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Abstract. Folkman’s theorem asserts that for each k ∈ N, there exists a natural

number n = F (k) such that whenever the elements of [n] are two-coloured, there

exists a set A ⊂ [n] of size k with the property that all the sums of the form
∑

x∈B x,

where B is a nonempty subset of A, are contained in [n] and have the same colour. In

1989, Erdős and Spencer showed that F (k) ≥ 2ck
2/ log k, where c > 0 is an absolute

constant; here, we improve this bound significantly by showing that F (k) ≥ 22
k−1/k

for all k ∈ N.

Schur’s theorem, proved in 1916, is one of the central results of Ramsey theory

and asserts that whenever the elements of N are finitely coloured, there exists a

monochromatic set of the form {x, y, x+ y} for some x, y ∈ N. About fifty years ago, a

wide generalisation of Schur’s theorem was obtained independently by Folkman, Rado

and Sanders, and this generalisation is now commonly referred to as Folkman’s theorem

(see [2], for example). To state Folkman’s theorem, it will be convenient to have some

notation. For n ∈ N, we write [n] for the set {1, 2, . . . , n}, and for a finite set A ⊂ N,
let

S(A) =

{∑
x∈B

x : B ⊂ A and B ̸= ∅

}
denote the set of all finite sums of A. In this language, Folkman’s theorem states that

for all k, r ∈ N, there exists a natural number n = F (k, r) such that whenever the

elements of [n] are r-coloured, there exists a set A ⊂ [n] of size k such that S(A) is a

monochromatic subset of [n]; of course, it is easy to see that Folkman’s theorem, in the

case where k = 2, implies Schur’s theorem.

In this note, we shall be concerned with lower bounds for the two-colour Folkman

numbers, i.e., for the quantity F (k) = F (k, 2). In 1989, Erdős and Spencer [1] proved

that

F (k) ≥ 2ck
2/ log k (1)

for all k ∈ N, where c > 0 is an absolute constant; here, and in what follows, all

logarithms are to the base 2. Our primary aim in this note is to improve (1).
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Before we state and prove our main result, let us say a few words about the proof

of (1). Erdős and Spencer establish (1) by considering uniformly random two-colourings.

In particular, they show that if [n] is two-coloured uniformly at random and additionally

n ≤ 2ck
2/ log k for some suitably small absolute constant c > 0, then with high probability,

there is no k-set A ⊂ [n] for which S(A) is monochromatic. On the other hand, it is not

hard to check that if n ≥ 2Ck2 for some suitably large absolute constant C > 0, then a

two-colouring of [n] chosen uniformly at random is such that, with high probability,

there exists a set A ⊂ [n] of size k for which S(A) is monochromatic; indeed, to see

this, it is sufficient to restrict our attention to sets of the form {p, 2p, . . . , kp}, where p

is a prime in the interval [n/ log2 n, 2n/ log2 n], and notice that the sets of finite sums

of such sets all have size k(k + 1)/2 and are pairwise disjoint. With perhaps this fact

in mind, in their paper, Erdős and Spencer also describe some of their attempts at

removing the factor of log k in the exponent in (1); nevertheless, their bound has not

been improved upon since.

Our main contribution is a new, doubly exponential, lower bound for F (k), signifi-

cantly strengthening the bound due to Erdős and Spencer.

Theorem 1. For all k ∈ N, we have

F (k) ≥ 22
k−1/k. (2)

Proof. The result is easily verified when k ≤ 3, so suppose that k ≥ 4 and let n =

⌊22k−1/k⌋. In the light of our earlier remarks, a uniformly random colouring of [n] is a

poor candidate for establishing (2). Instead, we generate a (random) red-blue colouring

of [n] as follows: we first red-blue colour the odd elements of [n] uniformly at random,

and then extend this colouring uniquely to all of [n] by insisting that the colour of 2x

be different from the colour of x for each x ∈ [n]; hence, for example, if 5 is initially

coloured blue, then 10 gets coloured red, 20 gets coloured blue, and so on.

Fix a set A ⊂ [n] of size k with S(A) ⊂ [n]. We have the following estimate for the

probability that S(A) is monochromatic in our colouring.

Claim 2. P(S(A) is monochromatic) ≤ 21−2k−1
.

Proof. First, if |S(A)| ≤ 2k − 2, then it is easy to see from the pigeonhole principle that

there exist two subsets B1, B2 ⊂ A such that
∑

x∈B1
x =

∑
x∈B2

x, and by removing

B1 ∩ B2 from both B1 and B2 if necessary, these sets may further be assumed to be

disjoint; in particular, this implies that S(A) contains two elements one of which is

twice the other. It therefore follows from the definition of our colouring that S(A)

cannot be monochromatic unless |S(A)| = 2k − 1. Next, suppose that |S(A)| = 2k − 1.

For each odd integer m ∈ N, we define Gm = {m, 2m, 4m, . . . } ∩ [n], and note that

these geometric progressions partition [n]. Observe that S(A) intersects at least 2k−1

of these progressions. Indeed, if there is an odd integer r ∈ A for example, then S(A)
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contains exactly 2k−1 distinct odd elements and these elements must lie in different

progressions. More generally, if each element of A is divisible by 2s and s is maximal,

then there exists an element r of A with r = 2st, where t is odd; it is then clear that

precisely 2k−1 elements of S(A) are divisible by 2s but not by 2s+1 and these elements

must necessarily lie in different progressions. With this in mind, we define BA to be a

maximal subset of S(A) with the property |BA ∩Gm| ≤ 1 for each m; for example, we

may take BA to consist of the least elements (where they exist) of the sets S(A) ∩Gm.

Clearly, our red-blue colouring restricted to BA is a uniformly random colouring, so the

probability that BA is monochromatic is 21−|BA|; it follows that the probability that

S(A) is monochromatic is at most 21−|BA| ≤ 21−2k−1
. □

It is now easy to see that if X is the number of sets A ⊂ [n] of size k for which S(A)

is a monochromatic subset of [n] in our colouring, then

E[X] ≤
(
n

k

)
21−2k−1 ≤

(en
k

)k
21−2k−1 ≤

(
e22

k−1/k

k

)k(
21−2k−1

)
= 2
( e
k

)k
< 1,

where the last inequality holds for all k ≥ 4. Hence, there exists a red-blue colouring

of [n] without any set A of size k for which S(A) is a monochromatic subset of [n],

proving the result. □

We conclude this note with two remarks. First, using the original arguments of

Erdős and Spencer [1] in conjunction with an inverse Littlewood–Offord theorem of

Nguyen and Vu [3], it is possible to improve (1) (up to removing the factor of log k in

the exponent) by just considering uniformly random two-colourings. Second, we note

that while (2) improves significantly on (1), this lower bound is still considerably far

from the best upper bound for F (k), which is of tower type; see [4], for instance.
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