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Abstract. For natural numbers n, r ∈ N with n ≥ r, the Kneser graph K(n, r) is the

graph on the family of r-element subsets of {1, . . . , n} in which two sets are adjacent

if and only if they are disjoint. Delete the edges of K(n, r) with some probability,

independently of each other: is the independence number of this random graph equal

to the independence number of the Kneser graph itself? We answer this question

affirmatively as long as r/n is bounded away from 1/2, even when the probability of

retaining an edge of the Kneser graph is quite small. This gives us a random analogue

of the Erdős–Ko–Rado theorem since an independent set in the Kneser graph is the

same as a uniform intersecting family. To prove our main result, we give some new

estimates for the number of disjoint pairs in a family in terms of its distance from an

intersecting family; these might be of independent interest.

1. Introduction

Over the past twenty years, a great deal of work has gone into proving ‘sparse random’

analogues of classical extremal results in combinatorics. Some of the early highlights

include a version of Mantel’s theorem for random graphs proved by Babai, Simonovits,

and Spencer [1], the Ramsey theoretic results of Rödl and Ruciński [21, 22], and a

random analogue of Szemerédi’s theorem due to Kohayakawa,  Luczak and Rödl [16].

Very general transference theorems have since been proved by Conlon and Gowers [7],

Schacht [25], Balogh, Morris and Samotij [3] and Saxton and Thomason [24]. The

surveys of  Luczak [20] and Rödl and Schacht [23] provide a detailed account of such

results.

In this paper, we shall be interested in proving such a transference result for a central

result in extremal set theory, the Erdős–Ko–Rado theorem. A family of sets A is said

to be intersecting if A ∩ B ̸= ∅ for all A,B ∈ A. Writing X(r) for the family of all

r-element subsets of a set X and [n] for the set {1, 2, ..., n}, a classical result of Erdős,

Ko and Rado [9] asserts that if n > 2r and A ⊂ [n](r) is intersecting, then |A| ≤
(
n−1
r−1

)
with equality if and only if A is a star. As is customary, we define the star centred at

x ∈ [n] to be the family of all the r-element subsets of [n] containing x and we call an

intersecting family trivial if it is contained in a star.
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If A ⊂ [n](r) is intersecting and has cardinality comparable to that of a star, must

A necessarily resemble a star? Such questions about the ‘stability’ of the Erdős–Ko–

Rado theorem have received a great deal of attention. Perhaps the earliest stability

result about the Erdős–Ko–Rado theorem was proved by Hilton and Milner [11] who

determined how large a uniform intersecting family can be if one insists that the family

is nontrivial. Furthering this line of research, Friedgut [10], Dinur and Friedgut [8],

and Keevash and Mubayi [14] have shown that every ‘large’ uniform intersecting family

is essentially trivial. Finally, let us mention that Balogh, Das, Delcourt, Liu and

Sharifzadeh [2] have recently shown, amongst other things, that almost all r-uniform

intersecting families are trivial when r < (n− 8 log n)/3.

As stated earlier, our aim in this note to prove a transference result for the Erdős–

Ko–Rado theorem. The notion of stability we shall consider here was introduced by

Bollobás, Narayanan and Raigorodskii [6] (see also [4]). To present this notion of

stability, it will be helpful to consider [n](r) in a different incarnation, as the Kneser

graph K(n, r). The Kneser graph K(n, r) is the graph on [n](r) where two vertices, i.e.,

r-element subsets of [n], are adjacent if and only if they are disjoint. We shall freely

switch between these two incarnations of [n](r).

Observe that a family A ⊂ [n](r) is intersecting if and only if A induces an independent

set in K(n, r). Writing α(G) for the size of the largest independent set of a graph

G, the Erdős–Ko–Rado theorem asserts that α(K(n, r)) =
(
n−1
r−1

)
when n > 2r. Let

Kp(n, r) denote the random subgraph of K(n, r) obtained by retaining each edge of

K(n, r) independently with probability p. Bollobás, Narayanan and Raigorodskii [6]

asked the following natural question: is α(Kp(n, r)) =
(
n−1
r−1

)
? They proved, when

r = r(n) = o(n1/3), that the answer to this question is in the affirmative even after

practically all the edges of the Kneser graph have been deleted. More precisely, they

showed that in this range, there exists a (very small) critical probability pc(n, r)

with the following property: as n → ∞, if p/pc > 1, then with high probability,

α(Kp(n, r)) =
(
n−1
r−1

)
and the only independent sets of this size in Kp(n, r) are stars,

while if p/pc < 1, then α(Kp(n, r)) >
(
n−1
r−1

)
with high probability.

Bollobás, Narayanan and Raigorodskii also asked what happens for larger values of r,

and conjectured in particular that as long as r/n is bounded away from 1/2, such a

random analogue of the Erdős–Ko–Rado theorem should continue to hold for Kp(n, r)

for some p bounded away from 1. In this note, we shall prove this conjecture and a bit

more.

Theorem 1.1. For every ε > 0, there exist constants c = c(ε) > 0 and c′ = c′(ε) > 0

with c < c′ such that for all n, r ∈ N with r ≤ (1/2 − ε)n,

P
(
α(Kp(n, r)) =

(
n− 1

r − 1

))
→

{
1 if p ≥

(
n−1
r−1

)−c
, and

0 if p ≤
(
n−1
r−1

)−c′
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as n → ∞. In particular, with high probability, α(K1/2(n, r)) =
(
n−1
r−1

)
.

All the work in proving Theorem 1.1 is in showing that c(ε) exists; as we shall see,

the existence of c′(ε) follows from a simple second moment calculation.

Let us briefly describe some of the ideas that go into the proof of Theorem 1.1.

We shall prove two results which, taken together, show that a large family A ⊂ [n](r)

without a large intersecting subfamily must necessarily contain many pairs of disjoint

sets, or in other words, must induce many edges in K(n, r); we do this in Section 3. We

put together the pieces and give the proof of Theorem 1.1 in Section 4. In Section 5,

we briefly describe some approaches to improving the dependence of c(ε) on ε in

Theorem 1.1. We conclude with some discussion in Section 6.

2. Preliminaries

Henceforth, a ‘family’ will be a uniform family on [n] unless we specify otherwise. To

ease the notational burden, we adopt the following notational convention: when n and

r are clear from the context, we write V =
(
n
r

)
, N =

(
n−1
r−1

)
, M =

(
n−r−1
r−1

)
and R =

(
2r
r

)
.

We need a few results from extremal set theory, some classical and some more recent.

The first result that we will need, due to Hilton and Milner [11], bounds the cardinality

of a nontrivial uniform intersecting family. Writing Ax for the subfamily of a family A
that consists of those sets containing x, we have the following.

Theorem 2.1. Let n, r ∈ N and suppose that n > 2r. If A ⊂ [n](r) is an intersecting

family with |A| ≥ N−M + 2, then there exists an x ∈ [n] such that A = Ax. □

The next result we shall require, due to Friedgut [10], is a quantitative extension of

the Hilton–Milner theorem which says that any sufficiently large uniform intersecting

family must resemble a star.

Theorem 2.2. For every ε > 0, there exists a C = C(ε) > 0 such that for all n, r ∈ N
with εn ≤ r ≤ (1/2 − ε)n, the following holds : if A ⊂ [n](r) is an intersecting family

and |A| = N− k, then there exists an x ∈ [n] for which |Ax| ≥ N− Ck. □

We will also need the following well-known inequality for cross-intersecting families

due to the second author [5].

Theorem 2.3. Let (A1, B1), . . . , (Am, Bm) be pairs of disjoint r-element sets such that

Ai ∩Bj ̸= ∅ for i, j ∈ [m] whenever i ̸= j. Then m ≤ R. □

Finally, we shall require a theorem of Kruskal [17] and Katona [12]. For a family

A ⊂ [n](r), its shadow in [n](k), denoted ∂(k)A, is the family of those k-sets contained in

some member of A. For x ∈ R and r ∈ N, we define the generalised binomial coefficient
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(
x
r

)
by setting (

x

r

)
=

x(x− 1) . . . (x− r + 1)

r!
.

The following formulation of the Kruskal–Katona theorem is due to Lovász [19].

Theorem 2.4. Let n, r, k ∈ N and suppose that k ≤ r ≤ n. If the cardinality of

A ⊂ [n](r) is
(
x
r

)
for some real number x ≥ r, then |∂(k)A| ≥

(
x
k

)
. □

To avoid clutter, we omit floors and ceilings when they are not crucial. We use the

standard o(1) notation to denote any function that tends to zero as n tends to infinity;

the variable tending to infinity will always be n unless we explicitly specify otherwise.

3. The number of disjoint pairs

Given a family A, we write e(A) for the number of disjoint pairs of sets in A;

equivalently, e(A) is the number of edges in the subgraph of the Kneser graph induced

by A. In this section, we give some bounds for e(A).

We denote by A∗ the largest intersecting subfamily of a family A; if this subfamily is

not unique, we take any subfamily of maximum cardinality. We write ℓ(A) = |A|− |A∗|
for the difference between the cardinality of A and the largest intersecting subfamily of

A.

Trivially, we have e(A) ≥ ℓ(A). Our first lemma says that we can do much better

than this trivial bound when ℓ(A) is large.

Lemma 3.1. Let n, r ∈ N. For any A ⊂ [n](r),

e(A) ≥ ℓ(A)2

2R
.

Proof. To prove this lemma, we need the notion of an induced matching. An induced

matching of size m in a graph G is a set of 2m vertices inducing a subgraph consisting

of m independent edges; equivalently, we refer to these m edges as an induced matching

of size m. The induced-matching number of G, in notation, m(G), is the maximal size

of an induced matching in G.

Proposition 3.2. Let G = (V,E) be a graph with m(G) = m ≥ 1. Then

|E| ≥ k2

4m
,

where k = |V | − α(G).

Proof. Let us choose X = {x1, . . . , xm} and Y = {y1, . . . , ym} so that the edges

x1y1, . . . , xmym constitute an induced matching. Let Z = Γ(X ∪ Y ) be the set of

neighbours of the vertices in X ∪ Y ; thus X ∪ Y ⊂ Z. Since m(G) = m, the set
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V (G) \ Z is independent, so |Z| ≥ k. Since some vertex in X ∪ Y has at least |Z|/2m

neighbours, we conclude that ∆(G) ≥ |Z|/2m ≥ k/2m where ∆(G) is the maximum

degree of G.

Now define a sequence of graphs G = G0 ⊃ G1 ⊃ · · · ⊃ Gk and a sequence of vertices

x0, x1, . . . , xk by taking xi to be a vertex of Gi of maximal degree and Gi+1 to be the

graph obtained from Gi by deleting xi. We know from our earlier arguments that

∆(Gi) ≥ (k − i)/2m, so |E| ≥
∑k

i=0 ∆(Gi) ≥ k2/4m. □

To apply the previous proposition, we need the following corollary of Theorem 2.3

the proof of which is implicit in [2]; we include the short proof here for completeness.

Proposition 3.3. For n ≥ 2r, the induced-matching number of K(n, r) is

m(K(n, r)) =

(
2r − 1

r − 1

)
=

R

2
.

Proof. Let A1B1, . . . , AmBm be an induced matching in K(n, r). For m + 1 ≤ i ≤ 2m,

we set Ai = Bi−m and Bi = Ai−m. We apply Theorem 2.3 to (A1, B1), . . . , (A2m, B2m)

and conclude that 2m ≤ R. The R/2 partitions of [2r] into disjoint r-sets form an

induced matching, so m(K(n, r)) = R/2, as claimed. □

The lemma follows by applying Proposition 3.2 to GA, the subgraph of the Kneser

graph K(n, r) induced by A. □

Note that Lemma 3.1 is only effective when ℓ(A) ≥ 2R. The next, somewhat

technical, lemma complements Lemma 3.1 by giving a better bound when ℓ(A) is small

provided the size of A is large.

Lemma 3.4. For every ε, η > 0, there exist constants δ = δ(ε, η) > 0 and C = C(ε) > 0

with the following property : for all n, r ∈ N with εn ≤ r ≤ (1/2 − ε)n, we have

e(A) ≥ ℓ(A)1+δ − Cℓ(A)

for any family A ⊂ [n](r) with |A| = N and ℓ(A) ≤ N1−η.

To clarify, the C(ε) in the statement of the lemma above is the same as the C(ε)

guaranteed by Theorem 2.2.

Proof of Lemma 3.4. First, let us note that since we always have e(A) ≥ ℓ(A), it suffices

to prove the lemma under the assumption that n is sufficiently large.

Let ℓ = ℓ(A). We start by observing that most of A must be contained in a star.

Indeed, as before, let A∗ denote the largest intersecting subfamily of A; by definition,

|A∗| = N− ℓ. Since we have assumed that εn ≤ r ≤ (1/2 − ε)n, we may assume, by

Theorem 2.2, that |A∗
n| ≥ N− Cℓ, where C = C(ε) is as guaranteed by Theorem 2.2.

Hence, |An| ≥ |A∗
n| ≥ N− Cℓ.
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We also know that |An| ≤ |A∗| ≤ N− ℓ; let B be a subset of A \ An of cardinality

exactly ℓ. We shall bound e(A) by counting the number of edges between B and An in

K(n, r).

Let us define

A′ = {A \ {n} : A ∈ An} ⊂ [n− 1](r−1)

and

B′ = {[n− 1] \B : B ∈ B} ⊂ [n− 1](n−r−1).

Clearly, to count the number of edges between An and B in K(n, r), it suffices to

count the number of pairs (A′, B′) in A′ × B′ with A′ ⊂ B′. This quantity is obviously

bounded below by the number of sets A′ ∈ A′ contained in at least one B′ ∈ B′.

Since A′ ⊂ [n− 1](r−1) and |A′| ≥ N− Cℓ, the number of sets A′ ∈ A′ contained in

some B′ ∈ B′ is at least |∂(r−1)B′| − Cℓ. Consequently,

e(A) ≥ |∂(r−1)B′| − Cℓ.

We shall show that there exists a δ = δ(ε, η) > 0 such that, under the conditions of the

lemma, |∂(r−1)B′| ≥ ℓ1+δ for all sufficiently large n ∈ N. We deduce the existence of

such a δ from Theorem 2.4, the Kruskal–Katona theorem. We may assume that

ℓ = |B′| =

(
x

n− r − 1

)
for some real number x ≥ n− r − 1. It follows from Theorem 2.4 that

|∂(r−1)B′| ≥
(

x

r − 1

)
.

Let us put r = (1/2− β)n and x = ϑn. We now calculate, ignoring error terms that are

o(1), what values β and ϑ can take. We know that ε ≤ β ≤ 1/2−ε. Since x ≥ n−r−1,

we also know that ϑ ≥ 1/2 + β. On the other hand, since(
ϑn

(1/2 + β)n

)
= ℓ ≤ N1−η =

(
n− 1

r − 1

)1−η

≤
(
n

r

)1−η

=

(
n

(1/2 − β)n

)1−η

,

it follows from Stirling’s approximation for the factorial function that there exists some

δ′(ε, η) > 0 such that ϑ ≤ 1 − δ′.

Hence, it suffices to check that there exists a δ = δ(ε, η) > 0 for which the inequality(
ϑn

(1/2 − β)n

)
≥
(

ϑn

(1/2 + β)n

)1+δ

holds for all β ∈ [ε, 1/2 − ε] and ϑ ∈ [1/2 + β, 1 − δ′] as long as n is sufficiently large.

This is easily checked using Stirling’s formula. □
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4. Proof of the main result

Armed with Lemmas 3.1 and 3.4, we are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let us fix ε > 0 and assume that r ≤ (1/2 − ε)n. Clearly, it

is enough to prove Theorem 1.1 for all sufficiently small ε; it will be convenient to

assume that ε < 1/10. As mentioned earlier, Bollobás, Narayanan and Raigorodskii

have proved Theorem 1.1 in a much stronger form when r = o(n1/3). So to avoid having

to distinguish too many cases, we shall assume that r grows with n; for concreteness,

let us suppose that r ≥ n1/4. A consequence of these assumptions is that in this range,

V, N and M all grow much faster than any polynomial in n.

First, let Y denote the (random) number of independent sets A ⊂ [n](r) in Kp(n, r)

with |A| = N+1 and ℓ(A) = 1; in other words, independent sets of size N+1 containing

an entire star. We begin by showing that there exists a c′ = c′(ε) such that if p ≤ N−c′ ,

then Y > 0 with high probability. Clearly,

E[Y ] =

(
n

1

)(
V −N

1

)
(1 − p)M.

Note that if r ≤ (1/2 − ε)n, then we may choose a suitably small c′ = c′(ε) such that

M ≥ Nc′ . It follows that if c′ is sufficiently small, then

E[Y ] ≥ n(V −N) exp
(
−(p + p2)M

)
≥ (e + o(1))n(V −N),

so E[Y ] → ∞ when p ≤ N−c′ .

Therefore, to show that Y > 0 with high probability, it suffices to show that Var[Y ] =

o(E[Y ]2) or equivalently, that E[(Y )2] = (1 + o(1))E[Y ]2, where E[(Y )2] = E[Y (Y − 1)]

is the second factorial moment of Y .

Writing Sx for the star centred at x, we note that

E[(Y )2] =
∑

a,b,A,B

P(Sa ∪ {A} andSb ∪ {B} are independent),

the sum being over ordered 4-tuples (a, b, A,B) with a, b ∈ [n], A ∈ [n](r) \ Sa and

B ∈ [n](r) \ Sb such that (a,A) ̸= (b, B). Now, observe that∑
a̸=b

P(Sa ∪ {A} andSb ∪ {B} are independent) ≤ (n2)(V −N)2(1 − p)(2−o(1))M

= (1 + o(1))E[Y ]2,

and ∑
a=b,A̸=B

P(Sa ∪ {A} andSb ∪ {B} are independent) ≤ n(V −N)2(1 − p)2M

= o(E[Y ]2).
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By Chebyshev’s inequality, we conclude that Y > 0 with high probability, so the

independence number of Kp(n, r) is at least N + 1 with high probability if p ≤ N−c′ .

Next, for each ℓ ≥ 1, let Xℓ denote the (random) number of independent sets A ⊂ [n](r)

in Kp(n, r) with |A| = N and ℓ(A) = ℓ. To complete the proof of Theorem 1.1, it clearly

suffices to show that for some c = c(ε) > 0, all of the Xℓ are zero with high probability

provided p ≥ N−c. We shall prove this by distinguishing three cases depending on

which of Theorem 2.1, Lemma 3.1 and Lemma 3.4 is to be used.

Let C = C(ε) be as in Theorem 2.2. Note that since r ≤ (1/2 − ε)n, it is easy to

check using Stirling’s approximation that we can choose positive constants cm = cm(ε)

and cr = cr(ε) such that M ≥ Ncm and R ≤ N1−cr .

We now set Lm = Ncm/2 and Lr = N1−cr/4 and distinguish the following three cases.

Case 1: ℓ ≤ Lm . Let A ⊂ [n](r) be a family of cardinality N with ℓ(A) = ℓ. Since

ℓ ≤ Lm = Ncm/2 ≤ M− 2,

we see that A∗, the largest intersecting subfamily of A, satisfies

|A∗| = N− ℓ ≥ N−M + 2.

It follows from Theorem 2.1 that there is an x ∈ [n] for which A∗ is contained in the

star centred at x. Consider the ℓ sets in A \ A∗. Any such set is disjoint from exactly

M members of the star centred at x and hence from at least M − ℓ members of A∗.

This tells us that e(A) ≥ ℓ(M− ℓ). Since ℓ ≤ M/2, it follows that

E[Xℓ] ≤ n

(
N

ℓ

)(
V

ℓ

)
(1 − p)ℓ(M−ℓ)

≤ n

(
2n

ℓ

)2

exp(−pℓM/2)

≤ exp(2nℓ− pℓM/2).

Hence, if c ≤ cm/2 so that p ≥ N−cm/2, it is clear that

Lm∑
ℓ=1

E[Xℓ] ≤
Lm∑
ℓ=1

exp

(
2nℓ− ℓNcm/2

2

)
= o(1).

So with high probability, for each 1 ≤ ℓ ≤ Lm, the random variable Xℓ is zero.

Case 2: ℓ ≥ Lr. Again, let A ⊂ [n](r) be a family of cardinality N with ℓ(A) = ℓ.

We know from Lemma 3.1 that

e(A) ≥ ℓ2

2R
≥ N2−cr/2

2N1−cr
=

N1+cr/2

2
.

So it follows that∑
l≥Lr

E[Xℓ] ≤
(
V

N

)
exp

(
−p

N1+cr/2

2

)
≤ exp

(
nN− p

N1+cr/2

2

)
.
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Hence, if c ≤ cr/4 so that p ≥ N−cr/4, we have∑
l≥Lr

E[Xℓ] ≤ exp

(
nN− N1+cr/4

2

)
= o(1).

So once again, with high probability, the sum
∑

ℓ≥Lr
Xℓ is zero.

Before we proceed further, let us first show that that we may now assume without

loss of generality that r ≥ εn. This is because one can check that the arguments in

Cases 1 and 2 together prove Theorem 1.1 when r ≤ εn for all sufficiently small ε. It is

easy to check using Stirling’s formula that if ε is sufficiently small, indeed, if ε < 1/10

for example, then it is possible to choose positive constants c′m(ε) and c′r(ε) so that for

all r ≤ εn, we have M ≥ Nc′m , R ≤ N1−c′r and Nc′m/2 ≥ N1−c′r/4. So the arguments

above yield a proof of Theorem 1.1 when r ≤ εn. Therefore, in the following, we assume

that r ≥ εn.

Case 3: Lm ≤ ℓ ≤ Lr. As before, consider any family A ⊂ [n](r) of cardinality N

with ℓ(A) = ℓ. First note that since εn ≤ r ≤ (1/2 − εn) and ℓ ≤ Lr = N1−cr/4 where

cr is a constant depending only on ε, by Lemma 3.4, there exists a δ = δ(ε) such that

e(A) ≥ ℓ1+δ − Cℓ.

Since ℓ ≥ Lm = Ncm/2, it follows that

e(A) ≥ ℓ1+δ − Cℓ ≥ ℓ1+δ/2

for all sufficiently large n.

Next, consider A∗, the largest intersecting subfamily of A, which has cardinality

N−ℓ. We know from Theorem 2.2 that there exists an x ∈ [n] such that |A∗
x| ≥ N−Cℓ,

so |Ax| ≥ N− Cℓ. It is then easy to see that

E[Xℓ] ≤ n

(
N

Cℓ

)(
V

Cℓ

)
(1 − p)ℓ

1+δ/2

≤ exp
(
ℓ
(
2Cn− pℓδ/2

))
.

Hence, if c ≤ cmδ/4 so that p ≥ N−cmδ/4, it follows that

Lr∑
ℓ=Lm

E[Xℓ] ≤
Lr∑

ℓ=Lm

exp
(
ℓ
(
2Cn−Ncmδ/4/2

))
= o(1),

so with high probability, for each Lm ≤ ℓ ≤ Lr, the random variable Xℓ is zero.

Putting the different parts of our argument together, we find that if 0 < ε < 1/10,

c = c(ε) = min

(
cm(ε)

2
,
c′m(ε)

2
,
cr(ε)

4
,
c′r(ε)

4
,
cm(ε)δ(ε)

2

)
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and p ≥ N−c, then for all r = r(n) ≤ (1/2 − ε)n, we have

P
(
α(Kp(n, r)) =

(
n− 1

r − 1

))
→ 1

as n → ∞. This completes the proof of Theorem 1.1. □

5. Refinements

We briefly discuss how one might tighten up the arguments in Theorem 1.1 so as to

improve the dependence of c(ε) on ε in the result. However, since it seems unlikely to

us that these methods will be sufficient to determine the precise critical threshold at

which Theorem 1.1 ceases to hold, we shall keep the discussion in this section largely

informal.

5.1. Containers for sparse sets in the Kneser graph. The first approach we sketch

involves using ideas from the theory of ‘graph containers’ to count large sparse sets in

the Kneser graph more efficiently.

The theory of graph containers was originally developed to efficiently count the number

of independent sets in a graph satisfying some kind of ‘supersaturation’ condition. The

basic principle used to construct containers for graphs can be traced back to the work

of Kleitman and Winston [15]. A great deal of work has since gone into refining and

generalising their ideas, culminating in the results of Balogh, Morris and Samotij [3]

and Saxton and Thomason [24]; these papers also give a detailed account of the history

behind these ideas and we refer the interested reader there for details about how the

general methodology was developed. Here we shall content ourselves with a brief

discussion of how these ideas might be used to improve the dependence of c(ε) on ε in

Theorem 1.1.

Let us write Ym = Ym(n, r) for the number of families A ⊂ [n](r) with |A| = N and

e(A) = m. Clearly, to show that α(Kp(n, r)) = N with high probability, it suffices to

show that
∑

m≥1 Ym(1 − p)m = o(1). Hence, it would be useful to have good estimates

for Ym. We shall derive some bounds for Ym; see Theorem 5.2 below. These bounds are

not strong enough (especially for small values of m) to prove Theorem 1.1. However,

note that in our proof of Theorem 1.1, we use the somewhat cavalier bound of
(
V
N

)
for

the number of families A of size N for which ℓ(A) is equal to some prescribed value (in

Case 2 of the proof); we can instead use Theorem 5.2 to count more efficiently.

To prove an effective container theorem, one needs to first establish a suitable

supersaturation property. Lovász [18] determined the second largest eigenvalue of the

Kneser graph; by combining Lovász’s result with the expander mixing lemma, Balogh,

Das, Delcourt, Liu and Sharifzadeh [2] proved the following supersaturation theorem

for the Kneser graph.
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Proposition 5.1. Let n, r, k ∈ N and suppose that n > 2r and k ≤ V−N. If A ⊂ [n](r)

has cardinality N + k, then e(A) ≥ kM/2. □

Using Proposition 5.1, we prove the following container theorem for the Kneser graph.

Theorem 5.2. For every ε > 0, there exists a Ĉ = Ĉ(ε) > 0 such that for every β > 0

and all n, r,m ∈ N with εn ≤ r ≤ (1/2 − ε)n, the following holds : writing

k1 = Ĉ

(
N

βM
+

(
mN

βM

)1/2
)

and

k2 = k1 + ĈβN,

there exist, for 1 ≤ i ≤
∑k1

j=0

(
V
j

)
, families Bi ⊂ [n](r) each of cardinality at most N+k2

with the property that each A ⊂ [n](r) with e(A) ≤ m is contained in one of these

families.

The advantage of this formulation of Theorem 5.2 in terms of k1, k2 and β is that

we can apply the theorem with a value of β > 0 suitably chosen for the application at

hand.

It is easy to check from Theorem 5.2 that Ym = Ym(n, r), the number of families

A ⊂ [n](r) with |A| = N and e(A) = m, satisfies

Ym(n, r) ≤

(
k1∑
j=0

(
V

j

))(
N + k2

N

)
= 2

(
V

k1

)(
N + k2

k2

)
≤ 2

(
V

k1

)(
V

k2

)

≤ 2 exp

(
Ĉn

(
βN +

2N

βM
+

(
4mN

βM

)1/2
))

for all β > 0 such that k1 < V/3. We can then optimise this bound by choosing β de-

pending on how large m is in comparison to M and N. For example, when m ≥ N/M1/2,

we can take β = (m/NM)1/3 and easily check that Ym(n, r) ≤ exp(10Ĉn(mN2/M)1/3).

The reader may check that this estimate for Ym when combined with the Hilton–Milner

theorem is sufficient to prove Theorem 1.1 when r/n is bounded above by and away

from ϑ, where ϑ ≈ 0.362 is, writing H(x) = −x log x− (1 − x) log(1 − x), the unique

real solution to the equation

3(1 − ϑ)H

(
ϑ

1 − ϑ

)
= 2H(ϑ)

in the interval (0, 1).

Proof of Theorem 5.2. We start by proving a lemma whose proof is loosely based on

the methods of Saxton and Thomason [24]. Before we state the lemma, let us have
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some notation. Given a graph G = (V,E) and U ⊂ V (G), we write

µ(U) =
|E(G[U ])|

|V |
;

in other words, µ(U) is the number of edges induced by U divided by the number of

vertices of G. Also, we write P(X) for the collection of all subsets of a set X.

Lemma 5.3. Let G = (V,E) be a graph with average degree d and maximum degree

∆. For every a ≥ 0 and b > 0, there is a map C : P(V ) → P(V ) with the following

property : for every U ⊂ V with µ(U) ≤ a, there is a subset T ⊂ V such that

(1) T ⊂ U ⊂ C(T ),

(2) |T | ≤ 2|V |(a/bd)1/2 + |V |/bd, and

(3) µ(C(T )) ≤ 2∆(a/bd)1/2 + ∆/bd + bd.

Proof. We shall describe an algorithm that constructs T given U . The algorithm will

also construct C(T ) in parallel; it will be clear from the algorithm that C(T ) is entirely

determined by T and in no way depends on U .

Fix a linear ordering of the vertex set V of G. If u and v are adjacent and u precedes

v in our ordering, we call v a forward neighbour of u and u a backward neighbour of v.

For a vertex v ∈ V , we write F (v) for the set of its forward neighbours.

We begin by setting T = ∅ and A = V . We shall iterate through V in the order we

have fixed and add vertices to T and remove vertices from A as we go along; at any

stage, we write Γ(T ) to denote the set of those vertices which, at that stage, have k

or more backward neighbours in T where k is the least integer strictly greater than

(abd)1/2.

As we iterate through the vertices of V in order, we do the following when considering

a vertex v.

(1) If v ∈ Γ(T ), we remove v from A; if it is also the case that v ∈ U , then we add

v to T .

(2) If v /∈ Γ(T ), we consider the size of S = F (v) \ Γ(T ).

(a) If |S| ≥ bd, we remove v from A; if it is also the case that v ∈ U , then we

add v to T .

(b) If |S| < bd, we do nothing.

The algorithm outputs T and A when it terminates; we then set C(T ) = A ∪ T . It is

clear from the algorithm that C(T ) is uniquely determined by T and that T ⊂ U ⊂ C(T ).

We first show that |T | ≤ 2|V |(a/bd)1/2 + |V |/bd. Consider the partition T = T1 ∪ T2

where T1 consists of those vertices which were added to T on account of condition (1)

and T2 of those vertices which were added to T when considering condition (2a). The

upper bound for |T | follows from the following two claims.

12



Claim 5.4. |T1| ≤ |E(G[U ])|/k.

Proof. Clearly, each vertex of T1 has at least k backward neighbours in T ⊂ U . Hence,

k|T1| ≤ |E(G[U ])|. □

Claim 5.5. |T2| ≤ k|V |/bd.

Proof. Let us mark all the edges from v to F (v) \ Γ(T ) when a vertex v gets added to

T on account of condition (2a). The number of marked edges is clearly at least bd|T2|.
On the other hand, by the definition of Γ(T ), each vertex is joined to at most k of its

backward neighbours by a marked edge. Hence, bd|T2| ≤ k|V |. □

Consequently, since (abd)1/2 < k ≤ (abd)1/2 + 1, we have

|T | = |T1| + |T2| ≤
a|V |
k

+
k|V |
bd

≤ a|V |
(abd)1/2

+
((abd)1/2 + 1)|V |

bd
≤ 2|V |

( a

bd

)1/2
+

|V |
bd

.

It remains to show that µ(C) ≤ 2∆(a/bd)1/2 + ∆/bd + bd. To see this, recall that

C(T ) = A ∪ T and notice that

|E(G[C(T )])| ≤ ∆|T | + |E(G[A])| ≤ ∆|T | + bd|V |.

To see the last inequality, i.e., |E(G[A])| ≤ bd|V |, note that a vertex v is removed from

A by our algorithm unless we have |F (v) \ Γ(T )| < bd at the stage where we consider v.

Since each member of Γ(T ) is (eventually) removed from A, we see that each vertex

of A has at most bd forward neighbours in A and the inequality follows. The claimed

bound for µ(C) then follows from our previously established upper bound for |T |. □

To prove Theorem 5.2, we now combine Lemma 5.3 with Proposition 5.1. First note

that the Kneser graph K(n, r) has V = nN/r vertices and is (n− r)M/r regular.

Let us take Ĉ(ε) = 20/ε2. It is easy to check that given β > 0 and a family A ⊂ [n](r)

with e(A) ≤ m, we can apply Lemma 5.3 with a = m/V and b = β to get families

T ⊂ [n](r) and C(T ) ⊂ [n](r) such that T ⊂ A ⊂ C(T ), |T | ≤ k1 and e(C(T )) ≤ k2M/2.

Hence, by Proposition 5.1, we see that |C(T )| ≤ N + k2. The theorem then follows by

taking the families C(T ) for every T ⊂ [n](r) with |T | ≤ k1. □

5.2. Stability for the Kruskal–Katona theorem. An important ingredient in

our proof of Theorem 1.1 is Lemma 3.4 which gives a uniform lower bound, using

Theorem 2.2 and the Kruskal–Katona theorem, for e(A) in terms of ℓ(A) when the size

of A is large.

However, there is a price to be paid for proving such a uniform bound: the bound is

quite poor for most families to which the lemma can be applied. Indeed, the families

which are extremal for the argument in the proof of Lemma 3.4 must possess a great
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deal of structure. Instead of the Kruskal–Katona theorem, one should be able to use a

stability version of the Kruskal–Katona theorem, as proved by Keevash [13] for example,

to prove a more general result that accounts for the structure of the family under

consideration.

6. Conclusion

Several problems related to the question considered here remain. First of all, it would

be good to determine the largest possible value of c(ε) with which Theorem 1.1 holds.

It is likely that one needs new ideas to resolve this problem.

Second, one would also like to know what happens when r is very close to n/2.

Perhaps most interesting is the case when n = 2r + 1; one would like to know the

values of p for which we have α(Kp(2r + 1, r)) =
(

2r
r−1

)
with high probability. A simple

calculation shows that p = 3/4 is the threshold at which we are likely to find a star and

an r-set not in the star all the edges between which are missing in Kp(2r + 1, r) which

suggests that the critical threshold should be 3/4. However, it would even be interesting

to show that α(Kp(2r + 1, r)) =
(

2r
r−1

)
with high probability for, say, all p ≥ 0.999.
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