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Abstract. Delete the edges of a Kneser graph independently of each other with

some probability: for what probabilities is the independence number of this random

graph equal to the independence number of the Kneser graph itself? We prove a sharp

threshold result for this question in certain regimes. Since an independent set in the

Kneser graph is the same as a uniform intersecting family, this gives us a random

analogue of the Erdős–Ko–Rado theorem.

1. Introduction

In this note, our aim is to investigate the stability of a central result in extremal set

theory due to Erdős, Ko and Rado [13] about uniform intersecting families of sets. A

family of sets A is said to be intersecting if A∩B ≠ ∅ for all A,B ∈ A. We are interested

in intersecting families where all the sets have the same size; writing [n] for the set

{1, 2, . . . , n} and [n](r) for the family of all the subsets of [n] of cardinality r, the Erdős–

Ko–Rado theorem asserts that if A ⊂ [n](r) is intersecting and n ≥ 2r, then |A| ≤
(
n−1
r−1

)
and that equality is only achieved, if n > 2r, when A is a star ; for x ∈ [n], the star

centred at x is the family of all the r-element subsets of [n] containing x. Extending this

result, Hilton and Milner [17] determined, when n > 2r, the largest size of a uniform

intersecting family not contained entirely in a star. Many extensions of the Erdős–Ko–

Rado theorem and the Hilton–Milner theorem have since been proved; furthermore,

very general stability results about the structure of intersecting families have been

proved by Friedgut [14], Dinur and Friedgut [12], and Keevash and Mubayi [18].

Here, we shall investigate a different notion of stability and prove a ‘sparse random’

analogue of the Erdős–Ko–Rado theorem which strengthens the Erdős–Ko–Rado theorem

significantly when r is small compared to n.

To translate the Erdős–Ko–Rado theorem to the random setting, it will be helpful

to reformulate the theorem as a statement about Kneser graphs. For natural numbers

n, r ∈ N with n ≥ r, the Kneser graph K(n, r) is the graph whose vertex set is [n](r)

where two r-element sets A,B ∈ [n](r) are adjacent if and only if A ∩B = ∅. Observe

that a family A ⊂ [n](r) is an intersecting family if and only if A is an independent set

in K(n, r). Writing α(G) for the size of the largest independent set in a graph G, the
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Erdős–Ko–Rado theorem asserts that α(K(n, r)) =
(
n−1
r−1

)
when n ≥ 2r; furthermore,

when n > 2r, the only independent sets of this size are stars.

Let us now randomly delete the edges of the Kneser graph K(n, r) retaining them

with some probability p, independently of each other. When is the independence number

of this random subgraph equal to
(
n−1
r−1

)
? It turns out that when r is much smaller than

n, an analogue of the Erdős–Ko–Rado theorem continues to be true even after we delete

practically all the edges of the Kneser graph!

This kind of phenomenon, namely the validity of classical extremal results for

surprisingly sparse random structures, has received a lot of attention over the past

twenty five years. Perhaps the first result of this kind in extremal graph theory was

proved by Babai, Simonovits, and Spencer [1] who showed that an analogue of Mantel’s

Theorem is true for certain random graphs. Mantel’s Theorem states that the largest

triangle free subgraph and the largest bipartite subgraph of Kn, the complete graph on

n vertices, have the same size. Babai, Simonovits, and Spencer proved that the same

holds for the Erdős-Rényi random graph G(n, p) with high probability when p ≥ 1/2−δ

for some absolute constant δ > 0. In other words, they show that Mantel’s theorem

is ‘stable’ in the sense that it holds not only for the complete graph but that it holds

exactly for random subgraphs of the complete graph as well. Improving upon results of

Brightwell, Panagiotou and Steger [7], DeMarco and Kahn [10] have recently shown that

this phenomenon continues to hold even when the random graph G(n, p) is very sparse;

they show in particular that it suffices to take p ≥ C(log n/n)1/2 for some absolute

constant C > 0, and that this is best-possible up to the value of the absolute constant.

The first such transference results in Ramsey theory were proved by Rödl and

Ruciński [22, 23] and there have been many related Ramsey theoretic results since; see,

for example, [15, 24, 20].

Phenomena of this kind have also been observed in additive combinatorics. Roth’s

theorem [26], a central result in additive combinatorics, states that for every δ > 0

and all sufficiently large n, every subset of [n] = {1, 2, . . . , n} of density δ contains a

three-term arithmetic progression. Kohayakawa, Rödl and  Luczak [19] proved a random

analogue, showing that such a statement holds not only for [n] but also, with high

probability, for random subsets of [n] of density at least Cn−1/2, where C > 0 is an

absolute constant.

Another classical result in additive combinatorics, due to Diananda and Yap [11], is

that the largest sum-free subset of Z2n is the set of odd numbers. Balogh, Morris and

Samotij [4] proved that the same is true of random subsets of Z2n of density at least

(1 + ε)(log n/3n)1/2 with high probability (for any fixed ε > 0 and n sufficiently large),

and also that this no longer the case when the density is less than (1 − ε)(log n/3n)1/2.

Thus, there is a sharp threshold at (log n/3n)1/2 for the stability of this extremal result;
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an extension of this sharp threshold result to all even-order Abelian groups has recently

been proved by Bushaw, Collares Neto, Morris and Smith [8].

Perhaps the most striking application of such transference principles is the Green–Tao

theorem [16] on primes in arithmetic progressions. Very general transference theorems

have subsequently been proved by Conlon and Gowers [9] and Schacht [28], and more

recently, by Balogh, Morris and Samotij [3] and Saxton and Thomason [27]. We refer

the interested reader to the surveys of  Luczak [21] and Rödl and Schacht [25] for a

more detailed account of such results.

Returning to the question at hand, our aim in this paper, as we remarked before, is

to investigate the independence number of random subgraphs of K(n, r); for related

work on the independence number of random induced subgraphs of K(n, r), see the

paper of Balogh, Bohman and Mubayi [2]. Let Kp(n, r) denote the random subgraph

of K(n, r) obtained by retaining each edge of K(n, r) independently with probability p.

The main question of interest is the following.

Problem 1.1. For what p > 0 is α(Kp(n, r)) =
(
n−1
r−1

)
with high probability?

For constant r and n sufficiently large, a partial answer was provided by Bogolyubskiy,

Gusev, Pyaderkin and Raigorodskii [6, 5]: they studied random subgraphs of K(n, r, s),

where K(n, r, s) is the graph whose vertex set is [n](r) where two r-element sets A,B ∈
[n](r) are adjacent if and only if |A ∩ B| = s; in the case s = 0 (which corresponds

to the Kneser graph), they established that α(K1/2(n, r)) = (1 + o(1))
(
n−1
r−1

)
with high

probability.

We shall do much more and answer Question 1.1 exactly when r is small compared

to n (more precisely, when r = o(n1/3)). To state our result, it will be convenient to

define the threshold function

pc(n, r) =
(r + 1) log n− r log r(

n−1
r−1

) . (1)

As we shall see, this is the threshold density at which one expects to find a vertex in

Kp(n, r) which has no edges to a maximal independent set of the original Kneser graph

K(n, r). With this definition in place, we can now state our main result.

Theorem 1.2. Fix a real number ε > 0 and let r = r(n) be a natural number such that

2 ≤ r(n) = o(n1/3). Then as n → ∞,

P
(
α(Kp(n, r)) =

(
n− 1

r − 1

))
→

{
1 if p ≥ (1 + ε)pc(n, r), and

0 if p ≤ (1 − ε)pc(n, r).

Furthermore, when p ≥ (1 + ε)pc, with high probability, the only independent sets of

size
(
n−1
r−1

)
in Kp(n, r) are the trivial ones, namely, stars.
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The rest of this paper is organised as follows. We establish some notation and

collect together some standard facts in Section 2. Most of the work involved in proving

Theorem 1.2 is in establishing the upper bound on the critical density; we do this in

Section 3. We complete the proof of Theorem 1.2 by proving a matching lower bound

in Section 4. We conclude with some discussion in Section 5.

2. Preliminaries

2.1. Notation. Given x ∈ [n] and A ⊂ [n](r), we write Sx for the star centred at

x, and Ax for the subfamily of A consisting of those sets (of A) that contain x, i.e.,

Ax = A ∩ Sx. The maximum degree d(A) of a family A ⊂ [n](r) is defined to be the

maximum cardinality, over all x ∈ [n], of the subfamily Ax, and we write e(A) for the

number of edges induced by A in K(n, r). Since any pair of intersecting sets A,B ∈ A
both belong to at least one subfamily Ax, we get the following estimate for e(A) which

is useful when the maximum degree of A is small.

Proposition 2.1. For any A ⊂ [n](r),

e(A) ≥
(
|A|
2

)
−
∑
x∈[n]

(
|Ax|

2

)
. □

To ease the notational burden, in the rest of this paper, we shall write V =
(
n
r

)
for

the size of [n](r), and N =
(
n−1
r−1

)
for the size of a star. Also, given x ∈ [n] and a set

A ∈ [n](r) not containing x, we shall write M =
(
n−r−1
r−1

)
for the number of sets of Sx

disjoint from A.

A word on asymptotic notation; we use the standard o(1) notation to denote any

function that tends to zero as n tends to infinity. Here and elsewhere, the variable

tending to infinity will always be n unless we explicitly specify otherwise.

2.2. Estimates. Next, we collect some standard estimates that we shall use repeatedly;

for ease of reference, we list them as propositions below.

Let us start with a weak form of Stirling’s approximation for the factorial function.

Proposition 2.2. For all n ∈ N,
√

2πn
(n
e

)n
≤ n! ≤ e1/12n

√
2πn

(n
e

)n
. □

In fact, the following crude bounds for the binomial coefficients will often be sufficient

for our purposes.

Proposition 2.3. For all n, r ∈ N,(n
r

)r
≤
(
n

r

)
≤ nr

r!
≤
(en
r

)r
. □
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Also, we will need the following standard inequality concerning the exponential

function.

Proposition 2.4. For every x ∈ R such that |x| ≤ 1/2,

ex−x2 ≤ 1 + x ≤ ex. □

Although our last proposition is also very simple, we prove it here for the sake of

completeness. Recall that N =
(
n−1
r−1

)
and M =

(
n−r−1
r−1

)
.

Proposition 2.5. If r = r(n) = o(n1/2), then N − M = o(N). Furthermore, if

r = o(n1/3), then N−M = o(N/r).

Proof. Both claims follow from the observation that

N−M =

(
n− 1

r − 1

)
−
(
n− r − 1

r − 1

)
=

r∑
i=1

(
n− i

r − 1

)
−
(
n− i− 1

r − 1

)

=
r∑

i=1

(
n− i− 1

r − 2

)
≤ r

(
n− 2

r − 2

)
=

r(r − 1)

n− 1
N. □

3. Upper bound for the critical threshold

We now turn to our proof of Theorem 1.2. In this section, we shall bound the critical

threshold from above, i.e., we shall prove that a random analogue of the Erdős–Ko–Rado

theorem holds if p > (1 + ε)pc(n, r) where pc(n, r) is given by (1).

Let us remind the reader before we begin that for us, a star in the Kneser graph is a

maximal trivial intersecting family of sets (and this should not be confused with the

graph-theoretic notion of a star).

Proof of the upper bound in Theorem 1.2. Let 0 < ε < 1/2 and set p = p(n) = (1 +

ε)pc(n, r). We shall prove that with high probability, the independence number of

Kp(n, r) is N, and that furthermore, the only independent sets of size N in Kp(n, r)

are stars. Since we are working with monotone properties, it suffices to prove this result

for ε small enough, so we lose nothing by assuming 0 < ε < 1/2.

For each i ≥ 1, let Xi be the number of families A ⊂ [n](r) inducing an independent

set in Kp(n, r) such that |A| = N and d(A) = N − i. Also, let Y be the number of

independent families A ⊂ [n](r) such that |A| = N + 1 and d(A) = N; in other words,

independent families of size N + 1 which contain an entire star.
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Our aim is to show that with high probability, the random variables defined above

are all equal to zero. This then implies the lower bound on the critical threshold; since

every Xi is equal to zero, every independent set in Kp(n, r) of cardinality at least N

must contain an entire star, and since Y is also equal to zero, the only independent

sets of cardinality at least N are stars.

We start by computing E[Y ]. We know that for any star S, any A ∈ [n](r) \ S is

disjoint from M elements of S, so

E[Y ] =

(
n

1

)(
V −N

1

)
(1 − p)M. (2)

When r = o(n1/3) (indeed, when r = o(n1/2)), we know from Proposition 2.5 that

M = (1 + o(1))N. Since p = (1 + ε)((r + 1) log n− r log r)/N, we see that

E[Y ] ≤ nV(1 − p)(1+o(1))N

≤ n
(en
r

)r
exp ((−1 + o(1))pN)

≤ n
(en
r

)r
exp ((1 + ε + o(1))(r log r − (r + 1) log n))

≤
(er
n

)(ε+o(1))r

≤ n−(ε+o(1))2r/3 = o(1).

By Markov’s inequality, we know that P(Y > 0) ≤ E[Y ] and it follows that Y is zero

with high probability.

We now turn our attention to the Xi. To keep our argument simple, we distinguish

three cases: we first deal with small values of i where the Xi count families of very

large maximum degree, then we consider families of large (but not huge) maximum

degree, and in the final case, we deal with families of small maximum degree.

Case 1: Very large maximum degree. Unfortunately, when i is small, it is not true

that E[Xi] goes to zero as n grows. For constant i, E[Xi] ≥ n
(
N
i

)(
V−N

i

)
(1 − p)(i+o(1))N.

When r = 3 and i = 2 for example, it follows that

E[X2] ≥ n

((n−1
2

)
2

)((n
3

)
−
(
n−1
2

)
2

)
(1 − p)(2+o(1))N

≥ no(1) n11

n8(1+ε)
≥ n3−8ε+o(1),

which grows with n when ε is small enough. However, if we compute Var [X2], we are

encouraged to find that Var [X2]/E[X2]
2 is bounded away from zero; indeed, we observe

similar behaviour for any fixed value of i and larger r as well. We therefore adopt a

different strategy to bound P(Xi > 0) for small i.

For j ≥ i, let Xi,j be the number of families A ⊂ [n](r) inducing a maximal independent

set in Kp(n, r) such that d(A) = N − i and |A| = N + j − i. If Xi > 0, then clearly
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Xi,j > 0 for some j ≥ i. To compute E[Xi,j], we note that any family A counted by

Xi,j can be described by specifying a star S, a subfamily A1 ⊂ S of i sets missing from

S, and another family A2 of cardinality j disjoint from S such that

(1) all the edges between S \ A1 and A2 in K(n, r) are absent in Kp(n, r) (since A
is independent), and

(2) each set in A1 is adjacent to at least one set in A2 in Kp(n, r) (because A is a

maximal independent set).

The number of edges between S \A1 and A2 is at least j(M− i) since any set not in

a star is adjacent to precisely M sets in the star in K(n, r). Also, the probability that

a set in A1 has a neighbour in A2 in Kp(n, r) is at most jp. Therefore, we have

E[Xi,j] ≤ n

(
N

i

)(
V

j

)
(1 − p)j(M−i)(jp)i.

We look at the ratio of the upper bounds for E[Xi,j+1] and E[Xi,j] above and note

that this ratio is at most

V(1 − p)M−i(1 + 1/j)i.

When 1 ≤ i ≤ εN/2 and j ≥ i, we see, using the fact that M = (1 + o(1))N, that

V(1 − p)M−i(1 + 1/j)i ≤ e
(en
r

)r
exp

(
−(1 + ε/2 − ε2/2 + o(1))pc(n, r)N

)
≤ er+1

( r
n

)εr/5
= o(1).

Consequently, we have

P[Xi > 0] ≤
∑
j≥i

E[Xi,j] ≤ 2n

(
N

i

)(
V

i

)
(1 − p)i(M−i)(ip)i

≤ 2n

(
eN

i

)i(
eV

i

)i

exp (−i(1 + ε/5)pc(n, r)N)

(
i(r + 1) log n

N

)i

≤ 2e2in((r + 1) log n)i
(
V

i

)i

exp (−i(1 + ε/5)pc(n, r)N)

≤ 2

(
er+2(r + 1) log n

i

( r
n

)εr/5)i

≤ 2

(
er+2(r + 1) log n

( r
n

)εr/5)i

.

Summing this estimate for i ≤ εN/2, we get

εN/2∑
i=1

P(Xi > 0) ≤
εN/2∑
i=1

2

(
er+2(r + 1) log n

( r
n

)εr/5)i

≤ 4

(
er+2(r + 1) log n

( r
n

)εr/5)
= o(1),
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so by the union bound, with high probability, for each 1 ≤ i ≤ εN/2, the random

variable Xi is zero.

Case 2: Large maximum degree. Next, we consider the Xi with

εN/2 < i ≤ N

(
1 − 1 − ε/2

r + 1

)
.

As noted earlier, for any star S, the number of edges in K(n, r) between a set

A ∈ [n](r)\S and a family A ⊂ S is at least |A|−(N−M). We know from Proposition 2.5

that N−M = o(N/r) when r = o(n1/3); consequently, it follows that if A ⊂ [n](r) has

cardinality N and d(A) ≥ (1 − ε/2)N/(r + 1), then e(A) ≥ (1 + o(1))d(A)(N− d(A)).

To simplify calculations, let us define α by setting i = αN = αrV/n, where

ε/2 < α ≤ (r + ε/2)/(r + 1).

In this range, we see that

E[Xi] ≤ n

(
N

i

)(
V

i

)
(1 − p)(1+o(1))i(N−i)

≤ n
( e
α

)αN(en
rα

)αN
exp

(
−(1 + ε + o(1))α(1 − α)pc(n, r)N2

)
≤ n

(
nr(1+ε+o(1))(1−α)r

rn(1+ε+o(1))(1−α)(r+1)

)αN

≤ n
( r
n

)(ε2/4−ε3/4+o(1))N

.

The last two inequalities above are obtained by first collecting the O(1) terms in the

bound into the o(1) terms in the exponent, and by then using the bounds on α. It

follows that
(2r+ε)N
2(r+1)∑
i=εN/2

P(Xi > 0) ≤ nN
( r
n

)(ε2/4−ε3/4+o(1))N

= o(1),

so with high probability, for each εN/2 < i ≤ (r + ε/2)N/(r + 1), the random variable

Xi is zero.

Case 3: Small maximum degree. We shall complete the proof of the lower bound

by showing that ∑
i>

(2r+ε)N
2(r+1)

E[Xi] = o(1).

It turns out that in this range of i, somewhat surprisingly, it is significantly easier to

deal with the case where r tends to infinity with n as opposed to the case where r is

small.

Suppose first that r ≥ log n. Then

(1 − ε/2)

r + 1
<

1

r + 4
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for all large enough n. Observe that subgraph of K(n, r) induced by a family A of

cardinality N has minimum degree at least N − rd(A) and consequently, if d(A) <

N/(r + 4), then

e(A) ≥ N

2

(
N− rN

r + 4

)
=

2N2

r + 4
.

In this case, it follows that∑
i>

(2r+ε)N
2(r+1)

E[Xi] ≤
(
V

N

)
(1 − p)2N

2/(r+4) ≤
(en
r

)N( r
n

)2rN/(r+4)

≤
(er
n

)(1+o(1))N

= o(1)

which completes the proof when r ≥ log n.

Next, suppose that r ≤ log n. When r ≤ log n, it is not necessarily true (if r = O(1)

and ε is sufficiently small, for instance) that (1 − ε/2)/(r + 1) < 1/(r + 4). It turns out

that in this case, we need a more careful estimate.

For a family A ⊂ [n](r) and each x ∈ [n], define αx = |Ax|/N. Note that
∑n

x=1 αx = r.

Recall that Proposition 2.1 tells us that

e(A) ≥
(
|A|
2

)
−
∑
x∈[n]

(
|Ax|

2

)
≥
(
N

2

)(
1 −

∑
x∈[n]

α2
x

)
.

Let A ⊂ [n](r) be such that |A| = N and d(A) < (1 − ε/2)N/(r + 1). For such a

family A, let D = DA be the set of x ∈ [n] such that αx ≥ (log n)−2. Since
∑n

x=1 αx = r,

we see that |D| ≤ r(log n)2 ≤ (log n)3.

Lemma 3.1. Fix D = DA and the values of |Ax| for x ∈ D. Subject to these restrictions,

the expected number of families A ⊂ [n](r) of maximum degree at most (1−ε/2)N/(r+1)

which induce independent sets in Kp(n, r) is at most (r/n)(3/10+o(1))N.

Proof. Since
∑n

x=1 αx = r, it follows (by convexity, for example) that
∑

x∈[n]\D α2
x is at

most r(log n)−2 ≤ (log n)−1 = o(1). Consequently,

e(A) ≥ N2

2

(
1 + o(1) −

∑
x∈[n]

α2
x

)
≥ N2

2

(
1 + o(1) −

∑
x∈D

α2
x

)
,

so the probability that a family A as in the statement of the lemma induces an

independent set is at most

(1 − p)e(A) ≤ exp

(
− pN2

2

(
1 + o(1) −

∑
x∈D

α2
x

))

≤

(
r(1+o(1))r

n(1+o(1))(r+1)

∏
x∈D

(
nr+1

rr

)α2
x

)N/2

. (3)

9



Next, we bound the number of ways in which we can choose A as in Lemma 3.1.

Using the fact that r ≤ log n and |D| ≤ (log n)3, we first note that

N ≥
∣∣∣⋃
x∈D

Ax

∣∣∣ ≥∑
x∈D

|Ax| −
∑
x,y∈D
x<y

|Ax ∩ Ay|

≥
∑
x∈D

|Ax| − |D|2
(
n− 2

r − 2

)

≥

(∑
x∈D

αx −
|D|2r
n

)
N ≥

(∑
x∈D

αx + o(1)

)
N.

It follows that ∑
x∈D

αx ≤ 1 + o(1) < 1 + 1/10 (4)

and

|A \ (∪x∈DAx)| < N

(
1 + 1/5 −

∑
x∈D

αx

)
.

(Here, the choice of the constants 1/10 and 1/5 was arbitrary; any two sufficiently small

constants would have sufficed.) Hence, the number of ways to choose A is at most(
V

N(6/5 −
∑

x∈D αx)

)∏
x∈D

(
N

αxN

)
≤
(

10en

r

)N(6/5−
∑

x∈D αx) ∏
x∈D

(
e

αx

)αxN

≤ 100N
(n
r

)6N/5 ∏
x∈D

(
r

αxn

)αxN

≤
(n
r

)(6/5+o(1))N ∏
x∈D

(
r

αxn

)αxN

. (5)

From (3) and (5), we conclude that the expected number of independent families A
as in the lemma is at most(

r(1+o(1))r/2−6/5

n(1+o(1))(r+1)/2−6/5

)N ∏
x∈D

((
r

αxn

)(
nr+1

rr

)αx/2
)αxN

Now, note that(r/αn)(nr+1/rr)α/2 < 1 whenever (log n)−2 ≤ α < (1 − ε/2)/(r + 1).

Indeed, observe that the function f defined on the positive reals by

f(α) =
α((r + 1) log n− r log r)

2
− logα + log (r/n)

is convex; so to check that f(α) < 0 when (log n)−2 ≤ α ≤ (1 − ε/2)/(r + 1), it suffices

to check that f((log n)−2) < 0 and f((1 − ε/2)/(r + 1)) < 0 and both conditions hold

for all sufficiently large n when r ≤ log n.
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Therefore, we conclude that the expected number of independent families A as in

the lemma is at most(
r(1+o(1))r/2−6/5

n(1+o(1))(r+1)/2−6/5

)N

≤
(
r(1+o(1))(r+1)/2−6/5

n(1+o(1))(r+1)/2−6/5

)N

≤
( r
n

)(3/10+o(1))N

,

where the last inequality above follows from the fact that (r + 1)/2− 6/5 ≥ 3/10 for all

r ≥ 2. This completes the proof of Lemma 3.1. □

Recall that if r ≤ log n and d(A) < (1− ε/2)N/(r + 1), then |DA| ≤ (log n)3. So the

number of choices for the set DA is clearly at most

(logn)3∑
j=0

(
n

j

)
≤ (log n)3

(
n

(log n)3

)
. (6)

We know from (4) that the values |Ax| for x ∈ DA satisfy∑
x∈D

|Ax| ≤ 11N/10,

so the number of ways of selecting the values of |Ax| is at most(
11N/10 + (log n)3 + 1

(log n)3

)
≤ (2N)(logn)

3

. (7)

From Lemma 3.1, we conclude using (6) and (7) that∑
i>

(2r+ε)N
2(r+1)

E[Xi] ≤ (log n)3n(logn)3(2N)(logn)
3
( r
n

)(3/10+o(1))N

. (8)

It is easy to check that the right-hand side of (8) is o(1) for every 2 ≤ r ≤ log n. Hence,

with high probability, for each i > (r + ε/2)N/(r + 1), the random variable Xi is zero;

this completes the proof of the lower bound. □

Remark. A more careful analysis can be used to show that for large r, i.e., when r tends

to infinity with n, it is sufficient to take ε to be greater than 6/r, say, as opposed to a

small fixed constant.

4. Lower bound for the critical threshold

As in the previous section, let Y be the number of independent families in Kp(n, r)

of size N + 1 which contain an entire star.

Proof of the lower bound in Theorem 1.2. Turning to the lower bound, we shall assume

that p = (1 − ε)pc(n, r) for some fixed real number ε > 0 and we show using a

simple second moment calculation that Y > 0 with high probability; consequently, the

independence number of Kp(n, r) is at least N + 1.

11



Recall (2) which says that

E[Y ] =

(
n

1

)(
V −N

1

)
(1 − p)M.

Note that N = o(V) when r = o(n1/3); it follows that

E[Y ] ≥ (1 + o(1))nV(1 − p)N

≥ (1 + o(1))
nr+1

r!
exp

(
−(p + p2)N

)
≥ nr+1

r!
exp ((1 − ε + o(1))(r log r − (r + 1) log n))

≥
(n
r

)(ε+o(1))r

,

so E[Y ] → ∞ when p = (1 − ε)pc(n, r).

Therefore, to show that Y > 0 with high probability, it suffices to show that Var[Y ] =

o(E[Y ]2) or equivalently, that E[(Y )2] = (1 + o(1))E[Y ]2, where E[(Y )2] = E[Y (Y − 1)]

is the second factorial moment of Y .

Note that

E[(Y )2] =
∑

x,y,A,B

P(Sx ∪ {A} andSy ∪ {B} are independent),

the sum being over ordered 4-tuples (x, y, A,B) with x, y ∈ [n], A ∈ [n](r) \ Sx and

B ∈ [n](r) \ Sy such that (x,A) ̸= (y,B). Now, observe that∑
x̸=y

P(Sx ∪ {A} andSy ∪ {B} are independent) ≤ (n2)(V −N)2(1 − p)(2−o(1))M

= (1 + o(1))E[Y ]2,

and ∑
x=y,A̸=B

P(Sx ∪ {A} andSy ∪ {B} are independent) ≤ n(V −N)2(1 − p)2M

= o(E[Y ]2).

By Chebyshev’s inequality, we conclude that Y > 0 with high probability, so the

independence number of Kp(n, r) is at least N + 1. □

5. Conclusion

The condition r = o(n1/3) in our results seems somewhat artificial; we would expect

the same formula for the critical threshold to hold for much larger r as well. We suspect

that this formula in fact gives the exact value of the critical threshold when r = o(n)

but we are unable to prove this presently.
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The size of the critical window also merits study. As we remarked earlier, our proof

(for large r) works even when we are a factor of (1+6/r) away from the critical threshold;

it is possible that the critical window is much smaller and it is an interesting problem

to determine the size of the critical window precisely.

Of course, one would be interested to know what happens for larger r as well. When

r/n is bounded away from 1/2, we suspect it should be possible to demonstrate stability

of the Erdős–Ko–Rado theorem at p = 1/2, say. Perhaps the most interesting question

though is the case n = 2r + 1; it would be interesting to determine if a stability result is

true for any probability p bounded away from 1. We hope to return to these questions

in future work.
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