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Abstract. We investigate the following generalisation of the ‘multiplication table

problem’ of Erdős: given a bipartite graph with m edges, how large is the set of sizes

of its induced subgraphs? Erdős’s problem, posed in 1955, of estimating the number

of distinct products ab with a, b ≤ n is precisely the problem under consideration

when the graph in question is the complete bipartite graph Kn,n. In this note, we

prove that the set of sizes of the induced subgraphs of any bipartite graph with m

edges contains Ω(m/(logm)12) distinct elements; furthermore, this is tight up to the

exponent of the logarithmic factor in the estimate.

1. Introduction

For a bipartite graph G, we define, writing e(.) for the number of edges of a graph,

its multiplication table M(G) by setting

M(G) = {e(H) : H is an induced subgraph of G};

our reasons for calling M(G) the multiplication table of G will soon become evident.

While the definition of M(G) above is meaningful for any graph G, we shall mainly be

concerned with bipartite graphs in this note.

It seems likely that the bipartite graphs with the smallest multiplication tables are

the complete bipartite graphs; writing Kn,n for the complete bipartite graph between

two disjoint sets of n vertices, we conjecture the following.

Conjecture 1.1. Let n ∈ N and suppose that G is a bipartite graph with e(G) = n2.

Then |M(G)| ≥ |M(Kn,n)|.

In this note, our aim is to prove Conjecture 1.1 in a weak quantitative form. It turns

out that |M(Kn,n)| = o(n2); in fact, as was shown by Ford [14], there exists an absolute

constant δ ≈ 0.086 such that |M(Kn,n)| = n2/(log n)δ+o(1). Our main result, stated

below, gives a comparable bound for an arbitrary bipartite graph.
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Theorem 1.2. If G is a bipartite graph with m edges, then

|M(G)| = Ω

(
m

(logm)12

)
.

Let us make a few remarks about Theorem 1.2. First, in the light of our earlier

remarks about complete bipartite graphs, it is clear that we cannot do away with the

logarithmic factor in our result; indeed, we cannot replace the exponent 12 in the

statement of Theorem 1.2 by an exponent smaller than δ ≈ 0.086. Next, we should

point out that it is trivial to prove that |M(G)| = Ω(m1/2) for any graph G with m

edges; to see this, note that any such graph either contains a vertex of degree Ω(m1/2)

or an induced matching of size Ω(m1/2), and we are done in either case. If we do not

insist that our graph is bipartite, this trivial argument can be seen to be essentially

tight by considering, for example, the complete graph. Hence, to beat this trivial bound

of m1/2, it is necessary to exploit the fact that we are working with bipartite graphs. We

urge the reader to pause for a moment and consider the question of beating this trivial

lower bound of m1/2 for bipartite graphs; while Theorem 1.2 improves on this bound

considerably, we do not have a short proof of even a lower bound of, say, m2/3. Finally,

while it might be possible to refine our methods to prove a bound of the form say,

Ω(m/(logm)9), it seems unlikely that our proof can be adapted to prove Conjecture 1.1,

or for that matter, to even prove a bound of Ω(m/ logm); hence, we make no serious

attempt to optimise the logarithmic factors in our proof.

Our main motivation for studying Conjecture 1.1 is because it is a natural com-

binatorial generalisation of a number-theoretic problem, now known colloquially as

the ‘multiplication table problem’, posed by Erdős [8]. For n ∈ N, write [n] for the

set {1, . . . , n} and [n] · [n] for the set of distinct products ab with a, b ≤ n; the mul-

tiplication table problem is then simple to state: how large is [n] · [n]? Observe that

[n] · [n] is precisely the set of sizes of the induced subgraphs of Kn,n; consequently, the

multiplication table problem can be rephrased as follows: how large is |M(Kn,n)|? In

this paper, we generalise this question and ask how large |M(G)| is for an arbitrary

bipartite graph G with a prescribed number of edges.

The multiplication table problem has received a great deal of attention over the past

five decades. Erdős [8] showed, using the fact that almost all natural numbers less that

n have about log log n distinct prime factors, that the cardinality of [n] · [n] is o(n2) as

n → ∞. Subsequently, better bounds were obtained, first by Erdős [9] and then by

Tenenbaum [22]. Despite its innocuous appearance, the multiplication table problem

has been settled only recently; a deep result of Ford [14] asserts that as n → ∞,

∣∣[n] · [n]∣∣ = Θ

(
n2

(log n)δ(log log n)3/2

)
,
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where δ = 1 − (1 + log log 2)/ log 2 ≈ 0.086. For results about higher dimensional

analogues of the multiplication table problem, we refer the reader to the papers of

Koukoulopoulos [17, 18]. Erdős also posed a number of related number-theoretic

problems; see the book of Hall and Tenenbaum [15] and the section on the statistical

theory of divisors in the comprehensive survey of Ruzsa [20].

The problem studied in this paper is also closely related to a number of combinatorial

results about induced subgraph sizes that have been proved over the course of the last

thirty years. Many of these questions and results about the sizes of induced subgraph

arise from trying to better understand the structure of Ramsey graphs ; we discuss some

of these problems below.

A subset of the vertices of a graph is said to be homogeneous if it either induces a

clique or an independent set; let us write hom(G) for the size of the largest homogeneous

set of vertices in a graph G. Alon and Bollobás [2] (see also [13]) proved that any graph

without a large homogeneous set necessarily contains many distinct (non-isomorphic)

induced subgraphs; in their proof, they distinguished between induced subgraphs using,

amongst other parameters, their order and size. Subsequently, Erdős, Faudree and

Sós [10, 12] conjectured that for every C > 0, there exists an ε = ε(C) > 0 such that if

G is an n-vertex graph with hom(G) ≤ C log n, then the number of distinct pairs (x, y)

such that G has an induced subgraph on x vertices inducing y edges is at least εn5/2.

While this conjecture still remains unresolved, a number of partial results have been

proved; see the papers of Axenovich and Balogh [5], Alon and Kostochka [3], and Alon,

Balogh, Kostochka and Samotij [1] for the state of the art.

Another conjecture with a similar flavour, due to Erdős and McKay [10, 11], also far

from settled, asserts that for every C > 0, there exists an ε = ε(C) > 0 such that if

G is an n-vertex graph with hom(G) ≤ C log n, then G contains an induced subgraph

with precisely y edges for every integer y between 0 and εn2; the best known bounds

for this problem are due to Alon, Krivelevich and Sudakov [4].

The sizes of the induced subgraphs of a random graph have also been investigated;

we refer the reader to the paper of Calkin, Frieze and McKay [7] for details. Finally,

let us also mention that the connection between the multiplication table problem and

the sizes of induced subgraphs of complete bipartite graphs was exploited by the first

author in [19] to construct ‘good’ colourings for a Ramsey-theoretic problem.

Returning to the question at hand, let us discuss, very briefly, one of the difficulties

in proving Theorem 1.2. Note that a proof of Theorem 1.2 should also establish that

|[n] · [n]| = Ω(n2/(log n)12). To prove such a weak estimate for the size of [n] · [n] is
in itself not difficult. One could use the prime number theorem to show that one has

many distinct products of the form ab in the set [n] · [n] where both a and b are prime.

Alternatively, one could use the fact that the set [n] has small ‘additive doubling’ to

conclude, using a beautiful theorem of Solymosi [21], that [n] · [n] is large. These are
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however the only ways, to the best of our knowledge, of proving a reasonable lower

bound for |[n] · [n]| without resorting to somewhat involved divisor estimates, and

neither of these methods would appear to generalise easily to the setting of bipartite

graphs. Hence, to prove Theorem 1.2, we shall require, in addition to graph-theoretic

techniques, a few additive-combinatorial and number-theoretic tools; some of these

might be of independent interest.

The rest of this paper is organised as follows. In Section 2, we establish some notation

and then prove some straightforward number-theoretic estimates. We then describe our

strategy for proving Theorem 1.2 in Section 3. After establishing a key partitioning

lemma in Section 4, we prove Theorem 1.2 in Section 5. We conclude by discussing

some problems in Section 6.

2. Preliminaries

In this section, we establish some notation and collect together some number-theoretic

estimates that we shall make use of when proving our main result.

2.1. Notation. Given a set S and r ∈ N, we write S(r) for the family of subsets of S

of cardinality r. Given A,B ⊂ Z, we write A+B and A ·B respectively for the set of

distinct sums a+ b and products ab with a ∈ A and b ∈ B.

It will help to have some notation in place for working with finite sequences. Given a

sequence of integers a = (ai)
n
i=1, we define S(a), its set of sums, by setting

S(a) =

{∑
i∈I

ai : I ⊂ [n]

}
.

Given two sequences of integers a and b, we write S(a,b) for the set of sums of the

concatenation of a and b; equivalently, S(a,b) = S(a)+S(b). We write k ◦ a to denote

the sequence of length k each of whose terms is a. So for example, the set S(k ◦ a, l ◦ b)
consists of those integers which can be written as ax + by for some 0 ≤ x ≤ k and

0 ≤ y ≤ l.

Our conventions for asymptotic notation are largely standard; however, we feel obliged

to point out that when we write, say Ωk(.), we mean that the constant suppressed by

the asymptotic notation is allowed to depend on (but is completely determined by)

the parameter k. Occasionally, we shall find it convenient to switch to Vinogradov’s

notation: given functions f and g, we write f ≪ g if f = O(g) and f ≫ g if g = O(f).

We use standard graph-theoretic notation and refer the reader to [6] for terms and

notation not defined here. To keep the exposition uncluttered, we omit floors and

ceilings whenever they are not crucial.

4



2.2. Number-theoretic estimates. We now collect together a few easy number-

theoretic estimates; for the sake of completeness, we shall prove them.

Lemma 2.1. Let a = (ai)
n
i=1 be a sequence of positive integers and let b ∈ N be a

positive integer such that gcd(ai, b) ≤ g for 1 ≤ i ≤ n. Then for any k ∈ N,

S(a, k ◦ b) ≥ kmin{b/g, n}.

Proof. Writing Sb(a) for the set of residues modulo b attained by the elements of S(a), it
is clearly sufficient to show that |Sb(a)| ≥ min{b/g, n}; we shall prove this by induction

on n.

The result is trivial if n = 1, so suppose that n > 1. Consider a′ = (ai)
n−1
i=1 , and

assume inductively that |Sb(a
′)| ≥ min{b/g, n− 1}. We are done if |Sb(a

′)| ≥ n since

then, |Sb(a)| ≥ |Sb(a
′)| ≥ n ≥ min{b/g, n}. Also, if n− 1 ≥ b/g, then we are done once

again since min{b/g, n} = min{b/g, n− 1} = b/g.

Hence, we may assume that Sb(a
′) contains exactly n− 1 distinct residues modulo b

and also that n− 1 < b/g. Let t = ⌈b/g⌉ − 1 and note that since n− 1 < b/g, it is also

true that n− 1 ≤ t. Choose s ∈ Sb(a
′) and observe that the numbers

s, s+ an, s+ 2an, . . . , s+ tan

are all distinct modulo b since gcd(an, b) ≤ g. Also, as |Sb(a
′)| = n− 1 ≤ t, one of

s+ an, s+ 2an, . . . , s+ tan

is not in Sb(a
′) since these numbers are, modulo b, all distinct and distinct from

s ∈ Sb(a
′). Now choose the minimal 1 ≤ l ≤ t such that s + lan ̸∈ Sb(a

′). By the

minimality of l, we have s+ (l − 1)an ∈ Sb(a
′), so s+ (l − 1)an + an = s+ lan ∈ Sb(a).

Consequently, s+ lan ∈ Sb(a) \ Sb(a
′) and we are done. □

Let us record here, for convenience, a special case of Lemma 2.1

Lemma 2.2. Let a, b ∈ N be positive integers such that gcd(a, b) ≤ g. Then for any

k, l ∈ N,
|S(k ◦ a, l ◦ b)| ≥ kmin{a/g, l}. □

We need the following easy consequence of the prime number theorem; see [16], for

example.

Proposition 2.3. For every ε > 0, the number of primes in the interval [n, (1 + ε)n] is

Ωε(n/ log n) as n → ∞. □

Indeed, it follows from the prime number theorem that the number of primes in the

interval [n, (1+ ε)n] is asymptotic to εn/ log n for any fixed ε > 0. However, the weaker

estimate above will be sufficient for our purposes.
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Lemma 2.4. If A ⊂ N is a set of positive integers and b ∈ N is a positive integer such

that maxA < b3/16, then ∣∣A · [b]
∣∣≫ |A|b

log b
.

Proof. Let Pb denote the set of primes in the interval [b/2, b]; we know that |Pb| ≫ b/ log b

by Proposition 2.3. Note that any k ∈ A · [b] has at most three distinct prime factors in

Pb. Indeed, if not, then k is divisible by at least four distinct primes each of which is

at least b/2, whence k ≥ b4/16, which contradicts the fact that k ≤ bmaxA < b4/16.

Consequently, the number of distinct ordered pairs (a, p) ∈ A× Pb such that ap = k is

at most 3× 2 = 6. Hence, ∣∣A× [b]
∣∣ ≥ |A||Pb|

6
≫ |A|b

log b
. □

Lemma 2.5. Let a, b, d, k ∈ N be positive integers. Then

min
0≤i<k

gcd(a, b− id) ≪ a1/kdk2.

Furthermore, if a ̸= b, then

min
0≤i<k

gcd(a− id, b− id) ≪ |a− b|1/kdk2.

Proof. Let g = gcd(a, b, d) and fi = gcd(a, b− id). We claim that

k−1∏
i=0

fi | adk
∏
q<k

q⌈k/q⌉,

where in the above, q ranges over the set of prime powers less than k. To check this

claim, consider any prime p: it suffices to show that the largest power of p dividing∏k−1
i=0 fi also divides adk

∏
q<k q

⌈k/q⌉. Given p, fix 0 ≤ j ≤ k−1 so that the largest power

of p dividing fj is the greatest amongst f0, . . . , fk−1; since fj | a, we have accounted

for the contribution from fj. Next, note that the largest power of p dividing fi for any

i ̸= j is the same as the largest power of p dividing gcd(fi, fj). Observe that

gcd(fi, fj) = gcd(a, b− id, b− jd) = gcd(a, b− id, (i− j)d),

whence it is clear that

gcd(fi, fj) | gcd(a, b− id, d) gcd(a, b− id, i− j) | g(i− j) | d(i− j).

Consequently, the largest power of p dividing
∏

i̸=j fi also divides dk−1
∏

i̸=j(i− j). It

suffices to account for the largest power of p dividing
∏

i̸=j(i− j). But note that for

any prime power q < k, the number of indices i ≠ j such that q | (i − j) is at most

⌈k/q⌉; the claim then follows.
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An old result of Mertens asserts that∑
p<k

log p

p
= (1 + o(1)) log k,

where in the above, p ranges over the set of primes less than k. It follows that∏
q<k

q⌈k/q⌉ = kk+o(k) ≪ k2k.

Hence, there exists an i ≤ k − 1 such that

fi ≤ a1/kd

(∏
q<k

q⌈k/q⌉

)1/k

≪ a1/kdk2.

To finish the proof of the lemma, note that the second assertion follows from the first

since gcd(a− id, b− id) = gcd(a− b, b− id). □

3. Overview of our approach

To illustrate our approach, we make an easy observation. Let G = (X, Y ;E) be a

bipartite graph and suppose that both vertex classes of G have the same size. Assume

that G is half-regular ; in other words, assume that the vertices on one side of the

bipartition, say X, all have the same degree d. Assume also that there exists a vertex

v ∈ Y with n/ log n < d(v) < n − n/ log n, where n = |X| = |Y |. If we remove v

from G, then each vertex of X has degree either d or d − 1 in the resulting graph;

moreover, there are at least n/ log n vertices with each of these two degrees. By

considering induced subgraphs of the form G[X ′ ∪ Y \ {v}] where X ′ ⊂ X, we see that

S(k ◦ d, l ◦ (d− 1)) ⊂ M(G) for some pair of natural numbers k, l ≥ n/ log n. Since d

and d− 1 are coprime, it follows from Lemma 2.2 that

|M(G)| ≥ |S(k ◦ d, l ◦ (d− 1))|

≥ n

log n
min

{
d,

n

log n

}
≥ nd

(log n)2
≥ m

(logm)2
.

To prove Theorem 1.2, we first reduce the problem of bounding the size of the

multiplication table of a general bipartite graph to the situation above, namely that of

bounding the size of the multiplication table of a half-regular bipartite graph. We shall

show (see Lemma 4.1) that given any bipartite graph G = (X, Y ;E), it is possible find

a reasonably large subset of X that can be partitioned into many groups X1, . . . , Xk

such that the sums of the degrees of the vertices in each of these groups is the same.

If we now imagine contracting each such set Xi into a single vertex, we obtain, after

discarding X \ (
⋃

i Xi) from our graph, a half-regular bipartite multigraph.
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If we can then find a vertex in Y whose degree is neither too large nor too small, then

we finish the proof using a variant of the argument sketched above. However, it might

be the case that there is no such vertex in Y . If Y contains only a few vertices of very

large degree, then our graph is somewhat sparse, and in this case, we use Lemma 5.1 to

complete the proof. If it turns out that many vertices of Y have very large degrees, then

we show that there is a reasonably dense induced subgraph within which we can find

many distinct subgraph sizes; the argument in this case is number-theoretic in nature.

4. A partitioning lemma

In this section, we shall prove a partitioning lemma for multisets of positive integers

that will play an important part in the proof of the main result. This lemma allows us

to select a large proportion of the vertices of a vertex class of a bipartite graph and

partition the selected vertices into many small, disjoint sets of equal size and such that

the sum of the degrees of the vertices in each of these sets is the same.

Lemma 4.1. Let a = (ai)
n
i=1 be a sequence of positive integers with

∑n
i=1 ai = m. There

exist positive integers k, r, d ∈ N and pairwise disjoint sets I1, . . . , Ik ∈ [n](r) such that

(1) 1 ≤ r ≤ logm,

(2) kd ≥ m/(logm)3, and

(3)
∑

i∈Ij ai = d for each 1 ≤ j ≤ k.

Let us fix, for the rest of this section, a1, . . . , an and m =
∑n

i=1 ai. For i ∈ [n], we

shall think of ai as the weight on i, and given a hypergraph F on [n], we define the

weight covered by F to be the sum of the weights of those vertices contained in at least

one edge of F. Given r, d ∈ N, it is natural to consider the r-uniform hypergraph F(r, d)

on [n] whose edges are the sets I ∈ [n](r) with
∑

i∈I ai = d. In this language, Lemma 4.1

tells us that we can find appropriate r, d ∈ N so that the hypergraph F(r, d) contains a

matching, i.e., a set of independent edges, covering a 1/(logm)3 proportion of the total

weight, namely m.

Our first two propositions together show that one of the hypergraphs F(r, d) must

necessarily contain a matching with many edges; using this, we then show that one of

these large matchings must cover a 1/(logm)3 proportion of the total weight.

Proposition 4.2. If F(r, d) contains l edges, then there exist positive integers r′ ≤ r

and d′ ≤ d for which F(r′, d′) contains a matching of size at least l1/r/r.

Proof. We prove the claim by induction on r. If r = 1, then it clearly suffices to take

r′ = r = 1 and d′ = d. Now suppose that r > 1. If some i ∈ [n] is contained in at

least l(r−1)/r edges of F(r, d), we proceed inductively as follows. By looking at the

edges of F(r, d) containing i, we see that F(r − 1, d − ai) has at least l(r−1)/r edges.

From the inductive hypothesis applied to F(r − 1, d− ai), we conclude that there exist
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r′ ≤ r − 1 < r and d′ ≤ d − ai < d such that F(r′, d′) contains a matching of size at

least (
l(r−1)/r

)1/r−1

r − 1
=

l1/r

r − 1
≥ l1/r

r
.

Now suppose that each i ∈ [n] is contained in at most l(r−1)/r edges of F(r, d). In this

case, we claim that F(r, d) contains a matching of size l1/r/r; in fact, we claim that any

maximal matching of F(r, d) contains at least l1/r/r edges. Indeed, if M is a maximal

matching of F(r, d), then each edge of F(r, d) meets at least one edge of M. However,

each edge of M meets at most rl(r−1)/r edges of F(r, d). It follows that the number of

edges in M is at least l/rl(r−1)/r = l1/r/r. □

Proposition 4.3. For any r ∈ N, there exist positive integers 1 ≤ r′ ≤ r and d′ ∈ N
for which F(r′, d′) contains a matching of size at least n/(r2m1/r).

Proof. As a1, . . . , an are positive integers whose sum is m, it is clear that
∑

i∈I ai ∈ [m]

for all I ∈ [n](r). Consequently, there exists a d ∈ [m] for which F(r, d) contains at least(
n
r

)
/m edges. It follows from Proposition 4.2 that there exist positive integers r′ ≤ r

and d′ ≤ d for which F(r′, d′) contains a matching of size at least

1

r

((
n
r

)
m

)1/r

≥ 1

r

(
nr

rrm

)1/r

=
n

r2m1/r
. □

We are now ready to prove Lemma 4.1.

Proof of Lemma 4.1. To prove the lemma, we greedily apply Proposition 4.3 so as to

cover [n] with (logm)3 matchings, where each matching is from one of the hypergraphs

F(r, d). We can then conclude that one of these matchings covers a 1/(logm)3 proportion

of the total weight, whence follows the lemma.

Define a collection of sets A1 ⊃ A2 ⊃ . . . recursively as follows. First set A1 = [n].

Assume that we have defined At ⊂ [n], the set of uncovered points after t steps. We

know from Proposition 4.3 that we can find 1 ≤ rt ≤ logm, kt ≥ |At|/(logm)2 and

pairwise disjoint sets It,1, . . . , It,kt ∈ A
(rt)
t such that, for some dt ∈ N,

∑
i∈It,j ai = dt for

each 1 ≤ j ≤ kt. Now define

At+1 = At \
kt⋃
j=1

It,j.

We claim that it takes at most (logm)3 steps before we cover all the elements of [n].

To see this, simply note that at stage t+ 1, the number of elements we remove from At

to form At+1 is ktrt ≥ kt ≥ |At|/(logm)2 and hence,

|At+1| ≤
(
1− 1

(logm)2

)t

n < e−t/(logm)2n.
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Since n ≤ m, it follows that A(logm)3+1 = ∅. It follows that there exists a t ≤ (logm)3

for which the weight covered by the matching It,1, . . . , It,kt is at least m/(logm)3, thus

concluding the proof of the lemma. □

5. Proof of the main result

As we remarked in Section 3, to prove Theorem 1.2, we shall find it useful to work

with multigraphs. Before we proceed further, we set out some notation.

Let G = (V,E) be a multigraph. We say that two vertices are neighbours in G, or are

adjacent to each other in G, if they are joined by at least one edge in G. Given v ∈ V ,

we write d(v) for the number of edges incident to v, and Γ(v) for the set of neighbours

of v; as d(v) is not necessarily equal to the cardinality of Γ(v) in a multigraph, we

write γ(v) = |Γ(v)| for the number of distinct neighbours of v. Given v ∈ V and

t ∈ N, we write Γt(v) for the set of vertices joined to v by exactly t parallel edges and

define γt(v) = |Γt(v)|. So for example, Γ0(v) is the set of vertices not adjacent to v,

Γ(v) =
⋃

t≥1 Γt(v), γ(v) =
∑

t≥1 γt(v), and d(v) =
∑

t≥0 tγt(v).

Given U ⊂ V , we denote the subgraph of G induced by U by G[U ]. For a subgraph

H of G, we shall write e(H) for the number of edges of H counted with multiplicity,

and for U ⊂ V , we write e(U) to denote e(G[U ]). Finally, we define the multiplication

table M(G) of G as we did for simple graphs by setting

M(G) = {e(U) : U ⊂ V }.

If G = (X, Y ;E) is a bipartite graph with vertex classes X and Y , then note that

for any X ′ ⊂ X and Y ′ ⊂ Y , we have

e(X ′ ∪ Y ′) =
∑
x∈X′

d(x)− e(X ′ ∪ (Y \ Y ′));

we shall make use of this simple observation repeatedly in the proof of Theorem 1.2.

The next lemma will be useful when dealing with sparse graphs in the proof of

Theorem 1.2; an analogous proposition for simple bipartite graphs appears in [4].

Lemma 5.1. Let G = (X, Y ;E) be a bipartite multigraph with at most r ≥ 1 parallel

edges between any pair of vertices and suppose that each vertex of G has positive degree.

If |X| = n, then

|M(G) ∩ [l]| ≥ l

2r
for each 1 ≤ l ≤ n.

Proof. If a vertex y ∈ Y is such that each of its neighbours in X has two or more

distinct neighbours in Y , we delete y from Y . Doing this repeatedly if necessary, we

assume that every y ∈ Y has a neighbour xy ∈ X with Γ(xy) = {y}. Note that even

after these deletions, every vertex still has positive degree.
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First, suppose that there exists a y ∈ Y with γ(y) > n/2r. Then if X1 ⊂ · · · ⊂
Xl/2r ⊂ Γ(y) is a strictly monotone increasing sequence of sets with |Xi| = i, then we

see that the sizes of the subgraphs induced by the sets Xi ∪ {y} are all distinct and

contained in [l].

Hence, suppose that γ(y) ≤ n/2r for every y ∈ Y . We shall construct a sequence

X0, . . . , Xn/2r of subsets of X with |Xi| ≤ i with the property that the sequence (ei)
n/2r
i=0

defined by ei = e(Xi ∪ Y ) satisfies 0 < ei+1 − ei ≤ r for each i ≥ 0. If we can do this,

then we are done since

e1, . . . , el/2r ∈ M(G) ∩ [l]

for each l ∈ [n].

We build the sets Xi recursively. We begin by setting X0 = ∅. Having constructed

Xi, we construct Xi+1 as follows. If there exists a y ∈ Y with xy ̸∈ Xi, we take

Xi+1 = Xi∪{xy} in which case it is clear that |Xi+1| ≤ i+1; we also have 0 < ei+1−ei ≤ r

since y and xy are joined by at least 1 and at most r edges.

Now suppose that xy ∈ Xi for every y ∈ Y . Since we have assumed that γ(y) ≤ n/2r

for each y ∈ Y , and since any two vertices of G are joined by at most r parallel edges, it

follows that e(G) ≤ n|Y |/2. Since |Xi| ≤ i ≤ n/2, we conclude by double counting that

there is a vertex x ∈ X \Xi such that d(x) ≤ |Y |. Choose some k vertices y1, . . . , yk ∈ Y

so that

0 < d(x)−
k∑

j=1

d(xyj) ≤ r.

This is possible since
∑

y∈Y d(xy) ≥ |Y | ≥ d(x) and since, for each y ∈ Y , d(xy) ≤ r as

y is the sole neighbour of xy. Now define

Xi+1 =

(
Xi \

k⋃
j=1

xyj

)
∪ {x}.

Clearly, |Xi+1| ≤ i+ 1. Since we have assumed that xy ∈ Xi for each y ∈ Y , we also

see that

ei+1 = ei + d(x)−
k∑

j=1

d(xyj).

We have shown how to construct Xi+1 with all the requisite properties; this completes

the proof. □

We are now in a position to prove Theorem 1.2.

Proof of Theorem 1.2. Let G = (X, Y ;E) be a bipartite graph with m edges; all the

inequalities in our proof will hold when m is sufficiently large.

11



The first step in proving Theorem 1.2 is to pass from G to an induced subgraph of G

within which we have better control over the vertex degrees, while at the same time

retaining a large fraction of the edges of G in this induced subgraph.

Let |X| = n1 and let x1, . . . , xn1 be the vertices of X. Applying Lemma 4.1 to the

sequence d(x1), . . . , d(xn1), we see that it is possible to find positive integers k1, r1, d1 ∈ N
and pairwise disjoint sets X1, . . . , Xk1 ∈ X(r1) such that r1 ≤ logm, k1d1 ≥ m/(logm)3,

and

∑
x∈Xj

d(x) = d1

for 1 ≤ j ≤ k1. We delete the vertices X \ (
⋃k1

j=1Xj) from G and also discard

any vertices of Y which subsequently become isolated; note that our graph still has

k1d1 ≥ m/(logm)3 edges.

If k1 is small, we need to work a bit harder. Suppose that k1 < m1/2/(logm)4. Let

|Y | = n2 and let y1, . . . , yn2 be the vertices of Y . We again apply Lemma 4.1, but on

this occasion to the sequence d(y1), . . . , d(yn2), to find positive integers k2, r2, d2 ∈ N
and pairwise disjoint sets Y1, . . . , Yk2 ∈ Y (r2) such that r2 ≤ logm, k2d2 ≫ m/(logm)6,

and ∑
y∈Yj

d(y) = d2

for 1 ≤ j ≤ k2. We then delete the vertices Y \(
⋃k2

j=1 Yj) from G and discard any vertices

of X which subsequently become isolated. Observe that G still has k2d2 ≫ m/(logm)6

edges.

Notice that after these deletions, |X| ≤ k1r1 ≤ k1 logm and |Y | = k2r2 ≤ k2 logm.

Since G still has Ω(m/(logm)6) edges, it follows that

k1k2(logm)2 ≫ m

(logm)6
.

Consequently, if k1 < m1/2/(logm)4, then k2 ≫ (m1/2/(logm)4.

Relabelling X and Y if necessary, note that G now has the property that that

there exist positive integers k, r, d ∈ N such that k ≫ m1/2/(logm)4, r ≤ logm,

e(G) = kd ≫ m/(logm)6, and there exists a partition

X =
k⋃

j=1

Xj

of X into k sets each of cardinality r with the property that∑
x∈Xj

d(x) = d

for 1 ≤ j ≤ k.

12



Let H = (XH , YH ;EH) be the half-regular bipartite multigraph obtained from G by

contracting the vertices of each Xj into a single vertex for 1 ≤ j ≤ k. Clearly,

M(H) ⊂ M(G),

so it suffices to bound |M(H)| from below. Henceforth, we shall work exclusively with

H, so in what follows, all vertex degrees, neighbourhoods, etc. will be with respect

to the multigraph H. For easy reference, let us list the properties of H that we shall

require in the rest of the proof.

(1) H has no isolated vertices.

(2) There are at most r ≤ logm parallel edges between any two vertices of H.

(3) For each x ∈ XH , d(x) = d.

(4) |XH | = k ≫ m1/2/(logm)4.

(5) e(H) = kd ≫ m/(logm)6.

Our goal now is to establish that |M(H)| ≫ m/(logm)12. We may assume that

d ≥ (logm)4. If not, then k ≫ m/(logm)10 since kd ≫ m/(logm)6. But then

|M(H)| ≥ k ≫ m/(logm)10 since clearly, d, 2d, . . . , kd ∈ M(H).

We claim that we are also done if there exists a vertex y ∈ YH and 0 ≤ a < b ≤ r

such that γa(y), γb(y) ≥ k/2(logm)2. Indeed, if such a y exists, choose V1 ⊂ Γa(y) and

V2 ⊂ Γb(y) and note that

e(V1 ∪ V2 ∪ (YH \ {y})) = (d− a)|V1|+ (d− b)|V2|,

from which it follows that

S(γa(y) ◦ (d− a), γb(y) ◦ (d− b)) ⊂ M(H).

Note that gcd(d − a, d − b) ≤ b − a ≤ logm. Since k ≫ m1/2/(logm)4, d ≥ (logm)4

and kd ≫ m/(logm)6, it follows from Lemma 2.2 that

|M(H)| ≥ k

2(logm)2
min

{
k

2(logm)2
,
d− logm

logm

}
≫ min

{
k2

(logm)4
,

kd

(logm)3

}
≫ min

{
m

(logm)12
,

m

(logm)9

}
≫ m

(logm)12
.

Hence, in what follows, we shall assume that d ≥ (logm)4 and that for each y ∈ YH ,

there is at most one 0 ≤ τ ≤ r such that γτ (y) ≥ k/2(logm)2.

Since
∑r

i=0 γi(y) = k and r ≤ logm, a consequence of assuming there is at most one

0 ≤ τ ≤ r for which γτ (y) ≥ k/2(logm)2 is that there in fact exists a unique τ for

which γτ (y) ≥ k(1− 1/2 logm); we call this unique value τ the type of y and say that
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the vertex y is of type-τ . In the rest of the proof, each y ∈ YH will be assumed to have

unique type τ ≤ logm.

Note that a vertex y ∈ YH of type-0 only has a few distinct neighbours in XH . We

shall distinguish two cases depending on the number of type-0 vertices of YH . We first

deal with the case where most vertices are of type-0.

Case 1: All but at most d/2 logm vertices of YH are of type-0. Note that

since each x ∈ XH has at least d/r ≥ d/ logm distinct neighbours in YH , each x ∈ XH

is adjacent to at least one vertex of type-0 in YH as at most d/2 logm vertices of YH

are of nonzero type. Next, observe that if y ∈ YH is of type-0, then

γ(y) =
r∑

t=1

γt(y) <
rk

2(logm)2
≤ k

2 logm
.

Consequently, we can greedily construct a set U ⊂ YH of type-0 vertices such that the

set

S =
⋃
y∈U

Γ(y) ⊂ XH

satisfies, writing s = |S|,
k

2
− k

2 logm
≤ s ≤ k

2
.

Let F be the subgraph of H induced by S ∪ U . We conclude from Lemma 5.1 that

M(F ) ∩ [d] ≥ min

{
k

6 logm
,

d

2 logm

}
.

The inequality above follows directly from Lemma 5.1 when s ≥ d. If s < d, then

since s ≥ k/2− k/2 logm > k/3, we have M(F )∩ [k/3] ⊂ M(F )∩ [d] and the claimed

inequality once again follows from Lemma 5.1. We conclude that M(F ) contains

Ω(min{k, d}/ logm) different values modulo d.

Now, if S ′ ⊂ S, X ′ ⊂ XH \ S and U ′ ⊂ U , then

e(S ′ ∪X ′ ∪ (YH \ U ′)) = d|X ′|+ d|S ′| − e(S ′ ∪ U ′).

As we have already observed, there exist Ω(min{k, d}/ logm) choices of S ′ and U ′ for

which the quantities d|S ′| − e(S ′ ∪ U ′) are all distinct modulo d; since |X ′| can be any

integer between 0 and k − s ≥ k/2, we see that

|M(H)| ≫ kmin

{
k

logm
,

d

logm

}
= min

{
k2

logm
,

kd

logm

}
≫ m

(logm)9
.

Case 2: At least d/2 logm vertices of YH are not of type-0. Set p = logm

and q = d/4 logm. As d ≥ (logm)4, we can find 1 ≤ τ ≤ logm and a set U ⊂ YH of p
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vertices all of which are of type-τ . Let

S =
⋂
y∈U

Γτ (y) ⊂ XH ;

since γτ (y) ≥ k(1− 1/2 logm) for each y ∈ U , note that s = |S| ≥ k/2.

Now choose q vertices from YH \ U , say y1, . . . , yq, so that each of these vertices is

of nonzero type; this is possible since there are at least d/(2 logm) − p > q vertices

of nonzero type in YH \ U . For 1 ≤ i ≤ q, let the type of yi be τi > 0, let Yi =

YH \ {y1, . . . , yi} and let Hi be the subgraph of H induced by S ∪ Yi . We say that Hi

is good if at least 2s/3 vertices of S have the same degree in Hi. We take H0 = H;

clearly, H0 is good since every vertex of S has degree d in H0.

Case 2A: H1, . . . , Hq are all good. Since Hi is good, we know that there are at

least 2s/3 vertices of S with the same degree in Hi; let αi be this common degree and

let Si ⊂ S be the set of those vertices with degree αi in Hi. Clearly, α0 = d. We claim

that αi = αi−1 − τi < αi−1 for each 1 ≤ i ≤ q. To see this, first note that every vertex

of Si−1 ∩ Γτi(yi) has degree αi−1 − τi in Hi. Recall that s = |S| ≥ k/2 ≫ m1/2/(logm)4

and γτi(yi) ≥ k(1− 1/2 logm); since Hi−1 is good,

|Si−1 ∩ Γτi(yi)| ≥ |Si−1| −
k

2 logm
≥ 2s

3
− k

2 logm
>

s

2
.

As we have assumed that Hi is good, we know that if more than s/2 vertices of S have

the same degree in Hi, then these vertices must all belong to Si and hence, αi = αi−1−τi.

If S ′
i ⊂ Si, then note the e(S ′

i ∪ Yi) = αi|S ′
i|. Hence, writing A = {α1, . . . , αq}, we

see that

A · [2s/3] ⊂ M(H)

Clearly, maxA ≤ d ≤ m while s3 ≫ k3 ≫ m3/2/(logm)12, so by Lemma 2.4, |A ·
[2s/3]| ≫ sq/ log s. It follows that

|M(H)| ≫ sq

log s
≫ kd

(logm)2
≫ m

(logm)8
.

Case 2B: One of H1, . . . , Hq is not good. Let 1 ≤ l ≤ q be the minimal index

for which Hl is not good. Since H0, . . . , Hl−1 are all good, we can, arguing as in the

previous case, find s/2 vertices of S which all have the same degree α in Hl with

α ≥ d− l logm ≥ d− q logm = 3d/4; let Sα ⊂ S be this set of vertices. Also, as Hl is

not good, we know that Sβ = S \ Sα contains at least s/3 vertices.

For x ∈ Sβ, let βx ̸= α denote the degree of x in Hl. For each x ∈ Sβ, there exists,

by Lemma 2.5, an 0 ≤ fx ≤ logm such that

gcd(α− fxτ, βx − fxτ) ≪ |α− βx|1/ logmτ(logm)2

≪ m1/ logmτ(logm)2 ≪ (logm)3.
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So there exists 0 ≤ f ≤ logm and a set Sf ⊂ Sβ of size at least at least |Sβ|/ logm ≥
s/3 logm ≥ k/6 logm such that for each x ∈ Sf ,

gcd(α− fτ, βx − fτ) ≪ (logm)3.

Recall that p = logm ≥ f , and that S =
⋂

y∈U Γτ (y), where U ⊂ YH is a set of at

least p vertices of type-τ . Fix a subset of U of size f , say Uf . We shall only consider

the induced subgraphs of H[S ∪ (Yl \ Uf )]. If S
′
α ⊂ Sα and S ′

f ⊂ Sf , then note that

e(S ′
α ∪ S ′

f ∪ (Yl \ Uf )) = (α− fτ)|S ′
α|+

∑
x∈S′

f

(βx − fτ).

Hence, writing β for the sequence (βx − fτ )x∈Sf
, we see from the arguments above that

S(β, s/2 ◦ (α− fτ)) ⊂ M(H)

since |Sα| ≥ s/2.

As gcd(α − fτ, βx − fτ) ≪ (logm)3 for each x ∈ Sf and since α − fτ ≥ 3d/4 −
(logm)2 > d/2, we use Lemma 2.1 to deduce that

|M(H)| ≥ |S(β, s/2 ◦ (α− fτ))|

≫ s

2
min

{
α− fτ

(logm)3
, |Sf |

}
≫ k

4
min

{
d

(logm)3
,

k

logm

}
≫ min

{
kd

(logm)3
,

k2

logm

}
≫ m

(logm)9
.

This concludes the proof of Theorem 1.2. □

6. Conclusion

There are a number of problems related to the question studied in this paper worth

investigating of which Conjecture 1.1 is perhaps the most natural. We discuss a few

other related questions below.

LetM(m) denote the minimum value of |M(G)| taken over all bipartite graphsG with

m edges. Trivially, M(m) ≤ m, and here, we have shown that M(m) ≫ m/(logm)12.

The question of determining the correct order of magnitude of M(m) still remains.

Problem 6.1. Determine the asymptotic order of magnitude of M(m).

We suspect Problem 6.1 might be difficult. For example, it is not at all clear that

M(m) is an increasing function; indeed, we believe otherwise. We propose the following

question as a possible first step towards settling Problem 6.1.

Problem 6.2. Is M(m) = o(m) for every m ∈ N?
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We know that M(n2) = o(n2) and in general, we suspect that the exact value of

M(m) depends a great deal on how close m is to a number with a reasonably ‘balanced’

factorisation. Let us say that m is k-balanced if there exist positive integers a, b ≥ k

such that m = ab. The set of positive integers m such that m is (logm)-balanced has

asymptotic density 1 in N. If m = ab is a (logm)-balanced factorisation of m, then

as noted in [19], one can show that M(m) = o(m) by considering Ka,b, the complete

bipartite graph between two disjoint sets of size a and b, and using Ford’s estimates for

the size of the set [a] · [b]. It would be interesting to decide if one can say something

similar for all sufficiently large positive integers.

Finally, it would be interesting to determine the structure of extremal graphs. Recall

that Conjecture 1.1 asserts that the amongst all bipartite graphs with n2 edges, Kn,n

has the smallest multiplication table. Of course one could, and should, ask what the

extremal graphs are when the number of edges is no longer a square. We believe

that if |M(Gm)| = M(m) for some bipartite graph Gm with m edges, then Gm must

necessarily contain a large subgraph that ‘resembles’ a complete bipartite graph. For

example, a natural conjecture is that M(n(n+ 1)) = |M(Kn,n+1)|; in general however,

we have no precise guesses for what the extremal graphs are.
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