics which makes

op X — arbitrary use of the Gibbs distribution more or less taking for granted the validity of the ergodic
il . = 5
+ 2 Vo Sa=0, (8) hypothesis. The hypothesis that p & |#% in all relevant physical situations, which we call the

hypotheais of "quantum equilibrium”, obviously needs some justification. We refer to our

- 0 .
Fp being given by forthcoming paper [10] for a careful discussion of this poin$, limiting ourselves here to some

heuristic considerations.

— —

Fo = gl Vs — (Tov")el
n The validity of the Gibbs distribution in classical statistical mechanics was understood

Phus we define vn: by Boltzmann in terms of the chaotic behaviour of the phase-trajeciory of a large systemn, which

v _ §.’n (6) in the course of time should fill the surface of constant energy. The modern way of coming to
n= .

jae ]l

grips with this idea is through the mathematical notions of ergodicity, mixing, exponential
. instability, etc., {11]. It is not unreasonable to expect that proper generalizations of these notions
Note that with ¢ = ﬂ;‘, E%S, P and S being rea), this becomes to time-dependent situations will show that in the appropriate sense |1;'1]2 is the ergodic measure
of the dynamical system _q"l(t), ...,E’N(t). An indication of this is the fact that as soon as ¢ is
“\‘,"n — min“@’ns_ "not an eigensiate of the hamiltonian, the dynamical system (3) becomes very sensitive to
changes in the initial conditions.

Thus the motion of § p(t), the position of the n-th particle, is piloted by +(t), which : *16. Stochastic models
evolves autonomously according to Schroedinger’s equation. Moreover if (A 1s -0 Qg thf: .
probahility density distribution of ‘g {t), -4 ?N(t), iz equal to [¥{d {1, ...,H’N; t)l2 at some

time & then it follows from {4) and (6) that this remains so provided no new information has

As in nonequilibrium statistical mechanics the general validity of quantum equilibrium
an presumably be also understood in terms of random disturbances acting on the system and

been gathered. If p = |42 Bohm’s theory agrees with the quantum mechanical prediction driving the initial distribution p to the equilibrium value [#}2. A phenomenclogical way of

S B . . . . P I : »
concerning the outcomes of position measurements and thus with all quantum mecha.pi:cai epresenting this effect is to consider instead of (3) a well mixing stochastic flow” whose

predictions: The relevant macroscopic variables describing pointer positions, computer printouts equilibrium  distribution is |$|°. A simple choice is to consider the class of diffusions

ete, are functions of the microscopic coordinates 71’1, ...,E’N (among which are those giving .t' -'pa.:ametnzed by the diffusion constants vy,
microscopie configuration of the apparatus). To every measurement of & quanium m_ech:ani

()
observable there corresponds in Bohm's theory a random variable in configuration space. (any difp = Vy ' dt + vpd Wy (N

there is, in fact, no confliet with von Neumann’s or Gleason’s impossibility proofs).
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with Wy, independent Wiener processes and v, unknown parameters reflecting the effect of the
environment. (One might also regard », as representing the strength of some intrinsic”
randomness [12,18].) Consistency with (5) requires that the probability current of (7) (a function
of the probability density p)
—{v (v —
5 )(P)':V]g)P“%V%VnP, (®)

be equal in equilibrium, p = P = |$|, to the quantum current appearing in (5)

from which we obtain that

T =1 (‘*n +1.3¥, P). (©)

It is remarkable that for all vy > 0 there is a natural stochastic version of a.cceleration_a?l(,y) (for
nondifferentiable trajectories) such that at equilibrivm a stochastic version of Newton’s law

holda:

mn?gy) = - ﬁng V(Hn“?j[)- (10)
j#n :

Nelson [14] based 2 reformulation of quantum mechanics on {10) (Stochastic mechanics”, se :

also [15,16]).

£7. Meagurement

In order to understand the predictions of Bohm’s theory - and its stoch;.aﬁi

generalizations - one must understand the interplay of coherence and dissipation (destructioi;l
coherence due to interaction with the envirroment} and the role of the position as beab!

may see for example how the usual axioms of quantum measurement (such as:

The results of a measurement of an observable are represented by the eigenvalues
asagociated self-adjoint operator ... . o
A measurement always causes the system to jump into an eigenstate of the obaervabli_;"thqt

being measured...)
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arise a3 an elementary consequence [8,13,17,18]. This shows that the »measurement problem”

can be solved in a very simple way: Bohm’s theory fulfils the requirernent of completeness (§1).

Let us meniion here the case of a position measurement: It is well known that a sharp
position measurement cannot be performed without a large change in the wave function. This is
more or Jess clear in standard quantum mechanics, and in any case taken for granted there - it is
embodied in the Heisenberg uncertainty principle. It is even clearer in Bohm’s theory where i
also explains as well why trajectories are noy messurable: Any attempt to measure the position
of a particle at a certain time affects fhe wave function thereby influencing the fuiure dynamics

of the particle.

§8. Noniocality g

4

Another even more striking feature of Bohm’s theory is the following: Since the wave
function lives on configuration space, making an observation on one particle affects the wave
function everywhere and thus by (6) and (3) the trajectories of all others particles. This "non-
locality” is clearly implicit in quantum theory and led Einstein, who believed that nature is
local, to the E.P.R. gedanken-experiment [19} and to the conclusion that quantwm theory is
incomplete. Einstein implicitly assumed that it is the statistical character of quantwm mechanics
- for Einstein a reflection of incompleteness - which is responsible for this nonlocality. Bell’s

analysia [20] of Bohm’s spin version of the EPR experiment shows that this implication ig

. wrong, in particular that all realistic theories must be nonlocal if they are to agree with

quantum mechanical predictions. We may summarise the situation as follows: {A) EPR show
that locality and quantum mechanics imply hidden variables; (B) Bell shows that locality and
qua.ntum mechanics imply there are no hidden variables. One then concludes from (A) and (B)
that quanium mechanics or any other theory whose predictions agree with those of quantum
mechanics, is nonlocal. Moreover, since experiments {21] verify the quantum mechanical
prédictions, nature is nonlocal. (It is amusing to remark that the E.P.R. argument already

avoked Schroedinger to question whether quantum theory conforms with nature f22].)

But how can this nonlocality be compatible with the fact that information cannot be
tranemitted faster than light? Though the realistic theories discussed so far ate nonrelativistic,
.ca_.n get a handle on this question by looking carefully at the nature of the nonlocality
cirting in them. The impossibility of ohserving the trajectory of one particle without

'Irbing it (see above) precludes an action at distance from having observable effects.

The problem of the compatibility of nonloeality and Lorentz invariance is more suble.
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It is not a priori clear how to formulate a fundamental relativistic theory embodying non-
locality. Standard quantum mechanics overcomes this problem through a formulation based
solely on *local observables” which are functions of some local relativistic quantum field (see
below) and no conflici between relativity and nonlocality seems to arise. However the problem
might merely be hidden and may be partly reflected in the mathematical difficulties encountered
in formulating a satisfactory and nontrivial relativistic field theory (in particular when general

covariance is required), On the level of a ”Beable theory” the situation is unclear.

59, Relativistic beables

We wish to address the problem of the formulation of a realistic relafivistic quantum

theory. We begin by discussing generalizations of Bohm’s theory.

The variables which represent physical reality in Bohm’s quantum theory are the

positions g 4 (£), .. @ N(b) of the particles and the wave function W(§ g, ... Qpy &) Thus the

»Sehroedinger representation” atfains special significance among all other mathernatically

equivalent representations of the wave function. It is thus natural to generalize Bohm’s theory to

an arbitrary representation:

Civen a Hilbert space of states H and a unitary evolution Uy, define the ”configuta.tiéﬁ g

space” Q, the space of the possible values of beables #, b, ¢, ..., as the space of all simultaneous

eigenvalues of a complete commuting set of self-adjoint operators A, B, G, ... which in some

way conpect naturally to measurement, in the sense that the eigenvalues may really be values of

beables. Then a Bohm-type theory can be obtained with a wave function ¥(a, b,¢c,...) € LZ(Q
guiding $he motion of a{t), b(¢), ¢(t), ... provided that all the observables — describing outeome

of messurements and represented by seif-adjoint operators not commuting with A, B, C

¢can be expressed in a physically sensible way as functions of the microscopic variables a, b,
€ Q. (We here ignore the possibility, which in fact arises in connection with the treatme
spin, that only a subset of a complete commuting set may correspond to beables.) Clea.rly
position, operator is the only natural choice in nonrelativistic quantum physics. Unfortunately_

soems that there is no natural choice in the relativistic case: Given a relativistic quant.um el

theory one must somehow choose a commuting sef of self-adjoint operators whose e!ger_wal

are to have the status of beables, Here one is being guided more by mathematical analogies t
by physical principles - maybe the »natural beables” are not eigenvalues of “gelf

operators.

(Quasi-) Bohm-type theories have been consgtructed by Guerra and R.uggi'ero'[2'3];'N
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[24} (in the stochastic cage: ¥ > 0) and by Bohm [17,25} (in the deterministic case: ¥ = 1) for
the scalar bosonie free field, and by Bell [26] for Fermi fields {quasi because our proviso about
"outcomes of measurements” has not been checked), In the fitst case the operator was chosen to
be the field & itself (the natural mathematical generalization of position) whereas Bell used the
fermionic number operator N. Bell’s choice seems somehow more physical since the distribution
of fermions in space relates directly to the macroscopic world: it determines the position of

instruments (and the ink onre puts down on papers to record, which, nobody doubts, should be

real). -

e
~

For our purposes we consi i i i
purp nsider more detailed the bosonic case in Bohm’s formulation.

£10. Bohm’s guantumn field theory
,I' .
We now present Bohm's formulation for bosonic fields. Consider the guantwm scalac

field . Since & commutes on spacelike surfaces o C Y,
[@(x), B(x")] = 0 x ¥’ € ¢ C RY, (11)

it is convinient to fix a frame, i.e. a foliation of space-time into parallel spacelike hyperplanes,
copies of IR,a, and to take as configuration space Q, the classical field space of generalized field
configurations on these hyperplanes. TFhe dynamical law (the infinitesimal form of the
representation in L2(Q) of the time translation subgroup of the Poincaré group) reads

d
wt(f) =Hy(f), feQ (Asl), 1)

where I is an infinite dimensional differential operator; in the massless free case for example it

is given by the formal operator in L2(Q)

H=; f d*x [~ ﬁf(-p)z + (VIE)P) (13)

Iriting

"»bt(f) — Pt(f) eist(f)

3 proceeding as in the nonrelativistic case one obtains the dynamical law guiding the

lution of the field’s configuration f,
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_ & 14
dg _6ft(’?) St(ft}' ( )

The field configurations ft(_f ) are the local beables of the theory; ¢, though nonlocal, is also

regarded as a beable. The dynamical system (12), (14) should be thought of as a nabural

mathematical generalization of (2), (3).

When all the televant fields (describing matter and radiation) are taken into account in
guch & way that, at leasi in principle, a purely field-theoretic description of any physical
gituation of interest (e.g. a measurerient) exists, then all the local guantum observables can be
expressed in terms of +he local beables, Then, as in the nonrelativistic case, it will be possible to
explain all the quantum rules and to recover all quantum mechanical predictions by taking into

account the interpla.y of coherence and dissipation [25].

The theory also enhances onr understanding of the so called "wave-particle duality”,

The quanta appear in fact as »continuous” structures in the field which nevertheless dzspla,y a

discrete character in processes involving the interaction of the (radiation) field with matter [25}.

A stochastic version of this theory may be developed by considering instead of (14) a

suibable infinite diraensional diffusion process and proceeding as in §6.

§11. The problemy of relativistic invariance

Unfortunately the theory presented in §10 violates the relativity principle. This may
seen, for example, in the evolution of the field f; guided by the vacuum wave function Q- 5

for the vacuum wave function S(f) is zero, Le. £(f) = . , the dynamical law for f; is tnv;al

df () _
dt

However a Lorentz transformation of the time evolution (15) would be nontrivial, thm}

vacuum wave function would be unaffected. One concludes that there is a pnvﬂeged T
frame for this theory. Note that the situation is curious since the predictions of the theo
agreement with the quanium ones {the Lorentz invariant character of which is mamfest,
Tieisenberg picture, since the quantum field operators satisfy familiar, or at least man

covariant equations). Thus nonlocality is clearly compaftible with obse:vatlona,l

invariance.
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It might be useful at this point to underline the common origin of nonlocality and
violation of Lorentz inveriance in this theory: The foliation of Minkowski space-time into
parallel space-like hyperplanes is an additional geometrical structure providing an absolute
standard of simultaneity for the nonlocal connections hetween separated regions of space-time. A
local measurement of the field f affects the wave-function and thus the field f globally on a

whole simultaneity layer.

It might be that the breaking of Lorentz invariance ab the fundamental level is forced by
the structure of relativistic quantum ,t.heory, in particular by the way in which the wave function
embodies the nonlocal character of nature. Such a conclusion is also suggested when one
considers the fermionic number operator as a beable [26]. (For the stochastic version of the
bosonic case one might look at the averaged field <f(X)> for which eq. (15) holds and argue
a3 above.) Bui such a conclusi:m may be too hasty for it might still be possible to introduce
beables into quantum theory in a manner compatible with the relativity principle. (It is, of
course, nof necessary that every quantum theory have a satisfactory realistic reformulation, only

those to be taken seriously as fundamental theories.)

A suggestion along these lines arises from the following observation: Consider the

quantim field operators @y, & ,, &y and & , localized around the space-time points x, x', y and
x
y' chosen in such a way that x and %’ are space-like separeted from y and ¥ and x' (y') is in the

absclute future of x (y). Then in general

[‘I‘Xs ‘I’y] = [‘1’)(, Qy"] = [éx" ¢y] = [¢x" ¢y,r] =10,
(16)
[¢Xl ¢xl] ;é H [‘ﬁy. ¢y'] -’/5 0.

If one now associates beables fx, f ,, fy and f , with the operators @y, @ ,, ®y and & ,, one
* ¥ X ¥y

“expects in general that the joint probability distributions of pairs of fs corresponding to

‘commuting #'s cannot all agree with the corresponding quantum mechanical distributions. The

‘commutativity structure (18) is critical for the proof of so called "no-go theorems” for hidden

ariables. This suggests that a given foliation of space-time into simultaneity layers may

determine which families of beables are jointly directly measurable, in the sense that a joint

‘measurement of the corresponding $’s reveals the joint values of these heables; in particular, the

int " distribution of jointly directly measurable beables must agree with the gquantum
chanical distributions [271. (The reader who detects & hint of contradiciion should pay careful

t_enf.ion to nonlocality.} Note that this agreement between the beable and the quantum
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mechanical joint probability distributions on each simultaneity layer should allow one to recover
the quantum mechanical predictions for the outcomes of all (j0int) measurements, since the

results of measurements in different space-time regions can all be recorded in 2 single future

region.

§12. Nonlocality and Lorents invariance: 3 possible route

Tt seems that the only way %o reconcile the relativity principle with the existence of
special simultaneity layers is to give them a dynamical origin: The foliation of space-time into
simultaneity layers, as am additional element of geometrical structure, should be determined, like
the metric in general relativity, by what in quantum mechanics represents the ”distribution of

mabter”: the field f and the wave function .

In order to proceed one hes first to adapt the Schroedinger equation (12) to an arbitrary
foliation {0} of space-time into nonintersecting hypersurfaces o¢’s (which need not be

hyperplanes). One obtains in this way a Tomonaga form [28] for the Schroedinger equation:

i 9ods) = Byl o) "

where EL is a functional derivative in the space of surfaces which , for a fixed folia,tion-- {é
o
becomes the directional derivative arising from the integral curves of the vecior ﬂeld N It }

{a-} 9}, orthogonal to {e}; H (o} is the hamiltonian adapted to {o}.

The second step is to promote the foliation parametrized by N (e} to the statug :of-

dynamical variable in order to replace the frame-dependent dynamical system (12), (14) wx

frame-independent one with basic variables ¢, fo, N {o} For the evolution of f; one: I_mg_hﬁ

tentatively consider the straightforward generalization of (14),

but it is not immediately clear how to couple the evolutions of %, {7 and Ng in a,n
(27]. . ._ :

A different approach to the problem of mantaining relativistic inva,ri'a'.n'ée
the program of associating local beables to the quantum field oper&tors a.nd to tum i
search for the "right” observables (§8)., One might goes further and ask as !;’Hooft [29}

there exist a gquantum field theory, to be taken seriously as a fundamenta.l the
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contains a set of commuting observables [nvariant under the time evoluiion, in terms of which
all the physical laws can be formulated. These observahles would then define the beahles of the
theory {which by Bell’s inequalities would violate local cansality [30]).

Such a scheme opens the doors to a way of thinking since long abandoned.

§13. Einstein’s approach

We recall Einstein’s approaph 6" a fundamental relativiatic theory. While it is often
presented as in opposition to the qi;anturn one, we consider it as possibly belonging to a deeper
level from which a realistic formulation of quantum theory may phenomenologically arise. It is
amusing to note that even in the generalized field theory of Einstein, which is certainly a
realistic theory, one needs to find beables, the objects which relate the mathematical theory to

physical reality.

Einstein’s theory [31, 32, 33, 34} is a field theory on the four dimensional continuum
based on & minimal set of assumptions. Its phenomenological input is clearly general relativity
which is extended by considering as the fundamental field a second order asymmetric tensor
g (8uw # gup) related to a connection I' having nontrivial tossion {Pg’l’ #+ I‘f;ﬁ). Einstein
struggled for a long time to obtain field equations which uniquely arise rom the principle of

general covariance (Mach’s principle [35]).

In a proper gauge (I‘ga = T'%7) the equations read:

Rr)=0 , dRT) =0, (19)

“where R and R are respectively the symmetric and the antisymmetric part respectively of the

‘Ricel tensor R = (Ry;),) with the following restriction of the solution manifold of I's;

Buv,o — Bpv Ffw — Bup ng = . (20

One may say that (20), with the introduction of the *potentials® Buy, is the
henomenologu:al part of the theory, but no physical and geometrical interpretations are
umed. In particular it is not a space-time theory, in the sense that no particular pseudo-
_.a_rmia.n metric is selected a priori. The space-time structure can only be found a posteriort

eneral solutions have been found. This is, however, a very hard task about which not .
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much is known.

There are claims about the nonphysical character of the theory based on a priori
interpretations such as that the symmetric paré of g is the metric content of the gravitational
field end the antisymmetric part of g is connected with the electromagnetic field [36). These
claims were substantiated by considering fest particle motion in the sense of Einstein, Infeld,
Hoffman (E.LH.) {37}, which we shall ‘shortly discuss below. It was, for example, been shown

that the theory does not describe the motion of electric charges under the Coulomb force [38].

It is now clear that these considerations were to restrictive [39,40]. It is nevertheless
worthwhile to understand how a general field theory may yield equations governing the motion
of particles. Since the physical situation is clear in general relativity we restrict (19) and (20) to
the case of symmetric connections and obtain the Einstein equations in empiy space

Ryup(I) =0 {21)

with (20) being solved to yield I' as Christoffel symbols of the metric g.

Let us recall that in general ihe Binstein tensor
Guy = Rpy — § Sy RZ

has the property of a stress temsor, i.e. ils (covariant) divergence is zero: Gy = 0. One

therefore write usually
Guy = const. x Tuv

Ty representing the energy content of matter, Since we have no knowledge about matte

general relativity is not a fundamental theory, and Finstein hoped to arrive at a fundameni".a,l

one with the generalized field theory based on (19) and (20). He certainly assumed'__that.

quantum physics was contained in hie theory. A convincing argument for him might hé.'j'r_e.

the strength of nonlinear equations to predict the motion of singularities, i.e. matter pdiﬁté.

§14, Test particle motion

Outside of matter (21) gives ten equations for ten gy,’s; four cornponents of g are

free due to the free choice of the coordinate system (gauge invariance), but this does no

387

inconsistencies because of Bianchi identities. One may then consider the solution manifold of the
problem where (21} holds outside a finite number of world tubes around the curves
q1(8), ..., an(s) and ask whether for the physical solution {positive stress energy tensor) the
tubes are determined by (21) i.e., whether the theory predicts the motion of "massive points”.

This question occupied Einstein for a long time; a good source for the analysis is [41].

One considers a slow motion approximation,

dqis +f .
d‘;()ru,\,/ AlD, i=1,23,n=1,...N

combined with a weak field analysis,

g(}) = E X ge(my, . mg; 438, - an(s)), (22)

where the perburbative solution depend on parameters m,, ..., my {integration constants) and
the gqn(s)’s. Given a soution {22) of {21) one requires the solution to be "physical”, namely to
correspond in  the nonrelativistic limit to a Newtonian solution. Then taking
mp > 0, n =1, .., N, one finds the desired constraints among q4(s), ..., qp(s) and obtains in
fact the newtonian force, with relativistic corrections, between the masses my’s moving along the

trajectories qp(s)’s.

It is worthwhile to remark that the above analysis may be applied to other aquations as
well. It certainly would be desirable to obtain the E.I.H. result in the modern language of scaling
limits, as it is the case for test particle motion in classical mechanics [42]. To our knowledge not

much rigorous work has been done in this direction.

§15. Concluding remarks

‘The points we wish o emphasize are:

Bohm's theory is a complete theory, it eliminates the artificial distinction between

apparatus and quantum system of the orthodex interpretation (the ”speakable” and the

’ungpeakabie” of Bell). The building blocks of the theory are ”beables”; in the non relativistic
se: real waves and real particles having real positions in space. The theory gives, in the non-
; _?tivistic case, a complete occount of nonrelativistic quantum physics (spin and external

:ctl_'omagnetic fields may also be easily included [6, 16]): Its predictions agree with the

quanitum-mechanical ones and are solely based on the properties of the dynamical system (2),
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(3). Probability enters, as in classical mechanics, only through ignorance of the initial
conditions. The capability of (2), (3) in describing a large variety of physical situations,
including measurements, and thus explaining the role played by self-adjoint operators in
orthodox guanturn mechanics, should perhaps be compared with the explanatory power of the

classical dynamical system

d 3 H P q N
PI‘I_ _— =t (pl,,_., N; 1....-Cl ) ( )
d(]n a g
_._t___— 8_ H(p],..., Ppgr Q1 -+ qN) ( )

which occounts equally well for a large class of physical situations , e.g. gravitation and
thermodynamics. (There is more than an analogy here since the study of the relation between

(2), (3) and (22), (23) is the proper setting fo the study of the classical limit [43}).

Finally Bohm’s theory has the merit of opening itsclf to further questions regarding a
more fundamental relativistic theory, for example one based only on geometrical notions. On a
higher level the real waves, the real particles and the nonlocal character of nature could find
their proper seliing in Einstein’s theory. It is af the moment mere speculation of how this could

come about: perhaps the notion of wave funciion plays a role in the analysis of the solution

manifold of Einstein equations by parametrizing it in a similar way as the masses do in the

E.I.H.*s analysis.

What we spell out here has, in one form or another, been subject to recent

considerations: Nelson puts forward the "background field hypothesis”: quantum ﬂuct.uat.ions'gr'é'

the result of a classical field interaction [14]. (The first of a lisi of open problems in f14] is:-’_’;’:_[‘

find a classical lagrangian of system + background field oscillators + interaction, that with"

reasonable initial probability measures and in the limit as the cut-offs on the background. fleld

are removed, produces a conservative diffusion in the system {or to show that this is irmpossibl

..)» — By "conservative diffusion” it is essentially meant the dynamical system (2}, (3) with!

?/’,, given by (9) and satisfying (10) --). t'Hooft suggests an equivalence between’ guant

mechanical systems and classical deterministic systems; in order to substantiate the i

analyzes simple models which might exhibit sach a property [29]. Galgani and"'éciﬁd er

inspired by ideas of Nernst and Jeans, appeal to recent K.A.M.related resulis sug"g'es'f..iri'

the lack of ergodicity of classical models describing the interaction of matter and tadiation coul
be responsible of the quantum thermodynamical behaviour, as the one deseribed: by P

distribution [44]. (Since no satisfactory classical relativistic theory of matter” and. rad
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exists, one considers the standard Maxwell-Lorentz theory with cut-offs which break relativistic
invariance. Thus the ultimate theory to study here is a unified theory in the sense of FEinstein.)
Penrose, accepting the truth of nonlocality aims at a geometrical theory, not necessarly based on
the four dimensional contimmim (twistor theory and/or spin-networks theory), which embodies

nonlocality and goes beyond quantum mechanics and general relativity [46}.
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