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Abstract. We study a geometrically constrained coalescence model derived from

spin systems. Given two probability distributions PR and PB on the positive reals

with finite means, colour the real line alternately with red and blue intervals so that

the lengths of the red intervals have distribution PR, the lengths of the blue intervals

have distribution PB , and distinct intervals have independent lengths. Now, iteratively

update this colouring of the line by coalescing intervals: change the colour of any

interval that is surrounded by longer intervals so that these three consecutive intervals

subsequently form a single monochromatic interval. We say that a colour (either red

or blue) wins if every point of the line is eventually of that colour. Holroyd, in 2010,

asked the following question: under what natural conditions on the initial distributions

is one of the colours almost surely guaranteed to win? It turns out that the answer to

this question can be quite counter-intuitive due to the non-monotone dynamics of the

model. In this paper, we investigate various notions of ‘advantage’ one of the colours

might initially possess, and in the course of doing so, we determine which of the two

colours emerges victorious for various nontrivial pairs of initial distributions.

1. Introduction

The object of study in this paper is a one-dimensional geometrically constrained

coalescence model. This model, coalescence on the real line, describes the evolution of

a colouring of the real line into intervals: a colouring ∆ of the real line R with two

colours, red and blue, is a colouring into intervals if there is a doubly infinite sequence

of points (pi)i∈Z, with pi < pj when i < j and R =
⋃

i∈Z(pi, pi+1], such that the interval

(p2i−1, p2i] is coloured red and the interval (p2i, p2i+1] is coloured blue for each i ∈ Z; we
call the points (pi)i∈Z the boundary-points of the colouring. In coalescence on the real

line, or linear coalescence for short, we evolve a colouring of the real line into intervals

by repeatedly coalescing intervals together according to the following rule: change the

colour of any monochromatic interval of the colouring that is surrounded by longer

monochromatic intervals of the opposite colour so that the three consecutive intervals

are of the same colour; these three intervals are subsequently taken to be a single

monochromatic interval. We call such a step in which three consecutive monochromatic

intervals of the colouring are merged into a single monochromatic interval a recolouring ;
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Figure 1. A sequence of two recolourings.

see Figure 1 for an illustration. Here, our primary focus is the following question:

what can we say about the dynamics of linear coalescence when the initial colouring is

stochastic? To make this question precise, we need a few definitions.

Given a pair of probability distributions PR and PB on the positive reals with finite

means µR and µB respectively, we may construct a colouring of the real line into

intervals so that the lengths of the red intervals have distribution PR, the lengths of

the blue intervals have distribution PB, and distinct intervals have independent lengths.

Indeed, let (Ri)i∈Z and (Bi)i∈Z be two i.i.d. sequences of random variables (which are

additionally independent of each other) with distributions PR and PB respectively; we

then write ∆(PR,PB) for the random colouring of the real line into intervals constructed

as follows: colour the interval (−R0, 0] red and the interval (0,B0] blue, then colour the

interval (B0,R1 + B0] red and the interval (−R0 − B−1,−R0] blue, and so on, adding

intervals of alternating colours to the left and right inductively. Clearly, the above

colouring is shift-invariant with respect to the underlying sequences of interval lengths.

Let us also note that there is nothing special about the precise choice of origin in

the above construction, and also that the sequence of boundary-points of a colouring

generated as described above is unbounded in both directions almost surely.

We say that a colouring ∆ of the real line into intervals with boundary-points (pi)i∈Z
is non-degenerate if pk − pj ̸= pl − pk for any three boundary-points pj, pk and pl with

j < k < l. It is clear that no two adjacent monochromatic intervals will ever have

the same length when we iteratively recolour intervals starting from a non-degenerate

colouring. Henceforth, to avoid unnecessary complications, all our colourings of the line

into intervals will be assumed to be non-degenerate. Observe that if at least one of PR

or PB is non-atomic, then ∆(PR,PB) is almost surely non-degenerate; therefore, when

considering stochastic colourings of the form ∆(PR,PB), we shall assume implicitly that

at least one of PR and PB is non-atomic.

A sequence of recolourings is said to be complete (with respect to an initial colouring ∆)

if whenever there exists a monochromatic interval I surrounded by longer monochromatic

intervals of the opposite colour at some stage of the evolution (in linear coalescence

starting from ∆), then I is eventually recoloured. To see that the notion of a complete
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sequence of recolourings is meaningful, note that if a monochromatic interval I can

be recoloured, then its neighbours cannot; as its neighbours can only grow longer,

recolouring I remains an option forever.

Here, we shall aim to understand the dynamics of linear coalescence starting from a

stochastic initial colouring; the precise question that we shall be concerned with is the

following.

Problem 1.1. Given PR and PB at least one of which is non-atomic, what is the result

of a complete sequence of recolourings applied to ∆(PR,PB)?

We shall see that for any such pair of distributions PR and PB, there are only

three possible outcomes (each of which has probability either 0 or 1): either every

point changes colour finitely many times and is eventually red, every point changes

colour finitely many times and is eventually blue, or the colour of every point changes

infinitely often. Furthermore, it turns out to be the case (see Proposition 2.1) that the

outcome depends only on the distributions themselves and is independent of the choice

of complete sequence of recolourings; on account of this fact, when we speak about the

‘dynamics’ of linear coalescence in the sequel, we shall mean the long-term behaviour of

the evolution under an arbitrary complete sequence of recolourings.

Given a pair of distributions PR and PB, we say that a colour (either red or blue) wins

if every point is eventually of that colour under any complete sequence of recolourings

applied to ∆(PR,PB); on the other hand, if the colour of every point changes infinitely

often in linear coalescence starting from ∆(PR,PB), then we say that it is a tie.

It is easy to see that if PR = PB, then we must have a tie by symmetry. However,

when PR ̸= PB, one would expect the coalescence process to amplify any ‘advantage’

possessed initially by one of the colours. We therefore restrict our attention to the

following question in this paper.

Problem 1.2. Under what natural conditions on the distributions PR and PB is one of

the colours guaranteed to win?

The coalescence model considered in this paper (and Problem 1.2 in particular) was

proposed by Holroyd [16]. The primary motivation for studying this model comes from

trying to better understand the behaviour of various models for interacting particle

systems in the statistical physics literature. Many spin particle models [14, 8, 9, 25]

have been introduced in the physics literature to model, amongst other things, the

liquid-glass transition, the formation of domains in magnetic systems, and the evolution

of liquid droplets. In such models, one usually has a particle at each point of the

cubic lattice Zd and one specifies the state of each such particle; the model comes

equipped with a local rule which governs the evolution of the states of the particles

and one is typically interested in understanding the dynamics of the evolution of a
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random initial configuration. Coalescence on the line can be seen (when we discretise

the real line, place a particle at each such resulting point, and then identify the colours

red and blue with the two possible spin states of these particles) to be an example

of such a spin particle model on Z where the local update rule goes beyond merely

considering nearest-neighbour interactions. When the discretisation is taken to be fine,

our model can in fact be seen exactly as the zero-temperature and large-domain limit

of the coarsening of magnetic domains in one dimension; see [7], for example.

The process we study can also be thought of as a ‘hierarchical coalescence process’

where the coalescences involving short intervals occur first. A variant of this process

with PR = PB where the recolourings take place in a sequence of distinct epochs has been

the subject of some recent work; interesting results about such hierarchical coalescence

processes have been obtained by Faggionato, Martinelli, Roberto and Toninelli [12, 13].

Results about the dynamics of such hierarchical coalescence processes have been useful

in explaining the universality in the limiting behaviour of spin particle models like the

East model [21]; for details, see [11].

Problems 1.1 and 1.2 are also closely related to the question of constructing ‘stable

matching schemes’, a well-studied problem in combinatorics [22, 5], probability [24, 20]

and statistical physics [23, 10]. Given a colouring of the real line into intervals, we can

construct a perfect matching between the red and blue boundary-points of this colouring

as follows: we coalesce the intervals using some complete sequence of recolourings,

and every time we recolour an interval, we match the endpoints of that interval to

each other. The resulting perfect matching between the red and blue boundary-points,

assuming that each boundary-point prefers to be matched to a boundary-point of the

opposite colour as close to it as possible, is easily seen to be stable in the sense of Gale

and Shapley [15]. For related work on constructing matchings on point sets arising

from various point processes in a Euclidean space, we refer the reader to the papers

of Ajtai, Komlós and Tusnády [1], Holroyd, Pemantle, Peres and Schramm [19], and

Holroyd [18].

Let us remark briefly that if we only coalesce intervals of a single colour, say blue,

where adjacent blue intervals of length x and y merge together at rate K(x, y) when both

intervals are longer than the red interval between them, then we recover a geometrically

constrained variant of the Marcus–Lushnikov model for stochastic coalescence; we refer

the reader to the survey of Aldous [2] for more about the Marcus–Lushnikov model and

its variants. The main difference between such models and the model considered in this

paper, and perhaps what makes linear coalescence particularly interesting, concerns

monotonicity. Indeed, if we only merge blue intervals together, then it is not hard to see

that the process is monotone with respect to the blue distribution, assuming of course

that the rate kernel K is suitably monotone. However, since a point can be recoloured

an arbitrarily large number of times in linear coalescence, it turns out (see Claim 2.3)
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that we cannot expect any such monotonicity. Indeed, it would appear (see Claim 2.4)

that the relationship between initial distributions induced by ‘winning’ in the sense of

Problem 1.2 is not even transitive!

It is also possible to study linear coalescence in continuous time. Indeed, place a

balloon at each of the boundary-points and inflate these balloons at rate 1/2 so that a

balloon centred at some boundary-point has radius t/2 at time t; when two balloons

meet, they both pop and we match the centres of these balloons and remove them. It is

not hard to check that if we look at the balloons which remain at some time t > 0, they

correspond precisely to the endpoints of intervals in the process once every interval of

length less than t has been iteratively removed. One benefit of studying the process in

continuous time is that one can say a great deal about the process in the case where

PR = PB. As we remarked earlier, when PR = PB, the outcome of linear coalescence is a

tie. However, in this case, one can actually use the machinery of hierarchical coalescence

processes to say a lot more about the normalised lengths of the surviving intervals at

each time t > 0. By observing that the sequence of boundary-points which remain at

any time t is a renewal process, Eccles and Holroyd [17] have obtained results about the

probability that a boundary-point survives to time t in this continuous time process for

various initial distributions, showing, for example, that in many cases, this probability

is asymptotic to K/t as t → ∞ for some explicit constant K > 0.

However, the techniques discussed above seem to be of little use when PR ̸= PB.

It is reasonable to believe that if one of the colours has enough of an advantage to

begin with, then this advantage should amplify and that colour should win; the main

difficulty appears to lie in finding the right notion of advantage, however. It is clear

that blue wins when, for some L > 0, the length of each initial blue interval exceeds L

and the length of each initial red interval is at most L; indeed, we can recolour all the

red intervals in one step. However, the task of proving that a particular colour wins

for any nontrivial pair of distributions does not seem to be straightforward. In this

paper, we shall develop some combinatorial techniques to track the dynamics of linear

coalescence in the case where PR ̸= PB, and then use these techniques to investigate

various natural notions of advantage; in doing so, we shall decide the outcome of linear

coalescence for various nontrivial pairs of distributions.

2. Our results

Before we state our results, we remind the reader that here, and in what follows, we

shall restrict our attention to the evolution of a non-degenerate initial colouring of the

real line into intervals under a complete sequence of recolourings; when considering

stochastic colourings of the form ∆(PR,PB) in particular, we shall assume implicitly

that at least one of PR and PB is non-atomic. We begin with the following proposition

that establishes the appropriate setting for our results.
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Proposition 2.1. For any pair of probability distributions PR and PB (at least one of

which is non-atomic), under any complete sequence of recolourings applied to ∆(PR,PB),

either

(1) all points are eventually red almost surely (a red-win), or

(2) all points are eventually blue almost surely (a blue-win), or

(3) every point changes colour infinitely often almost surely (a tie);

furthermore, the outcome is independent of the choice of complete sequence of recolour-

ings.

In the light of Proposition 2.1, it is natural to expect that if the initial distribution of

one of the colours has enough of an advantage over the initial distribution of the other

colour, then this advantage should amplify and that colour should win; here, we shall

consider two natural notions of advantage in linear coalescence.

The first, and perhaps most elementary, notion of advantage that one can consider

is based simply on a first moment condition: does a colour win almost surely if the

mean of its distribution is substantially bigger than that of the distribution of the other

colour? Our first result shows that this is not the case.

Theorem 2.2. For any K > 0, there exist distributions PR and PB with µR > KµB

for which blue wins almost surely.

The next, and much stronger, notion of advantage that we consider is that of stochastic

dominance. We say that PR stochastically dominates PB, and write PR ≽ PB, if

PR([x,∞)) ≥ PB([x,∞)) for every x ≥ 0; if this inequality is strict for at least one x > 0,

we write PR ≻ PB and say that PR stochastically dominates PB strictly. It is tempting

to conjecture that a colour wins almost surely if its distribution stochastically dominates

the distribution of the other colour strictly; however, rather counter-intuitively, this

does not appear to be the case. In fact, even a combination of stochastic dominance

and the first moment condition considered above is not sufficient to guarantee victory.

Claim 2.3. With very high confidence, for any K > 0, there exist distributions PR and

PB such that PR ≻ PB and µR > KµB for which blue wins almost surely.

Our next result provides further evidence that linear coalescence is far from being

monotone with respect to the lengths of the intervals in the initial colouring. Consider

the relation ▷ on the space of probability distributions on the positive reals with

finite means defined by saying that PR ▷ PB if red wins when the initial red and blue

distributions are PR and PB respectively. One of the main difficulties in analysing linear

coalescence stems from the fact that ▷ does not appear to be transitive.

Claim 2.4. With very high confidence, there exist distributions PR, PG and PB such

that PR ▷ PG, PG ▷ PB and PB ▷ PR.
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The phrase ‘with very high confidence’ merits explanation. We show that the

proofs of Claims 2.3 and 2.4 may be reduced to the task of bounding certain finite-

dimensional numerical integrals, which are nevertheless of sufficiently high dimension

as to be impractical to evaluate. Instead, we estimate them by Monte Carlo methods.

Furthermore, we show that if it was the case that the required bounds did not hold,

the probability of our Monte Carlo results would be very small (of the order 10−12). In

the past, such Monte Carlo methods have been used to prove high confidence intervals

for the critical probabilities of various percolation models; for some background, we

refer the reader to the papers of Bollobás and Stacey [6], and Balister, Bollobás and

Walters [4].

When we are given a pair of distributions PR and PB and are faced with the task of

deciding the outcome of linear coalescence with these initial distributions, a natural

first step is to study the coalescence process with these distributions on a large finite

interval. If a large fraction of this finite interval turns blue (as in Figure 2) with a

reasonably large probability, one would be inclined to believe that blue wins. It is

possible in certain cases (see Theorem 4.2) to actually deduce the outcome of linear

coalescence from the typical outcome of the coalescence process on a large finite interval;

the proofs of Theorem 2.2, Claim 2.3 and Claim 2.4 hinge upon this idea.

While stochastic dominance, in the light of Claim 2.3, does not seem to be enough in

general to guarantee victory, our next theorem, which is a positive result, states that

if one of the colours has a ‘sufficiently large’ stochastic advantage to begin with, then

that colour wins. To state this theorem, our main result, we need a few definitions.

Define F(λ) to be the shifted exponential distribution on [1,∞) with density function

exp(−(x− 1)/λ)

λ
1{x≥1}.

In other words, if the distribution of a random variable X is F(λ), then X − 1 is

an exponential random variable with mean λ. Next, define G(a) to be the Pareto

distribution on [1,∞) with density function

2(a+ 1)2

(a+ x)3
1{x≥1}.

Note that if the distribution of a random variable X is G(a), then P(X ≥ x) =

(a+ 1)2/(a+ x)2 for all x ≥ 1. With these definitions in place, we can now state our

main theorem.

Theorem 2.5. There exists a constant Λ < 14 such that for all λ > Λ and all a ∈ [0, 1),

if PB ≽ F(λ) and G(a) ≽ PR, then almost surely blue wins.

It is worth noting that the distributions F(λ) and G(a) are stochastically incomparable,

i.e., F(λ) ̸≽ G(a) and G(a) ̸≽ F(λ) for all λ > Λ and 0 ≤ a < 1. The choice of the

blue distribution F(λ) is fairly natural as we shall see that once we have eliminated
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Figure 2. The coalescence process with PR = G(1) and PB = F(3)

restricted to a finite interval.

very short intervals, the distribution of the lengths of the remaining blue intervals

always dominates some exponential distribution. The choice of the red distribution

G(a) appears to be a bit more artificial; however, the proof naturally asks for (and

applications naturally want) a distribution with a fat tail, and this seems to be the

simplest distribution for which our proof works. As an application of Theorem 2.5, we

establish the following result.

Theorem 2.6. Suppose that all the red intervals are initially of length 1, and that the

initial lengths of the blue intervals are uniformly distributed on the interval [0, 1 + γ].

There exist positive constants γR = 0.1216 and γB = 6.048 such that if 0 ≤ γ ≤ γR,

then red wins almost surely, and if γ ≥ γB , then blue wins almost surely.

Simulations suggest, as one might expect, that there is a phase transition in the context

of Theorem 2.6 from a red-win to a blue-win at some critical value γc ∈ [1.16, 1.19];

however, due to the non-monotone nature of linear coalescence, we are unable to even

rule out the possibility that there exist infinitely many values of γ in the interval [γR, γB]

at which the outcome flips!

The rest of this paper is organised as follows. In Section 3, we introduce some

notation and prove Proposition 2.1. In Section 4, we describe a method which can,

in certain cases, be used to deduce the outcome of linear coalescence from the typical

outcome of the process on a large finite interval; we then prove Theorem 2.2 as well as

our high confidence results, Claims 2.3 and 2.4, in Section 5. To prove our main result,

we develop in Section 6 a method for tracking the evolution by maintaining a collection

of ‘approximate interval lengths’ that is, crucially, stable under stochastic dominance.

We then prove Theorem 2.5 in Section 7 and describe how to deduce Theorem 2.6 from

Theorem 2.5 in Section 8. Finally, we conclude the paper in Section 9 with a discussion

of some open problems.
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The computer programs used to establish the aforementioned high confidence results,

and to rigorously verify certain other estimates, are available here.

3. Preliminaries

In this section, we shall prove a few elementary results about linear coalescence in

the case in which we have only finitely many intervals, justify our claims about the

outcome of linear coalescence, and finally, establish some notational conventions for the

rest of the paper.

By a coloured-interval, we mean an interval consisting of a finite number of subintervals

coloured alternately red and blue. We shall consider the coalescence process on a

coloured-interval; all our terminology in the case of linear coalescence carries over to

this setting as well. In what follows, all coloured-intervals that we consider will be

non-degenerate.

It is clear that any complete sequence of recolourings for linear coalescence on a

coloured-interval is of finite length. The following simple fact is, perhaps, not so

immediate.

Lemma 3.1. The number of times a point of a (non-degenerate) coloured-interval

changes colour in a complete sequence of recolourings is independent of the complete

sequence. In particular, the final state of linear coalescence on a coloured-interval is

independent of the order of recolourings.

Proof. We claim that the number of recolourings of a point in any complete sequence

of recolourings is the same as in the sequence of recolourings where one inductively

recolours the shortest recolourable interval, i.e., the shortest monochromatic interval

that is surrounded by longer monochromatic intervals on both sides, at each step.

If there is no recolourable interval to begin with, then there is nothing to prove. So

suppose that R is the shortest (say red) recolourable interval in the original configuration,

and that it is surrounded by the longer (blue) intervals B− and B+. Then in any

complete sequence of recolourings, it is impossible to recolour either B− or B+ before

recolouring R. Thus, R is always surrounded by longer intervals up until the time it is

(necessarily) recoloured in the given complete sequence, say at step t. Compare this

with the sequence where we recolour R first, but otherwise keep the order of recolourings

the same. Any red interval that gets recoloured and was surrounded by an interval

containing B− or B+ in the given complete sequence is now surrounded by an even

longer blue interval containing B−, R and B+, so the recolouring is still valid and still

recolours exactly the same set of points. Finally after step t in the new sequence of

recolourings, recolouring R is unnecessary and we find that we are in exactly the same

state as in the given complete sequence after step t, with each point recoloured the

same number of times. Hence, we may assume that R is recoloured first. Applying
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induction on the number of intervals, we see that the order of recolourings from the

next step onwards is irrelevant when we recolour R first. Thus, we may as well always

recolour in the order of shortest recolourable interval first. As this ordering is uniquely

defined (for any non-degenerate coloured-interval), it follows that the number of times

each point is recoloured is independent of the complete sequence of recolourings.

The final state of the coalescence process on the coloured-interval depends only on

the number of times each point is recoloured, so it is also independent of the order of

recolourings. □

Lemma 3.1 allows us to uniquely define the final state [C] of linear coalescence on a

coloured-interval C. We call [C] the closure of C, and say that C is closed if C = [C].

Note that C is closed if and only if the lengths of its monochromatic subintervals form a

sequence with no local minimum, i.e., if this sequence of lengths consists of a (possibly

trivial) increasing subsequence followed by a (possibly trivial) decreasing subsequence.

Denote by C1 + C2 the concatenation of the coloured-intervals C1 and C2; if C1

ends and C2 starts with intervals of the same colour then we merge these into a single

monochromatic interval in C1 + C2. As a consequence of Lemma 3.1, we see that

[[C1] + [C2]] = [C1 + C2] for any two coloured-intervals C1 and C2.

For x ∈ C, write Nx(C) for the number of times the point x is recoloured in any

complete sequence of recolourings of the coloured-interval C. We first note that this is

well-defined in the light of Lemma 3.1. Moreover, we note that

Nx(C− + C + C+) ≥ Nx(C) (1)

for any pair of coloured-intervals C− and C+; indeed, in the coalescence process on

C− + C + C+, we can always start by performing a complete sequence of recolourings

inside C first.

Consider a colouring ∆ of the real line into monochromatic intervals given by

· · ·+R−1 +B−1 +R0 +B0 +R1 +B1 + . . . ,

where Ri is a red interval and Bi is a blue interval for each i ∈ Z. It follows from (1)

that the number Nx(R−n +B−n + · · ·+Bn) of times a point x ∈ R is recoloured in the

coalescence process restricted to R−n + B−n + · · · + Bn is monotone in n, so we can

define its limit Nx(∆) ∈ N ∪ {∞}.
We now establish Proposition 2.1 by proving the following lemma that establishes a

little bit more than the proposition; recall that a sequence of recolourings is complete

if whenever there is a monochromatic interval at some time t that can be recoloured,

then it is recoloured at some time T ≥ t.

Lemma 3.2. Let ∆ be any (non-degenerate) colouring of the real line into intervals.

Under any complete sequence of recolourings applied to ∆, each point x ∈ R is recoloured
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exactly Nx = Nx(∆) times. Also, if ∆ = ∆(PR,PB) for some pair of probability

distributions PR and PB (at least one of which is non-atomic), then under any complete

sequence of recolourings applied to ∆, either

(1) all points are eventually red almost surely, or

(2) all points are eventually blue almost surely, or

(3) Nx = ∞ for all x ∈ R almost surely ;

furthermore, the outcome is independent of the choice of complete sequence of recolour-

ings.

Proof. We first show that each point x ∈ R is recoloured exactly Nx times in any

complete sequence of recolourings. Note that the number of times a point x ∈ R can

be recoloured in any finite sequence of recolourings is at most Nx: this is obviously

true if Nx = ∞; if Nx < ∞ and x is recoloured Nx + 1 times in some finite sequence of

recolourings, then such a recolouring would be valid when restricted to some coloured-

interval C = R−n + · · · + Bn, contradicting the fact that Nx(R−n + · · · + Bn) ≤ Nx.

Furthermore, there is a complete sequence of recolourings which does recolour every point

exactly Nx times; indeed, consider a complete sequence which recolours R−1 + · · ·+B1,

then extend this to a complete sequence recolouring R−2 + · · ·+B2, and so on.

Now, suppose that a given complete sequence recolours intervals in the order I1, I2, . . . ,

and that the above sequence recolours intervals in the order I∗1 , I
∗
2 , . . . ; we shall show

that for any t, there is an nt such that it is possible to change, without altering the

number of times any point is recoloured, the sequence of recolourings I1, . . . , Int to a

new sequence of recolourings I ′1, . . . , I
′
nt

with I ′i = I∗i for i ≤ t. Indeed, by induction it

is enough to do this for t = 1. As I∗1 is surrounded by longer intervals to begin with,

this interval must eventually appear as some In1 . As in the proof of Lemma 3.1, we

may just define I ′1 = I∗1 and I ′i+1 = Ii for i < n1.

Next, given x ∈ R, for each natural number n ≤ Nx, we can choose a sufficiently large

t so that x is recoloured n times via the sequence I∗1 , . . . , I
∗
t . Then x is recoloured at least

n times by I1, . . . , Int . As x is eventually recoloured Nx times by the sequence I∗1 , I
∗
2 , . . . ,

it must be recoloured at least Nx times by the sequence I1, I2, . . . , establishing our first

claim.

If Nx = ∞ for some x ∈ Ri ∪Bi, say, then after x is recoloured n times, each point

of Rj ∪ Bj is recoloured at least n − 2|i − j| times; indeed, if n ≥ 2|i − j|, then the

points in Rj ∪Bj must lie in the same monochromatic interval as the points in Ri ∪Bi

after 2|i− j| recolourings of the points in Ri ∪ Bi. Consequently, either Nx = ∞ for

all x ∈ R, or Nx < ∞ for all x ∈ R. If the latter conclusion holds, then every point of

the real line subsequently has a well-defined final colour. Moreover the final colouring

partitions R into a sequence (Ji)i∈S of (finite or infinite) intervals of alternating colours,
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and as no further recolouring is possible, the lengths of these intervals must form a

strictly unimodal sequence.

It is impossible for the sequence (Ji)i∈S to be finite and consist of more than two

intervals as the two end-intervals would have infinite length. We now claim that it is

almost surely impossible for this sequence to be infinite in the case where ∆ = ∆(PR,PB).

Indeed, if the sequence is infinite in one direction only, say J0, J1, . . . , then as |J0| = ∞,

it must be the case that the sequence (|Ji|)i≥1 is decreasing. Similarly, if (Ji)i∈S is a

two-way infinite sequence, then the lengths of these intervals must decrease in at least

one direction. Thus, in either case, all the Ji must have a bounded length, say |Ji| < L,

from some point onwards. This cannot happen in the case where ∆ = ∆(PR,PB),

because with probability 1, there is a k > 0 and a positive density of indices i such

that the sequence Ri +Bi +Ri+1 + · · ·+Bi+k in the original colouring coalesces into

a single interval of length at least L. For example, without loss of generality, there is

an L′ such that with positive probability, an original red interval has length less than

L′ and an original blue interval has length at least L′. A sufficiently long alternating

sequence of such intervals will coalesce into a blue interval of length at least L, and

such configurations will occur with positive density.

Hence, we conclude from the discussion above that if ∆ = ∆(PR,PB), then the

sequence (Ji)i∈S either consists of a single monochromatic interval, or an infinite red

interval followed by an infinite blue interval, or an infinite blue interval followed by

an infinite red interval. Recall that ∆(PR,PB) is constructed as follows: we take two

i.i.d. sequences (Ri)i∈Z and (Bi)i∈Z of random variables with distributions PR and PB

respectively, and then define ∆(PR,PB) to be the colouring of the real line given by

· · ·+R−1 +B−1 +R0 +B0 +R1 +B1 + . . . ,

where Ri is a red interval with |Ri| = Ri and Bi is a blue interval with |Bi| = Bi for

each i ∈ Z, and the origin is the boundary-point between R0 and B0. Now, the law of

∆(PR,PB) is shift-invariant under integer-shifts of the form (Ri)i∈Z → (Ri+j)i∈Z and

(Bi)i∈Z → (Bi+j)i∈Z for any j ∈ Z. Furthermore, the events ‘Nx = ∞ for all x ∈ R’,
‘every point is eventually red’, ‘every point is eventually blue’, ‘there is a y ∈ R such

that every x ≤ y is eventually red and every x > y is eventually blue’, and ‘there is a

y ∈ R such that every x ≤ y is eventually blue and every x > y is eventually red’ are all

shift-invariant events that are measurable with respect to the σ-algebra generated by

finite subsets of the random variables (Ri)i∈Z and (Bi)i∈Z. Hence, by ergodicity, they

all occur with probability either 0 or 1. By symmetry, the latter two events have the

same probability which must necessarily be 0.

As the number of times each point is recoloured is independent of the choice of

complete sequence of recolourings, each of the three possible outcomes (namely a

12



red-win, a blue-win, and a tie) is also independent of the choice of complete sequence

of recolourings. □

We close this section by establishing a few notational conveniences. For a probability

distribution D and a non-negative integer k ∈ Z, we write k ◦D for the distribution

of the sum
∑k

i=1Xi, where X1, X2, . . . , Xk are independent random variables with

distribution D; more generally, given a distribution Z on the non-negative integers, we

write Z◦D for the distribution of the sum of
∑Z

i=1Xi where Z is a random variable with

distribution Z and X1, X2, . . . , XZ are independent random variables with distribution

D, all of which are independent of Z. For a distribution D and L ∈ R, we say that X

has distribution L+D if the distribution of X − L is D. Finally, we shall write

(1) Exp(λ) for the (exponential) distribution of a non-negative random variable X

such that P(X ≥ x) = exp(−x/λ) for each x ≥ 0,

(2) Po(λ) for the (Poisson) distribution of a random variable X supported on the

non-negative integers with P(X = k) = λke−λ/k! for each integer k ≥ 0,

(3) Geom(p) for the (geometric) distribution of a random variable X supported on

the positive integers with P(X = k) = pk−1(1− p) for each integer k ≥ 1, and

(4) U [a, b] for the (uniform) distribution of a random variable distributed uniformly

on the interval [a, b].

4. The renormalisation argument

We now describe a strategy, which we call the renormalisation argument, to deduce

the outcome of linear coalescence from the typical outcome of the coalescence process

on a large finite interval.

Let R ⊂ R× R× N denote the set of triples (α, β, k) with 0 < α ≤ 1/4 and β > 1

such that

β + αβ < 2− 3α, and (2)

α(k − 3) > 2β(1− α). (3)

The set R is nonempty; we can check, for example, that (1/5, 10/9, 12) ∈ R. We call

a triple of R renormalisable. First, note that for any renormalisable triple, we have

k > 6. Also, note that (2) is equivalent to

5

3 + β
> 1 + α,

so the bound on α falls from 1/4 to 0 as β goes from 1 to 2. For any α and β satisfying

this inequality, there is always a (large) k for which (3) holds.

Given a triple r = (α, β, k) ∈ R, we say that a coloured-interval C is r-good if its

closure [C] contains a (unique) central blue interval that is within distance α|C| of each

13



end of [C], and in particular has length at least (1− 2α)|C|; otherwise, we say that C

is r-bad. Next, given L > 0, we say that C is (r, L)-typical if

L < |C| < βL. (4)

When r and L are clear from the context, we abbreviate r-good, r-bad and (r, L)-

typical to good, bad and typical respectively. We start with the following lemma.

Lemma 4.1. Let r = (α, β, k) be renormalisable and let L > 0. For any sequence

C1, C2, . . . , Ck of (r, L)-typical coloured-intervals with the property that no pair of these

coloured-intervals which are at most two apart in the sequence are both r-bad, the

coloured-interval C1 + C2 + · · ·+ Ck is r-good. Furthermore, if Ci is r-good, then the

central blue subinterval of [Ci] is never recoloured in the coalescence process on the

coloured-interval [C1] + [C2] + · · ·+ [Ck].

Proof. By replacing each Ci by its closure [Ci] if necessary, we may assume that each

Ci is closed. In the following, we write Li = |Ci| for each 1 ≤ i ≤ k. We make three

simple observations.

First, if there are two good coloured-intervals adjacent to one another, say Ci and

Ci+1, then the two central blue intervals of Ci and Ci+1 are longer than the gap between

them in Ci + Ci+1: indeed, assuming Li ≤ Li+1, the smallest long blue interval is of

length at at least (1− 2α)Li whereas the gap between the two long blue intervals is at

most

αLi + αLi+1 < (α+ αβ)Li < (2− 2α− β)Li ≤ (1− 2α)Li,

using (4), (2), and the fact that β ≥ 1. Hence, the two central blue intervals of Ci and

Ci+1 eventually coalesce into a single blue interval in [Ci +Ci+1]. Note that [Ci +Ci+1]

now contains a blue interval of length at least (1− α)(Li + Li+1).

Next, if a coloured-interval Ci is bad for some 3 ≤ i ≤ k − 2, then note that Ci−2,

Ci−1, Ci+1 and Ci+2 must, by assumption, be good. We claim that [Ci−2 + · · ·+ Ci+2]

contains a single blue interval containing both Ci and the central blue intervals of

Ci−2, Ci−1, Ci+1 and Ci+2. Indeed, in this case, we have two long blue intervals of

length at least (1 − α)(Li−2 + Li−1) and (1 − α)(Li+1 + Li+2) in [Ci−2 + Ci−1] and

[Ci+1 +Ci+2] respectively, formed in each case by coalescing the central blue intervals of

these good coloured-intervals. The gap between these two long blue intervals, assuming

Li−1 + Li−2 ≤ Li+1 + Li+2, is at most

αLi−1 + Li + αLi+1 ≤ αLi−1 + (1 + α)βmin(Li−2, Li−1)

< αLi−1 + (2− 3α)min(Li−2, Li−1)

≤ (1− α)(Li−1 + Li−2),

which demonstrates our claim.
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Finally, no central blue interval of a good coloured-interval can ever be recoloured

in any complete sequence of recolourings for C1 + C2 + · · ·+ Ck. Indeed, suppose not

and that the first such central blue interval to be recoloured is that of Ci. This, in

conjunction with our initial observation about two adjacent good coloured-intervals,

would imply that both Ci−1 and Ci+1 exist and are bad, contradicting the assumptions

of the lemma.

By repeatedly applying these observations, we can show by induction that all the

central blue intervals from the good Ci, except possibly the ones from C1 or Ck when C2

or Ck−1 are respectively bad, coalesce into a single blue interval in [C1 +C2 + · · ·+Ck].

The furthest this long blue interval can be from, say, the beginning of C1+C2+ · · ·+Ck

is at most L1 + L2 + αL3. It is therefore enough to show that

L1 + L2 + αL3 ≤ α(L1 + L2 + · · ·+ Lk).

Simplifying, we see that it is enough to show that (1−α)(L1+L2) ≤ α(L4+L5+· · ·+Lk),

which follows from (3) and the fact that L1, L2 ≤ βLi for i ≥ 4. □

Given distributions PR and PB, for a renormalisable triple r ∈ R and a natural

number n ∈ N, we write q(n, r) for the probability that a coloured-interval C which is

the concatenation of 2n alternately red and blue intervals whose lengths are independent

and have distributions PR and PB respectively is r-bad.

Theorem 4.2. Fix a renormalisable triple r = (α, β, k) and a positive integer n ∈ N.
For a pair of probability distributions PR and PB , if there exist sequences (ηt)t≥0 and

(Lt)t≥0 such that the concatenation of 2ktn alternately red and blue intervals, whose

lengths are independent and have distributions PR and PB respectively, is (r, Lt)-typical

with probability at least 1− ηt, then blue wins almost surely if
∑

t≥0 qt converges, where

the sequence (qt)t≥0 is defined by q0 = q(n, r) and qt+1 = (2k − 3)q2t + kηt.

Proof. Recall that ∆ = ∆(PR,PB) is constructed as follows: take two i.i.d. sequences

(Ri)i∈Z and (Bi)i∈Z of random variables with distributions PR and PB respectively, and

then define ∆ to be the colouring of the real line given by

· · ·+R−1 +B−1 +R0 +B0 +R1 +B1 + . . . ,

where Ri is a red interval with |Ri| = Ri and Bi is a blue interval with |Bi| = Bi for

each i ∈ Z, and the origin is the boundary-point between R0 and B0.

We now define a complete sequence of recolourings as follows. Let ∆0 be the colouring

obtained from ∆ by replacing blocks of 2n consecutive red and blue intervals by their

closure; in other words, ∆0 is given by

· · ·+ C
(0)
−1 + C

(0)
0 + C

(0)
1 + . . . ,
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where the coloured-interval C
(0)
i is given by

C
(0)
i =

[
Rin−⌊n/2⌋ +Bin−⌊n/2⌋ + · · ·+R(i+1)n−⌊n/2⌋−1 +B(i+1)n−⌊n/2⌋−1

]
for each i ∈ Z. Now, having defined ∆t to be a colouring of the line into intervals with

the representation

· · ·+ C
(t)
−1 + C

(t)
0 + C

(t)
1 + . . . ,

where C
(t)
i is a coloured-interval for each i ∈ Z, we define ∆t+1 to be the colouring

obtained from ∆t by combining the coloured-intervals of ∆t in blocks of size k. In other

words, ∆t+1 is the colouring of the line into intervals with the representation

· · ·+ C
(t+1)
−1 + C

(t+1)
0 + C

(t+1)
1 + . . . ,

where

C
(t+1)
i =

[
C

(t)
ik−⌊k/2⌋ + · · ·+ C

(t)
(i+1)k−⌊k/2⌋−1

]
.

Recall that k > 6 for any renormalisable triple, so the union of the coloured-intervals

C
(t)
0 is the entire real line. Consequently, if a monochromatic interval I is recolourable

at some stage, then I gets recoloured eventually since I must necessarily be contained in

C
(t)
0 at some time t ≥ 0; this implies that the sequence of recolourings used to generate

the sequence (∆t)t≥0 is complete.

To finish the proof, we make the following observation.

Proposition 4.3. For all t ≥ 0 and all i ∈ Z, the probability that C
(t)
i is r-bad is at

most qt.

Proof. We proceed by induction on t. For t = 0 this holds by the definition of q0 = q(n, r).

Next, we observe that for all t ≥ 0, the goodness and the typicality of C
(t)
i is independent

of C
(t)
j for i ≠ j. Now suppose that C = [Ci+Ci+1+· · ·+Ci+k−1] is a coloured-interval of

∆t+1 obtained by coalescing some k consecutive coloured-intervals Ci, Ci+1, . . . , Ci+k−1

of ∆t. The probability that two of the coloured-intervals Ci, Ci+1, . . . , Ci+k−1 are both

bad and at most two apart is at most (k − 1)q2t + (k − 2)q2t = (2k − 3)q2t . Since

ηt bounds the probability that C
(t)
i is not (r, Lt)-typical, the probability that one of

Ci, Ci+1, . . . , Ci+k is not (r, Lt)-typical is at most kηt. If neither of these events occur,

then by Lemma 4.1, C = C1 + Ci+1 + · · ·+ Ci+k−1 is good. Hence, the probability that

C
(t+1)
i is r-bad is at most (2k − 3)q2t + kηt = qt+1, as required. □

We now claim that there is a positive probability that there exists a point which only

changes colour a finite number of times and is ultimately blue; the existence of any such

point clearly precludes a red-win or a tie, and therefore implies that blue wins almost

surely. To see the claim, note that as
∑

t≥0 qt converges, there exists a T ≥ 0 such

that
∑

t≥T qt < 1. Consequently, the probability that C
(t)
0 is r-good for each t ≥ T is

positive since this probability is at least 1−
∑

t≥T qt. The result now follows by noting
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that if C
(t)
0 is r-good for each t ≥ T , then the central blue interval of C

(T )
0 is never

recoloured. □

To apply Theorem 4.2 it is helpful to obtain some bounds on ηt; the simplest case

occurs when the distributions PR and PB have finite variances.

Theorem 4.4. Fix a renormalisable triple r = (α, β, k), a pair of probability distribu-

tions PR and PB with finite variances σ2
R and σ2

B respectively, and set

c =
(σ2

R + σ2
B)(β + 1)2

(µR + µB)2(β − 1)2
.

For all large enough n ∈ N such that the equation

x = (2k − 3)x2 + kc/n (5)

has real roots, if q(n, r) does not exceed the largest positive root of (5), then blue wins

almost surely.

Proof. For each t ≥ 0, define nt = ktn and take Lt = 2nt(µR + µB)/(β + 1). If C is a

coloured-interval which is the concatenation of 2nt alternately red and blue intervals,

then note that E[|C|] = nt(µR + µB) and Var[|C|] = nt(σ
2
R + σ2

B). So by Chebyshev’s

inequality,

P(|C| /∈ (Lt, βLt)) = P
(
||C| − E[|C|]| > (β − 1)E[|C|]

β + 1

)
≤ nt(σ

2
R + σ2

B)(β + 1)2

(nt(µR + µB)(β − 1))2

=
c

nt

.

Now, define ηt = c/nt and note that the sequence (ηt)t≥0 decreases exponentially

with t. Also, observe that since k > 6, if the roots of (5) are real, then they must both

lie in the interval (0, 1); since n is assumed to be large enough to ensure that the roots

of (5) are real, let Q ∈ (0, 1) be the largest root of the equation x = (2k − 3)x2 + kc/n.

Let q0 = q(n, r), and consider the sequence (qt)t≥0 defined by

qt+1 = (2k − 3)q2t + kηt.

If q0 = q(n, r) ≤ Q, then it is easy to check by induction that the sequence (qt)t≥0 is

bounded above by Q. We claim that the sequence (qt)t≥0 in fact decreases exponentially

with t provided q0 ≤ Q; if this holds, then it is easy to see that the result follows from

Theorem 4.2.

To finish the proof, note that if we have qt ≤ Q for all t ≥ 0, then it plainly follows

that

qt = (2k − 3)q2t−1 + kηt−1
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≤ (2k − 3)Qqt−1 + kηt−1

= ζqt−1 + kηt−1,

where ζ = (2k − 3)Q = 1 − (kη0)/Q < 1. Since ηt → 0 exponentially as t → ∞, it

is now clear that qt → 0 exponentially as t → ∞; to see this, we expand the above

estimate to conclude that

qt ≤ kηt−1 + ζkηt−2 + · · ·+ ζt−1kη0 + ζtq0,

from which it follows that qt is at most the sum of ζtq0 and a geometric sum which is

at most

(max{ζ, 1/k})t−1(tkη0). □

5. Applications of the renormalisation argument

In this section, we shall apply the renormalisation argument to prove Theorem 2.2,

Claim 2.3 and Claim 2.4. We will need some Chernoff-type bounds for the tail of the

Poisson distribution. We state one such estimate here; see [3] for a proof.

Proposition 5.1. Let X be a random variable with distribution Po(λ). Then for all

x ≤ λ,

P(X ≤ λ− x) ≤ exp

(
−x2

2λ

)
,

and for all x ≥ 0,

P(X ≥ λ+ x) ≤ exp

(
− x2

2λ+ 2x/3

)
. □

We first prove Theorem 2.2 which states that for any K > 0, there exist distributions

PR and PB with µR > KµB where blue wins almost surely in linear coalescence. The

basic nature of the example used to demonstrate this is as follows. We choose PR

so that the vast majority of the contribution to µR comes from exponentially long,

exponentially improbable intervals. Meanwhile, PB is concentrated on intervals which

are slightly longer than almost all of the red intervals. Intuitively, at each stage almost

all of the red intervals are short, and are absorbed into the slightly longer adjacent blue

intervals; this causes the typical blue interval to now be longer than almost all of the

remaining red intervals, and the process repeats.

Proof of Theorem 2.2. Fix r = (α, β, k) = (0.23, 1.04, 10) and let n ∈ N be a sufficiently

large natural number. We note that we have taken β just above 1, α just below the

bound implied by (2), and k sufficiently large to ensure (3).

We take the blue distribution PB to be U [1, 1 + ε] where ε = 1/n2. We then set

N = 2K/ε and take the red distribution PR to be the distribution of the random

variable 1 +
∑N

i=1 k
iXi, where the Xi are independent Poisson random variables such
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that the mean of Xi is εk−i. Clearly, µB = 1 + ε/2 and µR = 1 + Nε = 1 + 2K, so

µR > KµB.

Writing Ct for the concatenation of 2ktn alternately red and blue intervals, we note

that with probability 1−O(nε) = 1−O(1/n), all the red intervals in C0 are of length

1, so C0 is r-good (indeed, [C0] is completely blue apart from a single red interval of

length 1 at one end) with probability 1−O(1/n). Thus, we see that q(n, r) = O(1/n).

Let

Lt =
2

β + 1

(
2 +

ε

2
+ min{t, N}ε

)
ktn

and let 1 − ηt be the probability that Lt < |Ct| < βLt. For t > N , it follows from

Chebyshev’s inequality (as in the proof of Theorem 4.4) that for any fixed n, ηt → 0

exponentially as t → ∞. We shall show that as n → ∞, ηt → 0 uniformly in t. This

would show that if we define q0 = q(n, r) = O(1/n) and qt+1 = (2k − 3)q2t + kηt, then

as long as n is chosen to be sufficiently large,
∑

t≥0 qt converges; blue then wins almost

surely by Theorem 4.2.

In the calculations which follow, we shall make use of the fact that since β = 1.04,

we have 2/(β + 1) < 0.99 and 2β/(β + 1) > 1.01.

To estimate P(|Ct| ≤ Lt), it suffices to estimate the probability that the length of the

concatenation of ktn red intervals is at most 0.99(1 + min{t, N}ε)ktn as the minimum

possible length of a blue interval is 1 > 0.99(1 + ε/2). The length of the concatenation

of ktn red intervals is given by the random variable

ktn+
N∑
i=1

kiYi,

where the Yi are independent Poisson random variables such that the mean of Yi is

λi = εkt−in. If t < 1/100ε = n2/100, then this random variable is deterministically

larger than 0.99(1 + min{t, N}ε)ktn. If t ≥ n2/100 on the other hand, then we appeal

to Proposition 5.1. Note that

P(Yi ≤ 0.995λi) ≤ exp
(
−10−5λi

)
,

Writing t′ = min{t− 2 logk n,N}, the probability that Yi ≥ 0.995λi for each 1 ≤ i ≤ t′

is at least

1−
t′∑
i=1

exp
(
−10−5εkt−in

)
≥ 1−N exp

(
−10−5n

)
,

which is 1− o(1) as n → ∞. If this happens, then

ktn+
N∑
i=1

kiYi ≥ ktn+
t′∑
i=1

kiYi ≥ (1 + 0.995t′ε)ktn ≥ 0.99(1 + min{t, N}ε)ktn,

where the last inequality follows from the fact that t ≥ 0.01n2 so that t−2 logk n ≥ 0.995t

for all sufficiently large n.
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To estimate P(|Ct| ≥ βLt), it is enough to show that the total length of the concate-

nation of ktn red intervals is very likely to be less than 1.01(1 + min{t, N}ε)ktn as the

length of each blue interval is less than 1 + ε < 1.01 < 2β(1 + ε/2)/(β + 1). In other

words, it is enough to show that ktn+
∑N

i=1 k
iYi, where the Yi are independent Poisson

random variables such that the mean of Yi is λi = εkt−in, is very likely to be less than

1.01(1 + min{t, N}ε)ktn.

A similar calculation to the one above shows that with high probability, indeed, with

probability 1−N exp(−n/106), we have Yi < 1.005λi for each i ≤ t′ = t− 2 logk n. For

i > t′, we note that

min{t,N}∑
i=t′+1

E
[
kiYi

]
= (min{t, N} − t′)εktn ≤ Nεktn.

For these values of i, we use Markov’s inequality to deduce that with probability at

least 1− 1/ log n, the sum above is at most (log n)Nεktn ≤ (log n)2εktn. Thus, with

high probability,

min{t,N}∑
i=1

kiYi ≤ 1.005min{t, N}εktn+ (log n)2εktn

≤ 1.005min{t, N}εktn+ 0.01ktn.

Indeed, when n is sufficiently large, (log n)2ε = n−2(log n)2 ≤ 0.01. Finally, with

probability 1−O(ε), Yi = 0 for all i > t.

Putting these together, we see the total length of the red intervals is, with high

probability, at most

ktn+ (1.005min{t, N}εktn+ 0.01ktn) + 0 ≤ 1.01(1 + min{t, N}ε)ktn

as required.

In conclusion, if n is sufficiently large then we can take ηt to be uniformly small

and eventually decreasing exponentially with t, and as q(n, r) can be made arbitrarily

small by taking n to be sufficiently large, we see that blue wins by Theorem 4.2 for all

suitably large n. □

The advantage of the renormalisation argument is that it allows us to deduce the

outcome of linear coalescence from the typical outcome of the coalescence process on a

large finite coloured-interval. The main difficulty in applying Theorem 4.2 or 4.4 with

some fixed renormalisable triple r ∈ R is that we need to understand the coalescence

process on a large finite coloured-interval reasonably well; in particular, we need good

estimates for the probability q(n, r) that the concatenation of 2n alternately red and

blue intervals is r-bad. We need q(n, r) to be quite small for the renormalisation
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argument to be useful which means that in practice, we need to take n to be quite large;

but this in turn often makes the task of proving a useful bound on q(n, r) impractical.

However, we can use a Monte Carlo approach to obtain high confidence results.

Namely, we simulate linear coalescence on the concatenation of 2n alternately red

and blue intervals many times and count the number of times the resulting interval

is good. We can deduce that if q(n, r) was too big, then the probability of obtaining

these simulated results is incredibly small, assuming of course that the random number

generator used in the simulation adequately resembles real random numbers and that

no errors have occurred during the programming or execution of the computer program.

We shall use this Monte Carlo approach to demonstrate Claims 2.3 and 2.4.

Proof of Claim 2.3. Fix r = (α, β, k) = (0.23, 1.04, 10) and let n0 = 2× 106. Next, fix

c1 = 0.08 and c2 = 0.01.

We first construct a pair of distributions PR and PB such that PR ≻ PB for which

blue wins almost surely with very high confidence. We then sketch how we may, as in

the proof of Theorem 2.5, ‘blow up’ the mean of the red distribution without changing

the outcome of the coalescence process.

The main obstacle then is to allow stochastic domination. The intuition behind our

construction is that the blue intervals being short has two opposing effects. While short

blue intervals are less likely to absorb adjacent red intervals, they also contribute less

to any red intervals which absorb them. Hence, any blue interval which is likely to be

absorbed may as well be short. Of course, this intuition is insufficient, as the marginal

shortening of the red intervals may, in turn, prevent blue intervals from growing quickly.

We take the red distribution PR to be uniform on [1, 1 + c2] and the blue distribution

PB to be uniform on [0, c1c2] ∪ [1 + c1c2, 1 + c2]. Note that we can obtain the blue

distribution by sampling from the red distribution and subtracting 1 from the sampled

length if it is less than 1 + c1c2; it is then clear that PR stochastically dominates PB

strictly.

We would like to apply Theorem 4.4. Elementary calculations give

µB = 1 +
c2
2
− c1,

µR = 1 +
c2
2
,

σ2
B = c1(1− c1)(1 + c2) +

c22
12

, and

σ2
R =

c22
12
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To apply Theorem 4.4, we need q(n0, r) to be less than the largest positive root of the

equation (2k − 3)x2 + kc/n0 = x, where k = 10, n0 = 2× 106 and

c = 512 × c1(1− c1)(1 + c2) + c22/6

(2 + c2 − c1)2
.

A simple calculation shows that it is sufficient to show that q(n0, r) < 0.058. To estimate

q(2× 106, r), the coalescence process on the concatenation of 4× 106 alternately red and

blue intervals was simulated 1000 times. The coloured-intervals obtained were r-good

in 987 trials out of the total of 1000 trials performed. If q ≥ 0.058, then the probability

of obtaining at least 987 good coloured-intervals in 1000 trials is less than 10−12. Hence,

with very high confidence, blue wins almost surely.

We now sketch how we can mimic the proof of Theorem 2.2 to show that we may

alter the red distribution to make its mean arbitrarily large without changing the fact

that blue wins.

For a given K > 0 and an integer n ≥ 0, let PR,n denote the distribution of the

random variable
∑N

i=0 k
iXi, where N = 2Kn and the Xi are independent random

variables such that the distribution of X0 is PR and that of Xi is Po(1/k
in) for each

1 ≤ i ≤ N . Note that PR,0 = PR. Note also that for each n ≥ 1, the ratio of the means

of PR,n and PB is at least K and since PR,n ≻ PR, we also have PR,n ≻ PB. We claim

that in linear coalescence where the red and blue distributions are PR,n and PB, blue

wins almost surely if n is sufficiently large.

For each t ≥ 0 and n ≥ 0, let

Lt,n =
2

β + 1
(µR + µB +min{t, N}/n)ktn0

and define ηt,n to be the probability that concatenation of 2ktn0 alternately red and blue

intervals whose lengths have distributions PR,n and PB respectively is not (r, Lt,n)-typical.

Finally, we define the sequence (qt,n)t≥0 by setting

qt+1,n = (2k − 3)q2t,n + kηt,n,

for each t ≥ 0, where q0,n is the probability that the concatenation of 2n0 alternately

red and blue intervals whose lengths have distributions PR,n and PB is r-bad.

We know that q0,0 < 0.058 with very high confidence, and in this case Theorem 4.4

tells us precisely that
∑

t≥0 qt,0 converges. As in the proof of Theorem 4.4, we can

show that ηt,n decreases exponentially with t for any fixed n ≥ 0. Furthermore, we

can show mimicking the proof of Theorem 2.2 that as n → ∞, ηt,n → ηt,0 uniformly

in t. Finally, it is clear that q0,n = q0,0 + O(1/n). It follows that for any K > 0, the

sum
∑

t≥0 qt,n converges if n is chosen to be suitably large. By Theorem 4.4, blue wins

almost surely. □

We now turn to the proof of Claim 2.4.
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(a) PR ▷ PG.

(b) PG ▷ PB.

(c) PB ▷ PR.

Figure 3. Coalescence on the line is intransitive.

Proof of Claim 2.4. Let PR be the distribution which is deterministically 1, PG be the

(exponential) Exp(1.22) distribution and PB the (uniform) U [0, 2.19] distribution. As

before, fix r = (α, β, k) = (0.23, 1.04, 10) and let n0 = 2× 106.

Let qBR(n0, r) denote the probability that the concatenation of 2n0 alternately red

and blue intervals is r-bad. Define qRG(n0, r) and qGB(n0, r) analogously (where in each

case, we ask for a long central interval of the appropriate colour in the closure).

To show that PR ▷ PG, PG ▷ PB and PB ▷ PR, by Theorem 4.4, it is sufficient to

verify, with n = 2 × 106, that qRG(n, r) < 0.0625, qGB(n, r) < 0.063 and qBR(n, r) <
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0.0599. These inequalities were verified using Monte Carlo methods with very high

confidence. □

6. The ℓ-bounding argument

The renormalisation argument has two main disadvantages. First, it requires us to

estimate certain large finite-dimensional numerical integrals fairly precisely. Second,

when we wish to obtain a high confidence result using the renormalisation argument,

we can only do so for a fixed pair of distributions; in general, it is not possible to use

these techniques to compare different families of distributions since, as we have seen,

linear coalescence is far from monotone. With a view of getting around these difficulties,

in this section, we shall introduce a method for tracking the coalescence process by

maintaining a collection of approximations to the lengths of the intervals.

Suppose that we wish to show that blue wins, but are unable to follow the process

precisely. It is possible to approximate the process in a way that is ‘pessimistic for

blue’ so that if blue still wins in this setting, then we can deduce that blue wins in

the original process. The first observation is that if we occasionally make mistakes

and recolour blue intervals not surrounded by longer red intervals, then this is always

pessimistic for blue.

Lemma 6.1. Suppose that we coalesce intervals using a rule that only recolours red

intervals when surrounded by longer blue intervals and always recolours blue intervals

when surrounded by longer red intervals (but may sometimes recolour blue intervals

when this does not hold). If blue wins in this new process, then it wins in the original

coalescence process.

Proof. Imagine two copies of the line R1 and R2 with the same sequence of monochro-

matic intervals on both. We run the new process on R1, and at each step, if we recolour

an interval I using it’s neighbours I− and I+ on R1, then we replace the coloured-interval

corresponding to I− + I + I+ by its closure on R2.

We show by induction that at each step, a blue interval in R1 corresponds to a blue

interval in R2, and a red interval in R1 corresponds to a red-ended coloured-interval,

i.e., a coloured-interval that starts and ends with a red subinterval, in R2.

Suppose that this holds at time t− 1, and suppose that we recolour a blue interval

B red in R1 at time t. Then in R2, we obtain (even without recolouring) a red-ended

interval C− + B + C+, where C± are the red-ended intervals corresponding to the

red neighbours of B in R1. Also, any valid recolouring of the internal subintervals of

C− +B + C+ results in a red-ended interval.

Now suppose that we recolour a red interval R blue in R1. Then in R1, this gives a

blue interval which is the closure of B− +R+B+ where B± are the blue neighbours

of R and |B±| > |R|. In R2, this corresponds to taking the closure of a sequence of
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intervals of the form B− +R1 +B1 + · · ·+R2k+1 +B+ with B± being the longest two

subintervals. As the shortest subinterval is internal, it can be recoloured reducing the

number of intervals by two. Repeating this process and noting that the outermost

intervals are both always longer than the sum of all the internal intervals, we see that

we can perform a sequence of valid recolourings reducing this sequence to a single blue

interval as required.

Therefore, if blue wins in the new process on R1, then it does so on R2 as well; the

result follows from this fact combined with Lemma 3.2. □

Although Lemma 6.1 is useful, in practice, we need to approximate lengths, rather

than approximating the decisions on whether or not to recolour (while maintaining the

exact lengths). A natural idea is to approximate the lengths by always underestimating

the lengths of blue intervals and overestimating the lengths of red intervals. However,

we naturally run into a problem when we recolour as we are always underestimating

some of the constituent lengths and overestimating others. Thus, we cannot tell if the

recoloured interval length is an overestimate or an underestimate.

One solution is to track, for each interval I, a range of possible lengths with ℓ−(I) ≤
|I| ≤ ℓ+(I). We base the decision to recolour an interval I on the underestimate ℓ−(I)

if I is blue, and on the overestimate ℓ+(I) is I is red. If a blue interval B is surrounded

by red intervals R± that are possibly longer, so that ℓ+(R±) ≥ ℓ−(B), then we recolour

B. Similarly, if a red interval R is surrounded by blue intervals B± that are definitely

longer, so that ℓ−(B±) > ℓ+(R), then we recolour R. The minimum and maximum

lengths of the resulting recoloured interval is then obtained by adding the minimum or

maximum lengths of all the constituent intervals. In practice, the errors in the lengths

of the intervals grows quickly, so this procedure can generally only be applied for a few

steps before other methods are required.

To understand the evolution analytically, the following observation is crucial. Suppose

that the minimum length of an interval is L and occurs with positive probability p

in PB, say. Then recolouring all blue intervals of length L results in a new colouring

of R where the lengths of the red and blue intervals are still independent. The blue

distribution is replaced by the same distribution conditioned on the length being greater

than L, while the red distribution is replaced by the distribution of the random variable∑Y
k=1Xi + (Y − 1)L, where the Xi are i.i.d. random variables with distribution PR

and Y is a (geometric) Geom(p) random variable. Indeed, it is easily seen that we just

recolour any sequence of red intervals where all the intervening blue intervals are of

length L, and as we travel along the line, these groups occur independently and include

Geom(p) red intervals.

If the minimum length does not occur as an atom, one can discretise the distributions

and use the length bounding approach described above. By making the discretisation
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finer and finer it is possible to track the result of recolouring all intervals of less than

some length via a differential equation in terms of the distributions PR and PB.

If we write fR(x, t) and fB(x, t) for the probability density functions of the two

distributions after all intervals of length at most t have been eliminated, one obtains an

evolution of the following form.

∂

∂t
fR(x, t) = (fR(t, t)− fB(t, t))fR(x, t)

+ 1{x>3t}fB(t, t)

∫ x−2t

t

fR(z, t)fR(x− t− z) dz,

∂

∂t
fB(x, t) = (fB(t, t)− fR(t, t))fB(x, t)

+ 1{x>3t}fR(t, t)

∫ x−2t

t

fB(z, t)fB(x− t− z) dz. (6)

Indeed, in time dt, there is a density fB(t, t)dt of blue intervals that are recoloured

red and the conditional distribution of the rest becomes fB(x, t)/(1− fB(t, t)dt). On

the other hand, the blue intervals are grouped into blocks of Geom(fR(t, t)dt) intervals

separated by red blocks of length about t. To order dt, this is equivalent to replacing a

fraction fR(t, t)dt blue intervals by random intervals of length X1 + t+X2 where the

distributions of X1 and X2 is PB.

Tracking the evolution of (6) seems impractical, particularly if one is interested in

rigorous results. In particular, it is not clear what the ‘endgame’ is as even if (6) could

be tracked reasonably accurately up to some large time; the renormalisation argument

fails to be of help as the distributions of the lengths typically never become concentrated

enough. Unless we can run (6) up to infinity, it is not clear which colour wins. Thus, it

is unclear whether anything can be deduced from just an approximate version of the

probability distributions, and solving (6) exactly seems out of reach for any nontrivial

pair of starting distributions.

To make progress, we therefore need some way of bounding the process without

accurate information on the lengths of the intervals. As remarked above, it is not

enough just to näıvely bound the lengths of the blue intervals from below and the

lengths of the red intervals from above. However, it is possible make some headway if

we use a more cautious method of combining intervals.

To do this we first prove a bound on the ‘red-content’ of a recoloured sequence. We

call a coloured-interval C a red-ended interval if it starts and ends with a red subinterval;

in other words, C = R1 + B1 + R2 + · · ·+ Bk−1 + Rk for some red intervals Ri, blue

intervals Bj, and k ≥ 1. We note that if C is red-ended, then so is its closure [C]. For

a red-ended interval C, define r(C) to be the total length of the red subintervals in the

closure of C.
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Lemma 6.2. If C− and C+ are red-ended intervals and B is a blue interval, then we

have r(C− +B + C+) ≤ 2r(C−) + 2r(C+).

Proof. We may assume without loss of generality that C− and C+ are already closed.

Hence, let C− = R1 + B1 + · · · + Ri with the lengths of the subintervals forming a

unimodal sequence, and let C+ = Ri+1 +Bi+1 + · · ·+Ri+j similarly.

We prove the result by induction on i + j. If i + j ≤ 2, then i = j = 1, and C−
and C+ are red intervals. Now, C− + B + C+ is closed if and only if |B| > |C−| or
|B| > |C+|; otherwise, B can be recoloured red. Thus,

r(C− +B + C+) ≤ |C−|+ |C+|+min{|C−|, |C+|}
≤ 2|C−|+ 2|C+| = 2r(C−) + 2r(C+).

Hence, we may assume i+ j > 2.

Case 1: i ≥ 2 and |R1| < |B1|. Let C ′
− = R2+B2+ · · ·+Ri and note that since C ′

−
is closed, r(C ′

−) = r(C−)− |R1|. We may assume inductively that r(C ′
− +B + C+) ≤

2r(C ′
−) + 2r(C+). In R1 +B1 + [C ′

− +B + C+], the only possible initial recolouring is

of the first red interval of [C ′
− +B + C+] which results in a blue interval containing B1.

However, B1 can never be recoloured as |B1| > |R1|. Thus, although it is possible for

red intervals to be recoloured, no blue intervals will ever be recoloured in the coalescence

process on R1 +B1 + [C ′
− +B + C+]. Thus,

r(C− +B + C+) ≤ |R1|+ r(C ′
− +B + C+)

≤ 2(|R1|+ r(C ′
−)) + 2r(C+)

= 2r(C−) + 2r(C+).

A similar proof also holds for j ≥ 2 and |Bi+j−1| > |Ri+j|. Hence, we may assume the

lengths of the subintervals in C− are decreasing and the lengths of the subintervals in

C+ are increasing.

Case 2: i ≥ 2 and |B| > |Ri|. Let C ′
− = R1+B1+· · ·+Ri−1 and B′ = Bi−1+Ri+B.

Note that [B′] is blue and r(C ′
−) = r(C−)−|Ri| since C ′

− is closed. Therefore, it follows

that

r(C− +B + C+) = r(C ′
− + [B′] + C+) ≤ 2r(C ′

−) + 2r(C+) ≤ 2r(C−) + 2r(C+).

A similar proof also works if |B| > |Ri+1|, so we may assume that |B| < |Ri| and
|B| < |Ri+1|.
Case 3: |R1| > · · · > |Ri| > |B| < |Ri+1| < · · · < |Ri+j|. In this case, it is easy to

check that the total length of the red intervals in C− +B +C+ is at least half the total

length of C− +B + C+. Thus,

r(C− +B + C+) ≤ |C− +B + C+| ≤ 2r(C−) + 2r(C+). □

The following is an easy corollary of Lemma 6.2.
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Corollary 6.3. If C1, C2, . . . , Ck are red-ended intervals and B1, B2, . . . , Bk−1 are blue

intervals, then

r(C1 +B1 + C2 + · · ·+Bk−1 + Ck) ≤ 2⌈log2 k⌉
k∑

i=1

r(Ci).

Proof. We use induction on k. The result for k ≤ 2 follows from Lemma 6.2. Assume

now that k > 2 and write t = ⌈log2 k⌉ so that k ≤ 2t. Take k′ = 2t−1, thereby ensuring

that 1 ≤ k′, k − k′ ≤ 2t−1. By induction, we know that

r(C1 +B1 + · · ·+ Ck′) ≤ 2t−1

k′∑
i=1

r(Ci)

and that

r(Ck′+1 +Bk′+1 + · · ·+ Ck) ≤ 2t−1

k∑
i=k′+1

r(Ci).

Thus, it follows that

r(C1 +B1 + · · ·+ Ck) = r([C1 + · · ·+ Ck′ ] +Bk′ + [Ck′+1 + · · ·+ Ck])

≤ 2r([C1 + · · ·+ Ck′ ]) + 2r([Ck′+1 + · · ·+ Ck])

≤ 2t
k∑

i=1

r(Ci). □

Note that we cannot replace the factor of 2⌈log2 k⌉ = Θ(k) in Corollary 6.3 by an

absolute constant. Indeed, there is a simple construction similar to that of the Cantor

set which demonstrates this. Start with a unit red interval, and replace (slightly less

than) its middle third by a blue interval and inductively repeat this construction in

the left and right red subintervals. Plainly, the closure of this sequence is entirely red.

Hence, for each ε > 0 and each k ∈ N which is a power of 2, we have demonstrated the

existence of red intervals R1, R2, . . . , Rk and blue intervals B1, B2, . . . , Bk−1 for which

r(R1 +B1 + · · ·+Rk) ≥ (1− ε)klog2 3

k∑
i=1

r(Ri).

Finally, we need the following simple observation that complements Lemma 6.2.

Proposition 6.4. If B− and B+ are blue intervals and C is a red-ended interval such

that |B±| > r(C), then the closure of B− + C +B+ is a blue interval.

Proof. We may assume, by replacing C by its closure if necessary, that C is closed.

Now, taking the closure of B−+C +B+ corresponds to taking the closure of a sequence

of intervals of the form B− + R1 + B1 + · · · + R2k+1 + B+, where we know that

|B±| > r(C) ≥ |R1|, |R2k+1| and that either |R1| < |B1| or |R2k+1| < |B2k|. It follows
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by induction that the red intervals in C can be recoloured one at a time, from the

outside in, noting that length of the two outermost blue intervals always exceeds the

red-content of the red-ended interval between them. It is now clear that [B− +C +B+]

is a single blue interval, as required. □

We are now in a position to describe our strategy for following the coalescence process

analytically. Suppose that we are given a colouring ∆ of the line into intervals, along

with a representation of the colouring as

· · ·+ C−1 +B−1 + C0 +B0 + C1 +B1 + . . . ,

where Ci is a red-ended interval and Bi is a blue interval for each i ∈ Z. Suppose

also that we are given two sequences of bounds (ℓ(Ci))i∈Z and (ℓ(Bi))i∈Z such that

ℓ(Ci) ≥ r(Ci) and ℓ(Bi) ≤ |Bi| for each i ∈ Z.
We fix a constant ℓ0 > 0 and update the given colouring and the associated bounds as

follows. We first coalesce all the blue intervals B with ℓ(B) ≤ ℓ0 with the surrounding

red-ended intervals so that we no longer have blue intervals B with ℓ(B) ≤ ℓ0. More

precisely, if we encounter a sequence

Bi−1 + Ci + · · ·+ Cj +Bj

in the colouring with ℓ(Bi−1), ℓ(Bj) > ℓ0 and ℓ(Bk) ≤ ℓ0 for every i ≤ k < j, then

we replace the sequence Ci + · · · + Cj in the colouring by its red-ended closure C =

[Ci + · · ·+ Cj]. In the updated colouring, we set

ℓ(C) = 2⌈log2(j−i+1)⌉
j∑

k=i

ℓ(Ck),

noting that Corollary 6.3 ensures that ℓ(C) ≥ r(C). In the resulting colouring, we no

longer have blue intervals B with ℓ(B) ≤ ℓ0. We update this resulting colouring again

as follows: all red-ended intervals C with ℓ(C) ≤ ℓ0 are coalesced with the surrounding

blue intervals. More precisely, if we have a sequence,

Ci +Bi + · · ·+Bj + Cj+1

in the colouring with ℓ(Ci), ℓ(Cj+1) > ℓ0 and ℓ(Ck) ≤ ℓ0 for each i < k ≤ j, then we

replace the sequence Bi+ · · ·+Bj by its closure B. It is easy to see from Proposition 6.4

that B is a monochromatic blue interval since |Bk| ≥ ℓ(Bk) > ℓ0 for each i ≤ k ≤ j and

r(Ck) ≤ ℓ(Ck) ≤ ℓ0 for i+ 1 ≤ k ≤ j; in the updated colouring, we then set

ℓ(B) =

j∑
k=i

ℓ(Bk),

noting that this ensures that |B| ≥
∑j

k=i |Bk| ≥
∑j

k=i ℓ(Bk) = ℓ(B). This completes

our update of the original colouring and the associated bounds. Note that we have

ensured that ℓ(C) ≥ r(C) and ℓ(B) ≤ |B| for each red-ended interval C and each blue
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interval B in the updated colouring; furthermore, note that we also have ℓ(C), ℓ(B) > ℓ0
for each red-ended interval C and each blue interval B in the updated colouring.

We shall refer to this approach to updating a given colouring ∆ and the associated

bounds ℓ(.) as the ℓ-bounding argument (with threshold ℓ0). Let us note that if the

original sequences of bounds (ℓ(Ci))i∈Z and (ℓ(Bi))i∈Z are i.i.d. sequences of random

variables, then the two new sequences of bounds obtained after updating the colouring

using the ℓ-bounding argument also have the same property, though of course, the two

new sequences might now be distributed according to a different pair of distributions;

note in particular that the law of the updated sequences of bounds continues to be

shift-invariant in this case. Let us also observe that the ℓ-bounding argument is stable

under stochastic domination, so we are free to replace the bounds ℓ(Ci) by anything

stochastically larger, and the bounds ℓ(Bi) by anything stochastically smaller when we

use the argument.

We also note that the coalescence process is unaffected by scaling the length of

every interval by any positive constant. In particular, if both PR and PB have support

bounded away from 0, then we may assume without loss of generality that they both

have support contained in [1,∞). Furthermore, if we use the ℓ-bounding argument to

remove all intervals of length less than, say 1 + ε, we can then divide the length of each

interval by 1 + ε without altering the future evolution of the process. We will use this

idea to make later calculations more tractable.

7. Proof of the main result

In this section, we use the ℓ-bounding argument to prove our main result, Theorem 2.5.

Recall the distribution G(a) with density function 2(a+ 1)2/(a+ x)3 for all x ≥ 1. Our

proof of Theorem 2.5 hinges on the following lemma.

Lemma 7.1. There exist 0 < ε0 < 1 and Λ < 14 such that for all 0 ≤ a ≤ 1 and

0 < ε ≤ ε0, the random variable

2⌈log2 Y ⌉
Y∑
i=1

Xi

is stochastically dominated by a G(a+ Λε) random variable, where the Xi and Y are

independent random variables such that the distribution of Y is Geom(ε) and that of

Xi is G(a) for each 1 ≤ i ≤ Y .

Proof. Let Z = 2⌈log2 Y ⌉ ∑Y
i=1Xi and let W be a random variable with distribution

G(a+ Λε). We need to show that for all x ≥ 1, P(Z ≥ x) ≤ P(W ≥ x).
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We start by estimating P(W ≥ x). Observe that(
P(W ≥ x)

P(X1 ≥ x)

)1/2

=
a+ Λε+ 1

a+ Λε+ x
× a+ x

a+ 1

= 1 +
Λε(x− 1)

(a+ Λε+ x)(a+ 1)
.

Hence, it follows that

P(W ≥ x) = P(X1 ≥ x)

(
1 +

Λε(x− 1)

(a+ Λε+ x)(a+ 1)

)2

. (7)

Now assume x ∈ [1, 4]. As Xi ≥ 1, Z ≥ 4 whenever Y > 1. Thus,

P(Z ≥ x) = (1− ε)P(X1 ≥ x) + ε,

so we need to show that

1− ε+ ε
(a+ x)2

(a+ 1)2
≤

(
1 +

Λε(x− 1)

(a+ Λε+ x)(a+ 1)

)2

or equivalently

1 + ε
(x− 1)(2a+ 1 + x)

(a+ 1)2
≤ 1 + 2

Λε(x− 1)

(a+ Λε+ x)(a+ 1)
+

Λ2ε2(x− 1)2

(a+ Λε+ x)2(a+ 1)2
.

Simplifying, it is enough to show that

2a+ 1 + x

(a+ 1)2
≤ 2Λ

(a+ Λε+ x)(a+ 1)
+

Λ2ε(x− 1)

(a+ Λε+ x)2(a+ 1)2
.

As the region [1, 4]× [0, 1] of possible values of (x, a) is compact, and since any bound

we obtain on ε will be continuous, it is enough to prove pointwise that for any such

(x, a), there is a sufficiently small ε that satisfies this inequality. As a result it is enough

to show that
2a+ 1 + x

(a+ 1)2
<

2Λ

(a+ x)(a+ 1)
.

This reduces to the inequality (2a+ 1+ x)(a+ x) < 2Λ(a+ 1) which holds for all x ≤ 4

if (2a+ 5)(a+ 4) < 2Λ(a+ 1). This in turn holds for all a ∈ [0, 1] when Λ > 10.

Assume now that x > 4. We give a proof for Λ = 52 and indicate at the end how to

reduce this bound to Λ = 13.06207 < 14.

If Y ≥ 2, then 2⌈log2 Y ⌉ ≤ 2(Y − 1). Hence, if Z ≥ x and Y ≥ 2, then at least one of

X1, X2, . . . , XY is greater than x/(2Y (Y − 1)). Thus

P(Z ≥ x) ≤ (1− ε)P(X1 ≥ x) +
∞∑
k=2

(1− ε)εk−1kP(Xi ≥ x/(2k(k − 1)))

≤ (1− ε)P(X1 ≥ x) +
∞∑
k=2

(1− ε)εk−1k
(a+ 1)2

(a+ x/(2k(k − 1)))2
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≤ (1− ε)P(X1 ≥ x) +
∞∑
k=2

(1− ε)εk−14k3(k − 1)2
(a+ 1)2

(a+ x)2

= (1 + 31ε+O(ε2))P(X1 ≥ x). (8)

Now a ≤ 1 and x ≥ 4, so (x− 1)/((a+ x)(a+ 1)) ≥ 3/10. Thus, by (7), we have

P(W ≥ x) = (1 + 3Λε/5 + Ω(Λ2ε2))P(X1 ≥ x). (9)

Moreover, the constants implicit in the asymptotic notation in both (8) and (9) are

absolute constants independent of a and x for any ε < 1. Thus, for Λ = 52 > 31(5/3),

we have P(Z ≥ x) ≤ P(W ≥ x) for all x ≥ 4 when ε is sufficiently small.

To improve this bound, it is clearly enough to ensure the factor in front of the ε

in (9) is larger that the factor in front of the ε in (8). Thus, we need that for some

fixed δ > 0,
P(X1 +X2 ≥ x/2)

P(X1 ≥ x)
− 1 + δ ≤ 2(x− 1)Λ

(a+ 1)(a+ x)
(10)

for all a ∈ [0, 1] and x ≥ 4. We first evaluate P(X1 + X2 ≥ x/2) in closed form for

x ≥ 4. This allows us to avoid numerical integration and ensures fast and accurate

calculation of both sides of (10). It is not difficult to show that

P(X1 +X2 ≥ x/2) =
8(a+ 1)2((4a+ x)2 + 6(a+ 1)(x− 4))

(4a+ x)3(2a+ x− 2)

+
192(a+ 1)4

(4a+ x)4
log

(
2a+ x− 2

2a+ 2

)
.

Next, note that P(Xi ≥ x) is not only monotone in x, it is also increasing in a; also,

the same is true of P(X1 +X2 ≥ x/2). Thus, when (a, x) ∈ [a1, a2]× [x1, x2], we can

bound terms such as P(X1 ≥ x) and P(X1 + X2 ≥ x/2) by evaluating them at the

points (a1, x2) (for a lower bound) and (a2, x1) (for an upper bound). We can bound

the right-hand side of (10) in a similar fashion as this expression is increasing in x and

decreasing in a.

We first deal with the case when x is large: let us suppose that x ≥ x0 = 100. Recall

that a ∈ [0, 1] and log(1 + z) ≤ z, so

P(X1 +X2 ≥ x/2)

P(X1 ≥ x)
=

8(a+ x)2((4a+ x)2 + 6(a+ 1)(x− 4))

(4a+ x)3(2a+ x− 2)

+
192(a+ 1)2(a+ x)2

(4a+ x)4
log

(
1 +

x− 2

2a+ 2

)
≤ 8((4 + x)2 + 12(x− 4))

x(x− 2)
+

192

x4
(x− 2)

≤ 8 +
176

x− 2
+

192

x3
≤ 10
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for x ≥ x0. On the other hand,

2(x− 1)Λ

(a+ 1)(a+ x)
≥ (x− 1)Λ

(x+ 1)
≥ 10

for x ≥ x0 and any Λ ≥ 11. Hence, it is clear that (10) holds (with any δ ≤ 1) when

x ≥ x0.

We may now verify (10) on [0, 1]× [4, 100] using a computer. We do this by estab-

lishing (10) on a finite collection of subrectangles that partition [0, 1] × [4, 100]; our

program that does this proceeds as follows. On any rectangle within [0, 1]× [4, 100],

we can bound both sides of (10) as described above: if the required inequality on the

whole rectangle follows from these bounds, our program certifies that the inequality

holds on this rectangle, and if the required inequality cannot be shown to hold on

the whole rectangle using the bounding strategy described above, then our program

recursively divides such a rectangle into two smaller rectangles, and checks both of

these subrectangles using the same strategy.

Our program verified (10) for all (a, x) ∈ [0, 1]× [4, 100] with Λ = 13.06207 < 14; we

set δ = 10−10 to (very generously) allow for floating point inaccuracies and to provide

the uniform bound needed in (10). □

We are now ready to prove our main result.

Proof of Theorem 2.5. Recall that we would like to show that if we have λ > Λ =

13.06207, a ∈ [0, 1), and probability distributions PR and PB such that PB ≽ F(λ)

and G(a) ≽ PR, then the outcome of a complete sequence of recolourings applied to

∆ = ∆(PR,PB) is almost surely a blue-win.

Recall that ∆ is constructed as follows: take two i.i.d. sequences (Ri)i∈Z and (Bi)i∈Z
of random variables with distributions PR and PB respectively, and then let ∆ be the

colouring of the real line given by

· · ·+R−1 +B−1 +R0 +B0 +R1 +B1 + . . . ,

where Ri is a red interval with |Ri| = Ri and Bi is a blue interval with |Bi| = Bi

for each i ∈ Z, and the origin is the boundary-point between R0 and B0. We shall

construct, for each t ≥ 0, a colouring ∆t of the line into intervals and a representation

of the colouring as

· · ·+ C
(t)
−1 +B

(t)
−1 + C

(t)
0 +B

(t)
0 + C

(t)
1 +B

(t)
1 + . . . ,

where C
(t)
i is a red-ended interval and B

(t)
i is a blue interval for each i ∈ Z. We shall

also maintain, for each t ≥ 0, a collection of bounds ℓt(.) such that ℓt(C
(t)
i ) ≥ r(C

(t)
i )

and ℓt(B
(t)
i ) ≤ |B(t)

i | for each i ∈ Z.
We start by taking ∆0 = ∆, with C

(0)
i = Ri and B

(0)
i = Bi. We then define our initial

sequence of bounds as follows. Couple the lengths of the red intervals with an i.i.d.
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sequence (ℓ0(Ri))i∈Z of G(a) random variables so that ℓ0(Ri) ≥ |Ri| = r(Ri) for each

i ∈ Z, and couple the lengths of the blue intervals with an i.i.d. sequence (ℓ0(Bi))i∈Z of

F(λ) random variables so that ℓ0(Bi) ≤ |Bi| for each i ∈ Z. Note also that this coupling

can be done independently for each interval.

We get ∆t+1 from ∆t by first coalescing some intervals and then updating the bounds

for these intervals using the ℓ-bounding argument described in the previous section, and

subsequently rescaling the lengths of all the intervals in the resulting colouring. Since the

initial bounds (ℓ0(Ri))i∈Z and (ℓ0(Bi))i∈Z are both i.i.d. sequences of random variables,

it follows by induction that for each t ≥ 0, the bounds (ℓt(C
(t)
i ))i∈Z and (ℓt(B

(t)
i ))i∈Z

are also both i.i.d. sequences of random variables. We shall track the distributions of

the bounds ℓt(.) to show that blue wins. In particular, we shall use the fact that the

ℓ-bounding argument is stable under stochastic domination to show that there are a

pair of sequences (λt)t≥0 and (at)t≥0 of positive reals, with λ0 = λ and a0 = a, such

that the distributions of the i.i.d. sequences (ℓt(C
(t)
i ))i∈Z and (ℓt(B

(t)
i ))i∈Z are G(at) and

F(λt) respectively. We will see that the sequence (λt)t≥0 grows exponentially, whereas

each at is bounded away from 1; the result will follow from this fact.

Since a < 1 and λ > Λ, we may choose δ > 0 such that a ≤ 1− δ and λ ≥ Λ/(1− δ).

Next, we fix an ε > 0 such that ε < min (δ/2, ε0, 1/10), where ε0 is as in the statement

of Lemma 7.1. Since 2ε < δ ≤ 1, it is easily verified that

(2− δ + 2ε)2

(2− δ + ε)2(1 + ε)
≥ 4

(2− ε)2(1 + ε)
≥ 1 +

ε2

2
. (11)

For each t ≥ 0, we construct ∆t+1 from ∆t by first using the ℓ-bounding argument

with threshold 1 + ε, and then scaling down the lengths of all the intervals by a factor

of 1 + ε.

More precisely, given ∆t, we construct ∆t+1 by performing the following sequence

of recolourings. First coalesce all the blue intervals B with ℓt(B) ≤ 1 + ε with the

surrounding red-ended intervals. After this recolouring, we see (by induction) that

the estimates for the lengths of the blue intervals are i.i.d. random variables with

distribution 1 + Exp(λt) conditioned on being at least 1 + ε. Thus, they are distributed

as 1 + ε+ Exp(λt) since conditioning an exponential random variable to be larger than

some constant is equivalent to adding that constant. Let

ζt = 1− exp (−ε/λt) <
ε

λt

be the probability that a blue interval is recoloured. Then each new red-ended interval

C is formed from Y consecutive red-ended intervals C1, C2, . . . , CY , where Y has

distribution Geom(ζt), independently for each resulting red-ended interval C. We
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combine the length bounds as in the ℓ-bounding argument using Corollary 6.3 and set

ℓt+1(C) = 2⌈log2 Y ⌉
Y∑
i=1

ℓt(Ci).

By Lemma 7.1, this is stochastically bounded above by a G(at + Λζt) distribution. By

increasing the values of these bounds if necessary, we can assume that these bounds are

now i.i.d. random variables with distribution G(at + Λζt).

Each surviving blue interval now has length strictly greater than 1 + ε. We now

recolour those red-ended intervals C with ℓt+1(C) ≤ 1 + ε. The probability that this

occurs for a given red-ended interval is

ξt = 1− (at + Λζt + 1)2

(at + Λζt + 1 + ε)2
=

ε(2at + 2Λζt + 2 + ε)

(at + Λζt + 1 + ε)2
.

Each new blue interval B is formed from Y consecutive blue intervals B1, B2, . . . , BY ,

where Y has distribution Geom(ξt), independently for each resulting blue interval. We

set

ℓt+1(B) =
Y∑
i=1

ℓt(Bi)

as in the ℓ-bounding argument. As the sum of Geom(ξt) independent Exp(λ) random

variables is an Exp(λ/(1− ξt)) random variable, the resulting bounds for the lengths of

the blue intervals stochastically dominate a 1 + ε+ Exp(λt/(1− ξt)) random variable;

by decreasing the values of these bounds if necessary, we can assume that these bounds

are now i.i.d. random variables with distribution 1 + ε + Exp(λt/(1 − ξt)). Finally,

note that the estimates for the red-content of the surviving red-ended intervals are

now distributed according to the distribution of a random variable with distribution

G(at + Λζt) that is conditioned on being at least 1 + ε. This is easily seen to be 1 + ε

times a random variable with distribution G((at + Λζt)/(1 + ε)).

We now get ∆t+1 by scaling down the lengths of all the intervals (and our estimates

for these) by a factor of 1 + ε. Of course, we have not specified how the red-ended

intervals and blue intervals are indexed in ∆t+1. It is however clear (by induction) that

the law of ∆t+1 is shift-invariant, so the precise choice of origin clearly does not affect

the outcome of the evolution; therefore, we arbitrarily choose a red-ended interval C

and a blue interval B in ∆t+1 such that C is immediately to the left of B, and then

designate C and B to be C
(t+1)
0 and B

(t+1)
0 respectively.

We now know that the i.i.d. sequences (ℓt(C
(t+1)
i ))i∈Z and (ℓt(B

(t+1)
i ))i∈Z have distri-

butions G(at+1) and F(λt+1) respectively, where

at+1 =
at + Λζt
1 + ε

,
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and

λt+1 =
λt

(1− ξt)(1 + ε)
.

We shall show by induction that at ≤ 1 − δ and λt ≥ (1 + ε2/2)tλ for each t ≥ 0.

Indeed, inductively assume that this is true of at and λt. Since ζt < ε/λt ≤ ε/λ and

Λ/λ ≤ 1− δ, it follows that

at+1 =
at + Λζt
1 + ε

≤ at + Λε/λ

1 + ε
≤ 1− δ + (1− δ)ε

1 + ε
= 1− δ.

Next, using (11), we note that

λt+1

λt

=
1

(1− ξt)(1 + ε)
=

(at + Λε/λt + 1 + ε)2

(at + Λε/λt + 1)2(1 + ε)

≥ (2− δ + 2ε)2

(2− δ + ε)2(1 + ε)
≥ 1 +

ε2

2
.

Thus, the sequence (λt)t≥0 grows exponentially, whereas the sequence (at)t≥0 is bounded

away from 1.

We now finish the proof as in the proof of Theorem 4.2 by showing that there is a

positive probability that there exists a point which only changes colour a finite number

of times and is ultimately blue; the existence of any such point clearly precludes a

red-win or a tie, and therefore implies that blue wins almost surely.

We say that a point is blue externally in ∆t if the point is blue, but not contained

within one of the red-ended intervals of ∆t. Since the law of ∆t is shift-invariant for

each t ≥ 0, the probability that an externally blue point of ∆t is no longer externally

blue in ∆t+1 is the same for each externally blue point of ∆t; furthermore, this common

probability is at most ζt < ε/λt. It follows that the probability that any given externally

blue point of ∆T remains externally blue in each ∆t with t > T is at least 1−
∑

i>T ε/λi.

Now, choose T ≥ 0 to be large enough so that
∑

i>T ε/λi < 1; this is possible since the

sequence (λt)t≥0 grows exponentially. It is now clear that any given externally blue

point of ∆T is never recoloured again with positive probability; it follows that blue wins

almost surely, as required. □

8. A comparison of two simple distributions

In this section, we consider as an example the case where the initial lengths of all

the red intervals are deterministically 1 and those of the blue intervals are distributed

according to the (uniform) U [0, 1 + γ] distribution with γ ≥ 0.

Before we turn to the proof of Theorem 2.6, we make the following simple observation.

36



Proposition 8.1. Let p > 0 and 0 < a < b. If X and Y are random variables with

distributions Geom(p) ◦ U [a, b] and Geom(p) respectively, then

P(X ≥ x) ≥ 1

2
P
(
Y ≥ 2x

a+ b

)
.

Proof. To see this, write X as a sum of Y independent copies of a random variable

with distribution U [a, b]; this sum is at least (a + b)Y/2 with probability 1/2, by

symmetry. □

Proof of Theorem 2.6. Let ∆γ denote a random colouring of the line into intervals

where the lengths of all the red intervals are deterministically 1 and those of the blue

intervals are distributed according to the (uniform) U [0, 1 + γ] distribution. We wish to

show that the outcome of linear coalescence starting from ∆γ is almost surely a red-win

if γ is suitably small, and almost surely a blue-win if γ is sufficiently large.

For p ∈ [0, 1], we write ∆p,γ for the colouring of the line into intervals obtained from

∆γ as follows: we first recolour all blue intervals of length less than 1 (which we may

do since all red intervals initially have length 1), and having recoloured all such blue

intervals, we then recolour, independently with probability p, those red intervals which

(still) have length exactly 1 (which we may again do since we all blue intervals now

have length greater than 1).

After recolouring all the blue intervals of length less than 1 (which recolours a 1/(1+γ)

proportion of all the blue intervals), it is easy to check that the distribution of the

lengths of the blue intervals is 1 + U [0, γ], and that of the red intervals is

1 +

(
−1 + Geom

(
1

1 + γ

))
◦ (1 + U [0, 1]).

Next, after we recolour, independently with probability p, those red intervals of length

exactly 1 (which recolours a pγ/(1 + γ) proportion of all the red intervals), we have,

after expanding out the geometric distributions for clarity, writing the distributions of

both colours as a mixture of a sequence of simpler distributions, and setting q = 1− p,

the following distributions of lengths.

Red Probability Blue Probability

1 qγ
qγ+1

1 + 1 ◦ U [0, γ] qγ+1
1+γ

2 + 1 ◦ U [0, 1] γ
(qγ+1)(1+γ)

3 + 2 ◦ U [0, γ] ( qγ+1
1+γ

)( pγ
1+γ

)

3 + 2 ◦ U [0, 1] γ
(qγ+1)(1+γ)2

5 + 3 ◦ U [0, γ] ( qγ+1
1+γ

)( pγ
1+γ

)2

. . . . . . . . . . . .

More precisely, the lengths of distinct intervals in ∆p,γ are independent, and the

distributions of the lengths of the red and blue intervals are as follows. The length

of a red interval, with probability qγ/(qγ + 1), is exactly 1, and with probability
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γ/((qγ + 1)(1 + γ)k), is drawn from the distribution (k + 1) + k ◦ U [0, 1] for each k ≥ 1.

This claim perhaps merits a few words of explanation. After the second round of

recolourings, a (1− p)γ/(1 + γ) = qγ/(1 + γ) fraction of the red intervals from after the

first round of recolourings have length exactly 1; noting that a pγ/(1+γ) fraction of the

red intervals from after the first round are recoloured (and consequently removed) after

the second round, we arrive at the probability that a red interval has length exactly

1 after the second round, which is (1− pγ/(1 + γ))−1(qγ/(1 + γ)) = qγ/(qγ + 1). We

may reason analogously in the other cases as well. Similarly, it may be seen that the

length of a blue interval is drawn from the distribution (2k − 1) + k ◦ U [0, γ] with

probability ((qγ + 1)/(1 + γ))(pγ/(1 + γ))k−1 for each k ≥ 1. Let us write Rp(γ) and

Bp(γ) respectively to denote these distributions of the lengths of the red and blue

intervals in ∆p,γ.

To show that a particular colour wins, we shall choose a suitable value of p ∈ [0, 1]

and apply Theorem 2.5 appropriately to the distributions of the lengths of the red and

blue intervals of ∆p,γ.

Case 1: γ < γR = 0.1216. We wish to show that red wins in this case. We fix p = 1

and q = 0 and write R(γ) and B(γ) for the distributions R1(γ) and B1(γ) respectively.

It is sufficient to show that R(γ) ≽ F(Λ) and G(a) ≽ B(γ) for some a < 1, where Λ is

as in the statement of Theorem 2.5.

We first show that when γ is sufficiently small, G(a) ≽ B(γ) for some a < 1. Suppose

that 0 ≤ γ ≤ γR, and let X and Y be random variables with distributions B(γ) and

G(a) respectively. Since both B(γ) and G(a) are supported on [1,∞), we need to show

for each x ≥ 1 that

P(X ≥ x) ≤ P(Y ≥ x).

First, when x ∈ [1, 1 + γ], we note that the density function of B(γ) in this range is

1/(γ(1+ γ)) > 7, while the density function of G(a) in this range is 2(a+1)2/(a+x)3 ≤
2/(a + 1) ≤ 2. Thus, the stochastic domination condition holds when x ∈ [1, 1 + γ].

Now assume that x ∈ [2k − 1 + kγ, 2k + 1 + (k + 1)γ] for some k ≥ 1. In this case, we

note that

P(X ≥ x) ≤ P(X ≥ 2k − 1 + kγ) ≤
(

γ

1 + γ

)k

≤ 9−k

and then check, for a sufficiently close to 1, that we have

P(Y ≥ x) ≥ (a+ 1)2

(a+ 2k + 1 + (k + 1)γ)2
≥ 3.99

((k + 1)(2 + γ))2
≥ 3.99

5(k + 1)2
.

It is then easy to see that 3.99/(5(k + 1)2) ≥ 9−k for all k ≥ 1.

We now wish to show that R(γ) ≽ F(Λ) for all 0 ≤ γ ≤ γR. The distributions R(γ)

stochastically decrease with γ; indeed, this follows from the fact that the Geom(1/(1+γ))
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distributions stochastically decrease with γ. Hence, it suffices to show that R(γR) ≽
F(Λ).

Now, let X and Y have distributions R(γR) and F(Λ) =1+Exp(Λ) respectively. Since

both distributions are supported on [1,∞), we need to show for each x ≥ 0 that

exp
(
−x

Λ

)
= P(Y ≥ x+ 1) ≤ P(X ≥ x+ 1). (12)

Applying Proposition 8.1, we have for each x ≥ 0,

P(X ≥ x+ 1) ≥ 1

2
(1 + γR)

−2x/3. (13)

We need this to be at least e−x/Λ; unfortunately this does not hold for small x. However,

note that this holds for x ≥ x0 = 2000 since

0.1216 = γR < e(3/2Λ)−(3 log 2)/(2x0) − 1

which establishes (12) on [x0,∞). Then we inductively define xi by

e−xi+1/Λ = P(X ≥ xi + 1) (14)

and check with the help of a computer that there exists an n ∈ N such that xn = 0 (i.e.,

xn−1 < 1), and that the sequence (xi)
n
i=0 is monotone decreasing. Consequently, we see

that (12) holds on [xi+1, xi] by (14) for each i ≥ 0. We briefly sketch how we check this

claim on a computer. We can bound the distribution R(γR) numerically in terms of sums

of uniform distributions by expanding out the geometric distribution in its definition.

For large k, the distribution k ◦ U [a, b] can be bounded by the Berry–Esseen theorem

in the form proved in [26]. This gives a bound of 0.5751/
√
k between the cumulative

distribution functions of k ◦ U [a, b] and the corresponding normal approximation. The

effect of this approximation is that it ‘almost’ removes the factor of 1/2 in (13), allowing

us to prove stochastic domination down to much smaller x. This is still inadequate

for very small x however, so we finish by calculating, for small k, the (Irwin–Hall)

distribution of k ◦ U [a, b] exactly in terms of piecewise polynomial functions.

Case 2: γ ≥ γB = 6.048. In this case, we would like to show that blue wins. Choose

a constant c > 5/4 and set p = 1− c/γ so that qγ = c.

Our aim is to show that if γ is sufficiently large, then G(a) ≽ Rp(γ) = R(γ) for some

a < 1 and Bp(γ) = B(γ) ≽ F(Λ).

We first show that the distribution of the lengths of the red intervals of ∆p,γ is

stochastically dominated by a G(a) distribution with a < 1. Let X and Y be random

variables with distributions R(γ) and G(a) respectively. For x ∈ [1, 2] it is enough to

show that

P(X > x) ≤ P(X > 1) = 1− qγ

qγ + 1
≤ (a+ 1)2

(a+ 2)2
= P(Y ≥ 2) ≤ P(Y > x)
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which, since qγ = c > 5/4, is true when a is sufficiently close to 1. For x ∈ [2, 3],

we note that the density function of R(γ) is γ/((qγ + 1)(1 + γ)), which is pointwise

greater than the corresponding density function 2(a + 1)2/(a + x)3 of G(a) provided

a is sufficiently close to 1. Now, for x ∈ [2k + 1, 2k + 3] with k ≥ 1 and a sufficiently

close to 1, we have

P(X ≥ x) ≤ 1

(qγ + 1)(1 + γ)k
≤ 6−k/2, and

P(Y ≥ x) ≥ (a+ 1)2

(a+ 2k + 3)2
≥ 9(k + 2)−2

10
;

it is clear that 9(k + 2)−2/10 ≥ 6−k/2 for each k ≥ 1.

Finally we show that B(γ) ≽ F(Λ) for all sufficiently large γ using a strategy similar

to the one used in the previous case.

Recall, the definition of B(γ): a random variable with this distribution is drawn with

probability ((qγ+1)/(1+ γ))(pγ/(1+ γ)k−1) from the distribution (2k− 1)+ k ◦U [0, γ]

for each k ≥ 1. We claim that the distributions B(γ) stochastically increase with γ.

This follows from the fact that the distributions U [0, γ] and Geom ((γ − c)/(1 + γ)) are

both stochastically increasing in γ.

Hence, it is sufficient to show that B(γB) ≽ F(Λ). Let X be a random variable with

distribution B(γB). We would like to show, for all x ≥ 0, that

P(X ≥ x+ 1) ≥ e−x/Λ. (15)

Let Y be a (geometric) Geom(pγB/(1 + γB)) = Geom((γB − c)/(1 + γB)) random

variable. We deduce from Proposition 8.1 that

P(X ≥ x+ 1) ≥ 1

2
P(Y ≥ (x+ 2)/(2 + γB/2))

≥ 1

2

(
γB − c

1 + γB

)(x+2)/(2+γB/2)

for x ≥ x0 = 106. This bound can be checked to be at least e−x/Λ for all x ≥ x0

using the fact that γB = 6.048. This shows that (15) holds on [x0,∞). As before, we

inductively define xi by e−xi+1/Λ = P(X ≥ xi+1) and check with the help of a computer

that there exists an n ∈ N such that xn < 2, and that the sequence (xi)
n
i=0 is monotone

decreasing. This verifies (15) on [2, x0]. Finally, it is easy to check (15) on [0, 2] as the

density function ((qγB + 1)/(1 + γB))/γB of B(γB) is pointwise less than the density

function of F(Λ) in this region since e−x/Λ/Λ > e−2/Λ/Λ. □

9. Conclusion

It is possible that there exist natural analytical conditions on the red and blue

distributions that are useful in determining the outcome of linear coalescence. It would
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be very interesting to determine such sufficient conditions if they exist; in this paper,

we have managed to rule out two very natural candidates.

There likely exist quite ‘dissimilar’ distributions PR and PB for which the outcome

of the coalescence process is a tie. To prove such a result analytically, it would seem

necessary to track the process fairly precisely. It is unclear whether the methods

developed here would be of much help in such a task; new ideas are probably required.

However, it is possible that there exists a natural topology on the space of probability

distributions on the positive reals with respect to which the relation ▷ is open; we

would not be surprised if one could use such a result to demonstrate the existence of

dissimilar distributions PR and PB for which linear coalescence results in a tie.

We remind the reader of one side-effect of the absence of monotonicity in linear

coalescence. It would be tempting to prove a high confidence result which is stronger

than Theorem 2.6 in a manner analogous to the proof of Claim 2.3. Indeed, when

comparing the red distribution that is deterministically 1 with the U [0, 1 + γ] blue

distribution, we can show that with high confidence, red wins almost surely when

γ = 1.16, and blue wins almost surely when γ = 1.19. Unfortunately we cannot deduce

that red wins when γ < 1.16 or that blue wins when γ > 1.19 from this. This illustrates

one key drawback of proving results with high confidence: such results can only be

applied to specific pairs of distributions, and in the absence of monotonicity, we are

unable to do much more than speculate.

Perhaps the most important question not addressed in this paper which merits

investigation is that of devising analytical techniques to compute the probability that

a large monochromatic central interval appears in the coalescence process on a large

finite interval. In addition to being an interesting question in its own right, it would

help transform the high confidence results in this note into theorems proper.
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