Parallels Between Involutions and General Permutations

Aaron D. Jaggard

DIMACS Rutgers University

Partially supported by NSF

Rutgers Experimental Mathematics Seminar 27 March 2008

Outline

Exchanging Prefixes

- Earlier Results
- Results and Extensions
- Main Idea of the Proof
- Generating-Tree Isomorphisms for Involution-Wilf-Equivalence
 - Remaining Open Questions
 - Generating Trees and the Answer
- Subsequence Containment by Involutions
 - Enumerative Results
 - The Number of Tableaux Containing a Subtableau
 - A Notion of Equivalence

.

Broad question

Question

In what ways do permutations in some class $\mathcal{P}_n \subseteq \mathcal{S}_n$ parallel permutations in some other class $\mathcal{Q}_n \subseteq \mathcal{S}_n$?

As a specific example:

Question

In what ways do involutions in S_n resemble permutations in general? (I.e., what does the imposition of symmetry do?)

Certainly not in all ways (*e.g.*, cycle-structure properties) Here, we'll look at questions about 'permutation patterns' and involutions (permutations whose square is the identity).

イロト 不同 トイヨト イヨト

Broad question

Question

In what ways do permutations in some class $\mathcal{P}_n \subseteq \mathcal{S}_n$ parallel permutations in some other class $\mathcal{Q}_n \subseteq \mathcal{S}_n$?

As a specific example:

Question

In what ways do involutions in S_n resemble permutations in general? (I.e., what does the imposition of symmetry do?)

Certainly not in all ways (*e.g.*, cycle-structure properties) Here, we'll look at questions about 'permutation patterns' and involutions (permutations whose square is the identity).

Permutation patterns and pattern avoidance

The pattern of 7351 is 4231.

Definition

In general, the pattern of a word w of j distinct letters is the order-preserving relabeling of w with $\{1, \ldots, j\}$.

Definition

 $\pi = \pi_1 \dots \pi_n \in S_n$ contains the pattern $\tau \in S_k$ if there is a subsequence $\pi_{i_1} \dots \pi_{i_k}$ of π whose pattern equals τ . Otherwise, π avoids τ .

4<u>736521</u> contains the pattern 4231.

イロト 不同 トイヨト イヨト

Permutation patterns and pattern avoidance

The *pattern* of 7351 is 4231.

Definition

In general, the pattern of a word w of j distinct letters is the order-preserving relabeling of w with $\{1, \ldots, j\}$.

Definition

 $\pi = \pi_1 \dots \pi_n \in S_n$ contains the pattern $\tau \in S_k$ if there is a subsequence $\pi_{i_1} \dots \pi_{i_k}$ of π whose pattern equals τ . Otherwise, π avoids τ .

4<u>736521</u> contains the pattern 4231.

イロト 不得 とくほと くほとう

Permutation patterns and pattern avoidance

The *pattern* of 7351 is 4231.

Definition

In general, the pattern of a word w of j distinct letters is the order-preserving relabeling of w with $\{1, \ldots, j\}$.

Definition

 $\pi = \pi_1 \dots \pi_n \in S_n$ contains the pattern $\tau \in S_k$ if there is a subsequence $\pi_{i_1} \dots \pi_{i_k}$ of π whose pattern equals τ . Otherwise, π avoids τ .

4<u>736521</u> contains the pattern 4231.

イロト 不得 とくほと くほとう

ъ

Permutation patterns and pattern avoidance

The *pattern* of 7351 is 4231.

Definition

In general, the pattern of a word w of j distinct letters is the order-preserving relabeling of w with $\{1, \ldots, j\}$.

Definition

 $\pi = \pi_1 \dots \pi_n \in S_n$ contains the pattern $\tau \in S_k$ if there is a subsequence $\pi_{i_1} \dots \pi_{i_k}$ of π whose pattern equals τ . Otherwise, π avoids τ .

4<u>736521</u> contains the pattern 4231.

イロト 不得 とくほと くほとう

\mathcal{P}_n -Wilf-equivalence

Definition

For $\mathcal{P}_n \subseteq \mathcal{S}_n$, let $\mathcal{P}_n(\alpha)$ be the number of permutations in \mathcal{P}_n that avoid the pattern α . Let $\alpha \sim_{\mathcal{P}} \beta$ if $\mathcal{P}_n(\alpha) = \mathcal{P}_n(\beta)$ for every *n*. In this case we say that α and β are \mathcal{P}_n -Wilf-equivalent (or just Wilf-equivalent if $\mathcal{P}_n = \mathcal{S}_n$).

This naturally leads to two types of questions.

Two types of questions

Enumerative:

Question

For a family of permutations $\{\mathcal{P}_n\}_n$ ($\mathcal{P}_n \subseteq S_n$) and a pattern α , what is the sequence $\{\mathcal{P}_n(\alpha)\}_n$?

Algebraic:

Question

What are the $\sim_{\mathcal{P}}$ -classes of S_k ? For two different families $\{\mathcal{P}_n\}_n$ and $\{\mathcal{Q}_n\}_n$, how do the $\sim_{\mathcal{P}}$ -classes of S_k compare to the $\sim_{\mathcal{Q}}$ -classes of S_k ?

We'll focus on the algebraic questions.

イロト 不同 トイヨト イヨト

Two types of questions

Enumerative:

Question

For a family of permutations $\{\mathcal{P}_n\}_n$ ($\mathcal{P}_n \subseteq S_n$) and a pattern α , what is the sequence $\{\mathcal{P}_n(\alpha)\}_n$?

Algebraic:

Question

What are the $\sim_{\mathcal{P}}$ -classes of \mathcal{S}_k ? For two different families $\{\mathcal{P}_n\}_n$ and $\{\mathcal{Q}_n\}_n$, how do the $\sim_{\mathcal{P}}$ -classes of \mathcal{S}_k compare to the $\sim_{\mathcal{Q}}$ -classes of \mathcal{S}_k ?

We'll focus on the algebraic questions.

Two types of questions

Enumerative:

Question

For a family of permutations $\{\mathcal{P}_n\}_n$ ($\mathcal{P}_n \subseteq S_n$) and a pattern α , what is the sequence $\{\mathcal{P}_n(\alpha)\}_n$?

Algebraic:

Question

What are the $\sim_{\mathcal{P}}$ -classes of \mathcal{S}_k ? For two different families $\{\mathcal{P}_n\}_n$ and $\{\mathcal{Q}_n\}_n$, how do the $\sim_{\mathcal{P}}$ -classes of \mathcal{S}_k compare to the $\sim_{\mathcal{Q}}$ -classes of \mathcal{S}_k ?

We'll focus on the algebraic questions.

Comparison to Wilf-equivalence

As with Wilf-equivalence, some \mathcal{I}_n -Wilf-equivalences (or 'involution-Wilf-equivalences') follow trivially from symmetry. However, the allowed symmetry operations are reduced because they must respect the symmetry of involutions.

Figure: A permutation is an involution iff it is symmetric.

Earlier Results Results and Extensions Main Idea of the Proof

Initial results for involutions I

Theorem (Simion and Schmidt, 1985)

For $\tau \in \{123, 132, 213, 321\}$,

$$\mathcal{I}_n(\tau) = \begin{pmatrix} n \\ \lfloor n/2 \rfloor \end{pmatrix}$$

and for $\tau \in \{231, 312\}$,

$$\mathcal{I}_n(\tau) = 2^{n-1}$$

Note the contrast to single $\sim_{\mathcal{S}}$ -class in \mathcal{S}_3 .

(日) (同) (日) (日)

Generating-Tree Isomorphisms for Involution-Wilf-Equivalence Subsequence Containment by Involutions Earlier Results Results and Extensions Main Idea of the Proof

Initial results for involutions II

Theorem (Regev, 1981)

$$\mathcal{I}_n(1234) = M_n = \sum_{i=0}^{\lfloor n/2 \rfloor} \binom{n}{2i} \binom{2i}{i} \frac{1}{i+1}$$

- Regev also gave asymptotics for $\mathcal{I}_n(12...k)$ as $n \to \infty$.
- Gessel has given a determinantal formula for $\mathcal{I}_n(12...k)$.
- $\mathcal{I}_n(12...k)$ of interest because of Young tableaux.

イロト 不得 トイヨト イヨト

Exchanging Prefixes Generating-Tree Isomorphisms for Involution-Wilf-Equivalence Earlier Results Results and Extensions Main Idea of the Proof

Subsequence Containment by Involutions

Initial results for involutions II

Theorem (Regev, 1981)

$$\mathcal{I}_n(1234) = M_n = \sum_{i=0}^{\lfloor n/2 \rfloor} \binom{n}{2i} \binom{2i}{i} \frac{1}{i+1}$$

- Regev also gave asymptotics for $\mathcal{I}_n(12...k)$ as $n \to \infty$.
- Gessel has given a determinantal formula for $\mathcal{I}_n(12...k)$.
- $\mathcal{I}_n(12...k)$ of interest because of Young tableaux.

イロト 不得 トイヨト イヨト

Earlier Results Results and Extensions Main Idea of the Proof

Initial results for involutions III

Theorem (Gouyou-Beauchamps, 1989)

$${\mathcal I}_n(12345) = egin{cases} C_k C_k, & n = 2k-1 \ C_k C_{k+1}, & n = 2k \end{cases}$$

where C_k is the kth Catalan number.

Theorem (Gouyou-Beauchamps, 1989)

$$\mathcal{I}_n(123456) = \sum_{i=0} \lfloor n/2 \rfloor \frac{3! n! (2i+2)!}{(n-2i)! i! (i+1)! (i+2)! (i+3)!}$$

Generating-Tree Isomorphisms for Involution-Wilf-Equivalence Subsequence Containment by Involutions Earlier Results Results and Extensions Main Idea of the Proof

Early algebraic results

Theorem (Guibert, 1995)

3412 $\sim_{\mathcal{I}}$ 4321 and 2143 $\sim_{\mathcal{I}}$ 1243

Later, one conjecture of Guibert was answered using generating trees.

Theorem (Guibert, Pergola, Pinzani 2001)

1234 $\sim_{\mathcal{I}}$ 2143

This left one conjecture of Guibert open: whether or not 1432 $\sim_{\mathcal{I}}$ 1234.

イロト 不同 トイヨト イヨト

Generating-Tree Isomorphisms for Involution-Wilf-Equivalence Subsequence Containment by Involutions Earlier Results Results and Extensions Main Idea of the Proof

Early algebraic results

Theorem (Guibert, 1995)

3412 $\sim_{\mathcal{I}}$ 4321 and 2143 $\sim_{\mathcal{I}}$ 1243

Later, one conjecture of Guibert was answered using generating trees.

Theorem (Guibert, Pergola, Pinzani 2001)

 $1234\sim_{\mathcal{I}} 2143$

This left one conjecture of Guibert open: whether or not 1432 $\sim_{\mathcal{I}}$ 1234.

イロト 不得 とくほと くほとう

3

Generating-Tree Isomorphisms for Involution-Wilf-Equivalence Subsequence Containment by Involutions Earlier Results Results and Extensions Main Idea of the Proof

Early algebraic results

Theorem (Guibert, 1995)

3412 $\sim_{\mathcal{I}}$ 4321 and 2143 $\sim_{\mathcal{I}}$ 1243

Later, one conjecture of Guibert was answered using generating trees.

Theorem (Guibert, Pergola, Pinzani 2001)

 $1234\sim_{\mathcal{I}}2143$

This left one conjecture of Guibert open: whether or not 1432 $\sim_{\mathcal{I}}$ 1234.

イロト 不得 とくほ とくほとう

ъ

Generating-Tree Isomorphisms for Involution-Wilf-Equivalence Subsequence Containment by Involutions Earlier Results Results and Extensions Main Idea of the Proof

Prefix-exchanging results

Theorem (J.)

For every permutation τ_3, \ldots, τ_n of $\{3, \ldots, n\}$,

$$12\tau_3\ldots\tau_n\sim_{\mathcal{I}} 21\tau_3\ldots\tau_n$$

For every permutation τ_4, \ldots, τ_n of $\{4, \ldots, n\}$

$$123\tau_4\ldots\tau_n\sim_{\mathcal{I}} 321\tau_4\ldots\tau_n$$

The analogous results for $\sim_{\mathcal{S}}$ -equivalence were due to West (1990) and Babson and West (2000).

Conjectured that the prefixes $12 \dots k$ and $k \dots 21$ may be exchanged as well; the analogous result for \sim_S -equivalence is due to Backelin, West, and Xin (2007).

・ロト ・ 同ト ・ ヨト ・ ヨト

Generating-Tree Isomorphisms for Involution-Wilf-Equivalence Subsequence Containment by Involutions Earlier Results Results and Extensions Main Idea of the Proof

Prefix-exchanging results

Theorem (J.)

For every permutation τ_3, \ldots, τ_n of $\{3, \ldots, n\}$,

$$12\tau_3\ldots\tau_n\sim_{\mathcal{I}} 21\tau_3\ldots\tau_n$$

For every permutation τ_4, \ldots, τ_n of $\{4, \ldots, n\}$

$$123\tau_4\ldots\tau_n\sim_{\mathcal{I}} 321\tau_4\ldots\tau_n$$

The analogous results for \sim_S -equivalence were due to West (1990) and Babson and West (2000).

Conjectured that the prefixes $12 \dots k$ and $k \dots 21$ may be exchanged as well; the analogous result for $\sim_{\mathcal{S}}$ -equivalence is due to Backelin, West, and Xin (2007).

ヘロン 人間 とくほ とくほ とう

Generating-Tree Isomorphisms for Involution-Wilf-Equivalence Subsequence Containment by Involutions Earlier Results Results and Extensions Main Idea of the Proof

Prefix-exchanging results

Theorem (J.)

For every permutation τ_3, \ldots, τ_n of $\{3, \ldots, n\}$,

$$12\tau_3\ldots\tau_n\sim_{\mathcal{I}} 21\tau_3\ldots\tau_n$$

For every permutation τ_4, \ldots, τ_n of $\{4, \ldots, n\}$

$$123\tau_4\ldots\tau_n\sim_{\mathcal{I}} 321\tau_4\ldots\tau_n$$

The analogous results for $\sim_{\mathcal{S}}$ -equivalence were due to West (1990) and Babson and West (2000). Conjectured that the prefixes $12 \dots k$ and $k \dots 21$ may be exchanged as well; the analogous result for $\sim_{\mathcal{S}}$ -equivalence is due to Backelin, West, and Xin (2007).

イロト 不得 とくき とくきとう

Generating-Tree Isomorphisms for Involution-Wilf-Equivalence Subsequence Containment by Involutions Earlier Results Results and Extensions Main Idea of the Proof

Generalizing this result

Theorem (Bousquet-Mélou & Steingrímsson)

For every permutation $\tau_{j+1}, \ldots, \tau_k$ of $\{j+1, \ldots, k\}$, 12... $j\tau_{j+1} \ldots \tau_k \sim_{\mathcal{I}} j \ldots 21\tau_{j+1} \ldots \tau_k$.

Proved by showing that the iterated transformation used in [BWX] commutes with inverting a permutation, even though the transformation itself doesn't.

Generating-Tree Isomorphisms for Involution-Wilf-Equivalence Subsequence Containment by Involutions Earlier Results Results and Extensions Main Idea of the Proof

Generalizing this result

Theorem (Bousquet-Mélou & Steingrímsson)

For every permutation $\tau_{j+1}, \ldots, \tau_k$ of $\{j+1, \ldots, k\}$, 12... $j\tau_{j+1} \ldots \tau_k \sim_{\mathcal{I}} j \ldots 21\tau_{j+1} \ldots \tau_k$.

Proved by showing that the iterated transformation used in [BWX] commutes with inverting a permutation, even though the transformation itself doesn't.

Earlier Results Results and Extensions Main Idea of the Proof

Implications for $\sim_{\mathcal{I}}$ -equivalence

Applying this to the symmetry class $\{1243, 2134\}$ we obtain the result of Guibert, Pergola, and Pinzani:

1234 $\sim_{\mathcal{I}}$ 2143

We may also affirmatively answer Guibert's conjecture:

1234 $\sim_{\mathcal{I}}$ 3214

This completes the classification of S_4 according to $\sim_{\mathcal{I}}$ -equivalence.

イロト 不得 トイヨト イヨト

Earlier Results Results and Extensions Main Idea of the Proof

Implications for $\sim_{\mathcal{I}}$ -equivalence

Applying this to the symmetry class $\{1243, 2134\}$ we obtain the result of Guibert, Pergola, and Pinzani:

1234 $\sim_{\mathcal{I}}$ 2143

We may also affirmatively answer Guibert's conjecture:

 $1234\sim_{\mathcal{I}} 3214$

This completes the classification of \mathcal{S}_4 according to $\sim_{\mathcal{I}}$ -equivalence.

イロト 不同 トイヨト イヨト

Generating-Tree Isomorphisms for Involution-Wilf-Equivalence Subsequence Containment by Involutions Earlier Results Results and Extensions Main Idea of the Proof

Placements on shapes and patterns

Figure: A placement on (3, 3, 2) that contains 12 and 21 but not 231.

Earlier Results Results and Extensions Main Idea of the Proof

Self-conjugate shapes and symmetric placements

Figure: Four placements on the self-conjugate shape (3, 3, 2).

Earlier Results Results and Extensions Main Idea of the Proof

From involutions to self-conjugate shapes with symmetric placements

Figure: The involution shown contains 12354 iff the placement on (4, 4, 4, 3) at the right contains 123.

We need the prefix to be an involution.

Generating-Tree Isomorphisms for Involution-Wilf-Equivalence Subsequence Containment by Involutions

A useful theorem

Earlier Results Results and Extensions Main Idea of the Proof

Theorem (J.)

Let $\lambda_{sym}(T)$ be the number of symmetric full placements on the shape λ that avoid all of the patterns in the set T. Let α and β be involutions in S_j . Let T_{α} be a set of patterns, each of which begins with the prefix α , and T_{β} similarly. If, for every self-conjugate shape λ , $\lambda_{sym}(\{\alpha\}) = \lambda_{sym}(\{\beta\})$, then for every self-conjugate shape μ ,

$$\mu_{sym}(T_{lpha})=\mu_{sym}(T_{eta})$$

Earlier Results Results and Extensions Main Idea of the Proof

Exchanging 12 and 21

Backelin and West showed that there is a unique filling of any (fillable) shape that avoids 12, and a unique filling that avoids 21. These are necessarily symmetric if the shape is symmetric.

Figure: Starting from the top row, fill the box in either the leftmost (12-avoiding) or the rightmost (21-avoiding) column without a dot.

イロト 不同 トイヨト イヨト

After these general results remaining question about $\sim_{\mathcal{I}}$ -equivalences in \mathcal{S}_5 is:

Question

Does 54321 $\sim_{\mathcal{I}}$ 45312 hold?

Question

Does 654321 $\sim_{\mathcal{I}}$ 564312 also hold (as suggested by numerical results)? If so, are these two cases of a more general result?

These results are known for $\sim_{\mathcal{S}}$ -equivalence, but do not follow from known $\sim_{\mathcal{I}}$ results.

Remaining Open Questions Generating Trees and the Answer

イロト 不得 トイヨト イヨト

The answer to all these questions: Yes!

Theorem

For every $k \geq 5$,

$$k(k-1)\ldots 321 \sim_{\mathcal{I}} (k-1)k(k-2)\ldots 312$$

In fact, this is a corollary of a stronger theorem about *generating trees*.

Remaining Open Questions Generating Trees and the Answer

イロト 不得 とくき とくきとう

The answer to all these questions: Yes!

Theorem For every $k \ge 5$, $k(k-1) \dots 321 \sim_{\mathcal{I}} (k-1)k(k-2) \dots 312$

In fact, this is a corollary of a stronger theorem about *generating trees*.

Generating Trees and the Answer

イロト イポト イヨト イヨト

Generating trees

Put a tree structure on the involutions avoiding a pattern τ

• If σ is an involution in S_n that avoids τ , then its parent π is the involution obtained by:

- Deleting the cycle containing *n* (either (*n*) or (*jn*))
- 2 Taking the pattern of the resulting word
- The root of the tree is the empty permutation
- Find a way to label each node in the tree along with a rule that determines the labels of the children of a node with a given label

イロト 不得 トイヨト イヨト

Theorem (J.–Marincel)

For every $k \ge 5$, the generating tree for involutions avoiding $k(k-1)\ldots 321$ is isomorphic to the generating tree for involutions avoiding $(k-1)k(k-2)\ldots 312$.

The number of involutions in S_n avoiding the pattern equals the number of nodes at depth *n* in the corresponding tree.

Corollary

$$k(k-1)...321 \sim_{\mathcal{I}} (k-1)k(k-2)...312.$$

Independently discovered (and generalized) by Dukes, Jelínek, Mansour, and Reifegerste.

イロト イポト イヨト イヨト 二日

Theorem (J.–Marincel)

For every $k \ge 5$, the generating tree for involutions avoiding $k(k-1)\ldots 321$ is isomorphic to the generating tree for involutions avoiding $(k-1)k(k-2)\ldots 312$.

The number of involutions in S_n avoiding the pattern equals the number of nodes at depth *n* in the corresponding tree.

Corollary

$$k(k-1)...321 \sim_{\mathcal{I}} (k-1)k(k-2)...312.$$

Independently discovered (and generalized) by Dukes, Jelínek, Mansour, and Reifegerste.

Remaining Open Questions Generating Trees and the Answer

イロン 不得 とくほう 不良 とう

Defining labels

Given $\pi \in S_n$, let p_i be the side of the largest square in the upper-right corner of the graph of π that does not contain a decreasing sequence of length 2i (k even, $1 \le i \le \frac{k}{2} - 1$) or 2i - 1 (k odd, $1 \le i \le \frac{k-1}{2}$).

In the generating tree for involutions avoiding $k(k-1) \dots 321$, label π with $(n, p_1, p_2, \dots, p_{a-1}, p_m)$. $[m = \frac{k}{2} - 1 \text{ or } m = \frac{k-1}{2}]$

In the generating tree for involutions avoiding $(k-1)k(k-2)\ldots 312$, label $\pi \in S_n$ with $(n, p_1, p_2, \ldots, p_{m-1}, q_m)$, where $q_m + 1$ is the total number of depth-2 children of π .

イロト 不同 とくほ とくほ とう

-

The labels of the children of a node with label (n, y_1, \ldots, y_m) are:

$$\{(n+1, w, y_2+1, \ldots, y_m+1)\} \cup \bigcup_{j=0}^{y_m} \{(n+2, z_1, \ldots, z_m)\},\$$

where, in the label whose first component is n + 1, w equals $y_1 + 1$ if k is even and 0 if k is odd, and in the label indexed by j:

$$z_{i} = \begin{cases} y_{i} + 2 & j \leq y_{i-1} \\ j + 1 & y_{i-1} < j \leq y_{i} \ (j \leq y_{i} \text{ for } i = 1) \\ y_{i} + 1 & y_{i} < j \end{cases}$$

イロト 不得 とくき とくきとうき

In the tree of involutions avoiding 654321, 53281764 has label $(n, p_1, p_2) = (8, 2, 4)$. Its depth-2 children and their labels are:

6329(10)18745	(10, 3, 5)
53291(10)8746	(10,3,4)
532918(10)647	(10,3,6)
5329176(10)48	(10, 2, 6)
53281764(10)9	(10, 1, 6)

In the tree of involutions avoiding 564312, 54821763 has label $(n, p_1, q_2) = (8, 2, 4)$. Its depth-2 children and their labels are:

(10)659328741	(10, 3, 4)
65(10)9218743	(10, 3, 5)
549218(10)637	(10, 3, 6)
5492176(10)38	(10, 2, 6)
54821763(10)9	(10, 1, 6)

Enumerative Results The Number of Tableaux Containing a Subtableau A Notion of Equivalence

イロト 不得 とくほ とくほ とう

Subsequence containment

Definition

 $\pi = \pi_1 \dots \pi_n \in S_n$ contains the subsequence $\tau \in S_k$ if there is a subsequence $\pi_{i_1} \dots \pi_{i_k}$ of π such that $\pi_{i_j} = \tau_j$.

Unlike patterns, we care about the exact values!

Given $\tau \in S_k$, it's trivial to see that the probability that $\pi \in S_n$ (chosen u.a.r., $n \ge k$) contains τ as a subsequence is exactly 1/k!

Enumerative Results The Number of Tableaux Containing a Subtableau A Notion of Equivalence

イロト イポト イヨト イヨト

Subsequence containment

Definition

 $\pi = \pi_1 \dots \pi_n \in S_n$ contains the subsequence $\tau \in S_k$ if there is a subsequence $\pi_{i_1} \dots \pi_{i_k}$ of π such that $\pi_{i_j} = \tau_j$.

Unlike patterns, we care about the *exact* values!

Given $\tau \in S_k$, it's trivial to see that the probability that $\pi \in S_n$ (chosen u.a.r., $n \ge k$) contains τ as a subsequence is exactly 1/k!

Enumerative Results The Number of Tableaux Containing a Subtableau A Notion of Equivalence

イロト イポト イヨト イヨト

Subsequence containment by involutions

Theorem (McKay, Morse, Wilf, 2002)

The probability that π (chosen u.a.r. from the involutions in S_n , $n \ge k$) contains a subsequence $\tau \in S_k$ equals 1/k! + o(1) as $n \to \infty$.

I.e., imposing symmetry doesn't really change the answer!

Enumerative Results The Number of Tableaux Containing a Subtableau A Notion of Equivalence

(日) (同) (日) (日)

Counting the involutions containing a subsequence

Theorem (J., 2005)

For a fixed permutation $\tau = \tau_1 \tau_2 \dots \tau_k \in S_k$ and $n \ge k$, the number of involutions in S_n that contain τ as a subsequence equals

$$\sum' \binom{n-k}{k-j} t_{n-2k+j}$$

where the sum is taken over j = 0 and those $j \in [k]$ such that the pattern of $\tau_1 \dots \tau_j$ is an involution in S_j , and t_m equals the number of involutions in S_m .

This allows us to sharpen the asymptotic results of [MMW]:

For k > 2, $\tau \in S_k$, the probability as $n \to \infty$ that an involution $\pi \in S_n$ contains τ as a subsequence is

$$\frac{1}{k!} - \frac{2}{3(k-3)!}n^{-3/2} + O(n^{-2})$$

if the pattern of $\tau_1 \tau_2 \tau_3$ is not an involution and

$$\frac{1}{k!} + \frac{1}{3(k-3)!}n^{-3/2} + O(n^{-2})$$

if it is.

Enumerative Results The Number of Tableaux Containing a Subtableau A Notion of Equivalence

イロト イポト イヨト イヨト

Counting tableaux containing a subtableau

The RSK algorithm gives a bijection between standard Young tableaux of size *n* and the involutions in S_n .

In a tableau corresponding to an involution $\pi \in S_n$, the subtableau on [k] depends only on the subsequence of π formed by the elements of [k].

We may thus recover a formula of Sagan and Stanley counting the tableaux that contain a given subtableau.

Enumerative Results The Number of Tableaux Containing a Subtableau A Notion of Equivalence

イロト イポト イヨト イヨト

Another notion of equivalence

Inspired by pattern avoidance, we make the following definition:

Definition

Two patterns α and β are equivalent with respect to subsequence containment by involutions iff, for every *n*, the number of involutions in S_n containing α as a subsequence equals the number containing β as a subsequence.

Enumerative Results The Number of Tableaux Containing a Subtableau A Notion of Equivalence

ヘロン 人間 とくほ とくほ とう

Characterizing this equivalence

Definition (j-set of a permutation)

Let $\mathcal{J}(\alpha) = \{j | \text{The pattern of } \alpha_1 \dots \alpha_j \text{ is an involution in } \mathcal{S}_j \}$

Because each term in the sum counting the involutions containing a particular subsequence is asymptotically smaller than the previous one, α and β are equivalent in this sense iff $\mathcal{J}(\alpha) = \mathcal{J}(\beta)$.

Enumerative Results The Number of Tableaux Containing a Subtableau A Notion of Equivalence

イロト 不得 とくき とくきとう

-

Preliminary results

Theorem (J.)

The number of $\tau \in S_k$ for which $\mathcal{J}(\tau) = \{0, \ldots, k\}$ equals 2^{k-1} .

Also, if we assume $\{0, 1, 2, k\} \subseteq E \subseteq \{0, 1, \dots, k\}$ and $|E| = k \ge 5$, then the number of $\tau \in S_k$ for which $\mathcal{J}(\tau) = E$ equals 2^{k-3} if $k - 1 \notin E$ and 2^{k-4} if $k - 1 \in E$.

Question

What is the sequence $\{|\mathcal{J}(\mathcal{S}_k)|\}_{k\geq 3} = 2, 4, 8, 16, 30, 56, 102, \dots$?

Enumerative Results The Number of Tableaux Containing a Subtableau A Notion of Equivalence

イロト 不得 トイヨト イヨト

Preliminary results

Theorem (J.)

The number of $\tau \in S_k$ for which $\mathcal{J}(\tau) = \{0, \ldots, k\}$ equals 2^{k-1} .

Also, if we assume $\{0, 1, 2, k\} \subseteq E \subseteq \{0, 1, \dots, k\}$ and $|E| = k \ge 5$, then the number of $\tau \in S_k$ for which $\mathcal{J}(\tau) = E$ equals 2^{k-3} if $k - 1 \notin E$ and 2^{k-4} if $k - 1 \in E$.

Question

What is the sequence $\{|\mathcal{J}(\mathcal{S}_k)|\}_{k\geq 3} = 2, 4, 8, 16, 30, 56, 102, \dots$?

Extensions

Enumerative Results The Number of Tableaux Containing a Subtableau A Notion of Equivalence

イロト イポト イヨト イヨト

Theorem (Kim and Kim, 2007)

Assume that $\{j_1, j_2, ..., j_{r-1}\}$ is a *j*-set and $j_1 < \dots < j_{r-1} < j_r$. Then $\{j_1, j_2, \dots, j_{r-1}, j_r\}$ is a *j*-set iff one of the following holds: **1** $j_r - j_{r-1} = 1$ **2** $j_{r-1} - j_{r-2} \neq 1$ and $j_r - j_{r-1} \ge j_{r-1} - j_{r-2}$ **3** $j_{r-1} - j_{r-2} = 1$ and $j_r - j_{r-1} \ge j_{r-1} - j_{r-3}$

They also find a functional equation for the generating function of the number of *j*-sets in S_k .

Conclusions

Enumerative Results The Number of Tableaux Containing a Subtableau A Notion of Equivalence

イロト イポト イヨト イヨト

Parallel properties of involutions and general permutations

- Prefix-exchange results
- Other families of involution-Wilf-equivalences that correspond to Wilf-equivalences
- Subsequence containment—asymptotically the same