Parallels Between Involutions and General Permutations

Aaron D. Jaggard

DIMACS
Rutgers University
Partially supported by NSF
Rutgers Experimental Mathematics Seminar 27 March 2008

Outline

(1) Exchanging Prefixes

- Earlier Results
- Results and Extensions
- Main Idea of the Proof
(2) Generating-Tree Isomorphisms for Involution-Wilf-Equivalence
- Remaining Open Questions
- Generating Trees and the Answer
(3) Subsequence Containment by Involutions
- Enumerative Results
- The Number of Tableaux Containing a Subtableau
- A Notion of Equivalence

Broad question

Question

In what ways do permutations in some class $\mathcal{P}_{n} \subseteq \mathcal{S}_{n}$ parallel permutations in some other class $\mathcal{Q}_{n} \subseteq \mathcal{S}_{n}$?

As a specific example:

> Question
> In what ways do involutions in \mathcal{S}_{n} resemble permutations in general? (l.e., what does the imposition of symmetry do?)

> Certainly not in all ways (e.g., cycle-structure properties)
> Here, we'll look at questions about 'permutation patterns' and
> involutions (permutations whose square is the identity).

Broad question

Question

In what ways do permutations in some class $\mathcal{P}_{n} \subseteq \mathcal{S}_{n}$ parallel permutations in some other class $\mathcal{Q}_{n} \subseteq \mathcal{S}_{n}$?

As a specific example:

Question

In what ways do involutions in \mathcal{S}_{n} resemble permutations in general? (I.e., what does the imposition of symmetry do?)

Certainly not in all ways (e.g., cycle-structure properties) Here, we'll look at questions about 'permutation patterns' and involutions (permutations whose square is the identity).

Permutation patterns and pattern avoidance

The pattern of 7351 is 4231 .

Definition

In general, the pattern of a word w of j distinct letters is the order-preserving relabeling of w with $\{1, \ldots, j\}$.

Definition

$\pi=\pi_{1} \ldots \pi_{n} \in S_{n}$ contains the pattern $\tau \in S_{k}$ if there is a subsequence $\pi_{i_{1}} \ldots \pi_{i_{k}}$ of π whose pattern equals τ. Otherwise, π avoids τ.

> 4736521 contains the pattern 4231.

Permutation patterns and pattern avoidance

The pattern of 7351 is 4231 .
Definition
In general, the pattern of a word w of j distinct letters is the order-preserving relabeling of w with $\{1, \ldots, j\}$.

Definition
$\pi=\pi_{1} \ldots \pi_{n} \in \mathcal{S}_{n}$ contains the pattern $\tau \in \mathcal{S}_{k}$ if there is a
subsequence $\pi_{i_{1}} \ldots \pi_{i_{k}}$ of π whose pattern equals τ. Otherwise
π avoids τ.
4736521 contains the pattern 4231

Permutation patterns and pattern avoidance

The pattern of 7351 is 4231 .

Definition

In general, the pattern of a word w of j distinct letters is the order-preserving relabeling of w with $\{1, \ldots, j\}$.

Definition

$\pi=\pi_{1} \ldots \pi_{n} \in \mathcal{S}_{n}$ contains the pattern $\tau \in \mathcal{S}_{k}$ if there is a subsequence $\pi_{i_{1}} \ldots \pi_{i_{k}}$ of π whose pattern equals τ. Otherwise, π avoids τ.

4736521 contains the pattern 4231

Permutation patterns and pattern avoidance

The pattern of 7351 is 4231 .

Definition

In general, the pattern of a word w of j distinct letters is the order-preserving relabeling of w with $\{1, \ldots, j\}$.

Definition

$\pi=\pi_{1} \ldots \pi_{n} \in \mathcal{S}_{n}$ contains the pattern $\tau \in \mathcal{S}_{k}$ if there is a subsequence $\pi_{i_{1}} \ldots \pi_{i_{k}}$ of π whose pattern equals τ. Otherwise, π avoids τ.
$47 \underline{36521}$ contains the pattern 4231.

\mathcal{P}_{n}-Wilf-equivalence

Definition

For $\mathcal{P}_{n} \subseteq \mathcal{S}_{n}$, let $\mathcal{P}_{n}(\alpha)$ be the number of permutations in \mathcal{P}_{n} that avoid the pattern α. Let $\alpha \sim_{\mathcal{P}} \beta$ if $\mathcal{P}_{n}(\alpha)=\mathcal{P}_{n}(\beta)$ for every n. In this case we say that α and β are \mathcal{P}_{n}-Wilf-equivalent (or just Wilf-equivalent if $\mathcal{P}_{n}=\mathcal{S}_{n}$).

This naturally leads to two types of questions.

Two types of questions

Enumerative:

Question

For a family of permutations $\left\{\mathcal{P}_{n}\right\}_{n}\left(\mathcal{P}_{n} \subseteq \mathcal{S}_{n}\right)$ and a pattern α, what is the sequence $\left\{\mathcal{P}_{n}(\alpha)\right\}_{n}$?

Algebraic:

Question

What are the $\sim_{\mathcal{p}}$-classes of S_{k} ? For two different families $\left\{\mathcal{P}_{n}\right\}_{n}$ and $\left\{\mathcal{Q}_{n}\right\}_{n}$, how do the $\sim_{\mathcal{P}}$-classes of \mathcal{S}_{k} compare to the $\sim_{\mathcal{Q}}$-classes of \mathcal{S}_{k} ?

We'll focus on the algebraic questions.

Two types of questions

Enumerative:

Question

For a family of permutations $\left\{\mathcal{P}_{n}\right\}_{n}\left(\mathcal{P}_{n} \subseteq \mathcal{S}_{n}\right)$ and a pattern α, what is the sequence $\left\{\mathcal{P}_{n}(\alpha)\right\}_{n}$?

Algebraic:

Question

What are the $\sim_{\mathcal{p}}$-classes of \mathcal{S}_{k} ? For two different families $\left\{\mathcal{P}_{n}\right\}_{n}$ and $\left\{\mathcal{Q}_{n}\right\}_{n}$, how do the $\sim_{\mathcal{P}}$-classes of \mathcal{S}_{k} compare to the $\sim_{\mathcal{Q}}$-classes of \mathcal{S}_{k} ?

We'll focus on the algebraic questions.

Two types of questions

Enumerative:

Question

For a family of permutations $\left\{\mathcal{P}_{n}\right\}_{n}\left(\mathcal{P}_{n} \subseteq \mathcal{S}_{n}\right)$ and a pattern α, what is the sequence $\left\{\mathcal{P}_{n}(\alpha)\right\}_{n}$?

Algebraic:

Question

What are the $\sim_{\mathcal{P}}$-classes of \mathcal{S}_{k} ? For two different families $\left\{\mathcal{P}_{n}\right\}_{n}$ and $\left\{\mathcal{Q}_{n}\right\}_{n}$, how do the $\sim_{\mathcal{P}}$-classes of \mathcal{S}_{k} compare to the $\sim_{\mathcal{Q}}$-classes of \mathcal{S}_{k} ?

We'll focus on the algebraic questions.

Comparison to Wilf-equivalence

As with Wilf-equivalence, some \mathcal{I}_{n}-Wilf-equivalences (or 'involution-Wilf-equivalences') follow trivially from symmetry. However, the allowed symmetry operations are reduced because they must respect the symmetry of involutions.

Figure: A permutation is an involution iff it is symmetric.

Initial results for involutions |

Theorem (Simion and Schmidt, 1985)
For $\tau \in\{123,132,213,321\}$,

$$
\mathcal{I}_{n}(\tau)=\binom{n}{\lfloor n / 2\rfloor}
$$

and for $\tau \in\{231,312\}$,

$$
\mathcal{I}_{n}(\tau)=2^{n-1}
$$

Note the contrast to single $\sim_{\mathcal{S}}$-class in \mathcal{S}_{3}.

Initial results for involutions II

Theorem (Regev, 1981)

$$
\mathcal{I}_{n}(1234)=M_{n}=\sum_{i=0}^{\lfloor n / 2\rfloor}\binom{n}{2 i}\binom{2 i}{i} \frac{1}{i+1}
$$

- Regev also gave asymptotics for $\mathcal{I}_{n}(12 \ldots k)$ as $n \rightarrow \infty$.
- Gessel has given a determinantal formula for $\mathcal{I}_{n}(12 \ldots k)$.
- $I_{n}(12 \ldots k)$ of interest because of Young tableaux.

Initial results for involutions II

Theorem (Regev, 1981)

$$
\mathcal{I}_{n}(1234)=M_{n}=\sum_{i=0}^{\lfloor n / 2\rfloor}\binom{n}{2 i}\binom{2 i}{i} \frac{1}{i+1}
$$

- Regev also gave asymptotics for $\mathcal{I}_{n}(12 \ldots k)$ as $n \rightarrow \infty$.
- Gessel has given a determinantal formula for $\mathcal{I}_{n}(12 \ldots k)$.
- $\mathcal{I}_{n}(12 \ldots k)$ of interest because of Young tableaux.

Initial results for involutions III

Theorem (Gouyou-Beauchamps, 1989)

$$
\mathcal{I}_{n}(12345)= \begin{cases}C_{k} C_{k}, & n=2 k-1 \\ C_{k} C_{k+1}, & n=2 k\end{cases}
$$

where C_{k} is the $k^{\text {th }}$ Catalan number.

Theorem (Gouyou-Beauchamps, 1989)

$$
\mathcal{I}_{n}(123456)=\sum_{i=0}\lfloor n / 2\rfloor \frac{3!n!(2 i+2)!}{(n-2 i)!!!(i+1)!(i+2)!(i+3)!}
$$

Early algebraic results

Theorem (Guibert, 1995)

$3412 \sim_{\mathcal{I}} 4321$ and $2143 \sim_{\mathcal{I}} 1243$

Later, one conjecture of Guibert was answered using
generating trees.
Theorem (Guibert. Pergola, Pinzani 2001)

$$
1234 \sim_{\mathcal{I}} 2143
$$

This left one conjecture of Guibert open: whether or not $1432 \sim_{\mathcal{I}} 1234$.

Early algebraic results

Theorem (Guibert, 1995)

$$
3412 \sim_{\mathcal{I}} 4321 \text { and } 2143 \sim_{\mathcal{I}} 1243
$$

Later, one conjecture of Guibert was answered using generating trees.

Theorem (Guibert, Pergola, Pinzani 2001)

$$
1234 \sim_{\mathcal{I}} 2143
$$

This left one conjecture of Guibert open: whether or not $1432 \sim_{\mathcal{I}} 1234$.

Early algebraic results

Theorem (Guibert, 1995)

$$
3412 \sim_{\mathcal{I}} 4321 \text { and } 2143 \sim_{\mathcal{I}} 1243
$$

Later, one conjecture of Guibert was answered using generating trees.

Theorem (Guibert, Pergola, Pinzani 2001)

$$
1234 \sim_{\mathcal{I}} 2143
$$

This left one conjecture of Guibert open: whether or not $1432 \sim_{\mathcal{I}} 1234$.

Prefix-exchanging results

Theorem (J.)

For every permutation $\tau_{3}, \ldots, \tau_{n}$ of $\{3, \ldots, n\}$,

$$
12 \tau_{3} \ldots \tau_{n} \sim_{\mathcal{I}} 21 \tau_{3} \ldots \tau_{n}
$$

For every permutation $\tau_{4}, \ldots, \tau_{n}$ of $\{4, \ldots, n\}$

$$
123 \tau_{4} \ldots \tau_{n} \sim_{\mathcal{I}} 321 \tau_{4} \ldots \tau_{n}
$$

The analogous results for $\sim \mathcal{S}$-equivalence were due to West (1990) and Babson and West (2000).

Conjectured that the prefixes $12 \ldots k$ and $k \ldots 21$ may be exchanged as well; the analogous result for $\sim \mathcal{S}^{\text {-equivalence }}$ is due to Backelin, West, and Xin (2007).

Prefix-exchanging results

Theorem (J.)

For every permutation $\tau_{3}, \ldots, \tau_{n}$ of $\{3, \ldots, n\}$,

$$
12 \tau_{3} \ldots \tau_{n} \sim_{\mathcal{I}} 21 \tau_{3} \ldots \tau_{n}
$$

For every permutation $\tau_{4}, \ldots, \tau_{n}$ of $\{4, \ldots, n\}$

$$
123 \tau_{4} \ldots \tau_{n} \sim_{\mathcal{I}} 321 \tau_{4} \ldots \tau_{n}
$$

The analogous results for $\sim_{\mathcal{S}}$-equivalence were due to West (1990) and Babson and West (2000).

Conjectured that the prefixes $12 \ldots k$ and $k \ldots 21$ may be exchanged as well; the analogous result for $\sim_{\mathcal{S}}$-equivalence is due to Backelin, West, and Xin (2007).

Prefix-exchanging results

Theorem (J.)

For every permutation $\tau_{3}, \ldots, \tau_{n}$ of $\{3, \ldots, n\}$,

$$
12 \tau_{3} \ldots \tau_{n} \sim_{\mathcal{I}} 21 \tau_{3} \ldots \tau_{n}
$$

For every permutation $\tau_{4}, \ldots, \tau_{n}$ of $\{4, \ldots, n\}$

$$
123 \tau_{4} \ldots \tau_{n} \sim_{\mathcal{I}} 321 \tau_{4} \ldots \tau_{n}
$$

The analogous results for $\sim_{\mathcal{S}}$-equivalence were due to West (1990) and Babson and West (2000).

Conjectured that the prefixes $12 \ldots k$ and $k \ldots 21$ may be exchanged as well; the analogous result for $\sim_{\mathcal{S}}$-equivalence is due to Backelin, West, and Xin (2007).

Generalizing this result

Theorem (Bousquet-Mélou \& Steingrímsson)
 For every permutation $\tau_{j+1}, \ldots, \tau_{k}$ of $\{j+1, \ldots, k\}$,
 $12 \ldots j \tau_{j+1} \ldots \tau_{k} \sim_{\mathcal{I}} j \ldots 21 \tau_{j+1} \ldots \tau_{k}$.

Proved by showing that the iterated transformation used in [BWX] commutes with inverting a permutation, even though the transformation itself doesn't.

Generalizing this result

Theorem (Bousquet-Mélou \& Steingrímsson)

For every permutation $\tau_{j+1}, \ldots, \tau_{k}$ of $\{j+1, \ldots, k\}$,
$12 \ldots j \tau_{j+1} \ldots \tau_{k} \sim_{\mathcal{I}} j \ldots 21 \tau_{j+1} \ldots \tau_{k}$.
Proved by showing that the iterated transformation used in [BWX] commutes with inverting a permutation, even though the transformation itself doesn't.

Implications for $\sim_{\mathcal{I}}$-equivalence

Applying this to the symmetry class $\{1243,2134\}$ we obtain the result of Guibert, Pergola, and Pinzani:

$$
1234 \sim_{\mathcal{I}} 2143
$$

We may also affirmatively answer Guibert's conjecture: $1234 \sim_{\mathcal{I}} 3214$

This completes the classification of S_{4} according to $\sim_{\mathcal{I}}$-equivalence.

Implications for $\sim_{\mathcal{I}}$-equivalence

Applying this to the symmetry class $\{1243,2134\}$ we obtain the result of Guibert, Pergola, and Pinzani:

$$
1234 \sim_{\mathcal{I}} 2143
$$

We may also affirmatively answer Guibert's conjecture:

$$
1234 \sim_{\mathcal{I}} 3214
$$

This completes the classification of \mathcal{S}_{4} according to $\sim_{\mathcal{I}}$-equivalence.

Placements on shapes and patterns

Figure: A placement on $(3,3,2)$ that contains 12 and 21 but not 231.

Self-conjugate shapes and symmetric placements

Figure: Four placements on the self-conjugate shape $(3,3,2)$.

From involutions to self-conjugate shapes with symmetric placements

Figure: The involution shown contains 12354 iff the placement on $(4,4,4,3)$ at the right contains 123.

We need the prefix to be an involution.

A useful theorem

Theorem (J.)

Let $\lambda_{\text {sym }}(T)$ be the number of symmetric full placements on the shape λ that avoid all of the patterns in the set T. Let α and β be involutions in \mathcal{S}_{j}. Let T_{α} be a set of patterns, each of which begins with the prefix α, and T_{β} similarly. If, for every self-conjugate shape $\lambda, \lambda_{\text {sym }}(\{\alpha\})=\lambda_{\text {sym }}(\{\beta\})$, then for every self-conjugate shape μ,

$$
\mu_{\text {sym }}\left(T_{\alpha}\right)=\mu_{\text {sym }}\left(T_{\beta}\right)
$$

Exchanging 12 and 21

Backelin and West showed that there is a unique filling of any (fillable) shape that avoids 12, and a unique filling that avoids 21. These are necessarily symmetric if the shape is symmetric.

Figure: Starting from the top row, fill the box in either the leftmost (12-avoiding) or the rightmost (21-avoiding) column without a dot.

After these general results remaining question about $\sim_{\mathcal{I}}$-equivalences in \mathcal{S}_{5} is:

Question

Does $54321 \sim_{\mathcal{I}} 45312$ hold?

Question

Does $654321 \sim_{\mathcal{I}} 564312$ also hold (as suggested by numerical results)? If so, are these two cases of a more general result?

These results are known for $\sim_{\mathcal{S}}$-equivalence, but do not follow from known $\sim_{\mathcal{I}}$ results.

The answer to all these questions:

Theorem
 For every $k \geq 5$,

In fact, this is is a corollary of a stronger theorem about generating trees.

The answer to all these questions: Yes!

Theorem
For every $k \geq 5$,

$$
k(k-1) \ldots 321 \sim_{\mathcal{I}}(k-1) k(k-2) \ldots 312
$$

In fact, this is is a corollary of a stronger theorem about generating trees.

Generating trees

Put a tree structure on the involutions avoiding a pattern τ

- If σ is an involution in \mathcal{S}_{n} that avoids τ, then its parent π is the involution obtained by:
(1) Deleting the cycle containing n (either (n) or (jn))
(2) Taking the pattern of the resulting word
- The root of the tree is the empty permutation
- Find a way to label each node in the tree along with a rule that determines the labels of the children of a node with a given label

Theorem (J.-Marincel)

For every $k \geq 5$, the generating tree for involutions avoiding $k(k-1) \ldots 321$ is isomorphic to the generating tree for involutions avoiding $(k-1) k(k-2) \ldots 312$.

The number of involutions in \mathcal{S}_{n} avoiding the pattern equals the number of nodes at depth n in the corresponding tree.

Theorem (J.-Marincel)

For every $k \geq 5$, the generating tree for involutions avoiding $k(k-1) \ldots 321$ is isomorphic to the generating tree for involutions avoiding $(k-1) k(k-2) \ldots 312$.

The number of involutions in \mathcal{S}_{n} avoiding the pattern equals the number of nodes at depth n in the corresponding tree.

Corollary
$k(k-1) \ldots 321 \sim_{\mathcal{I}}(k-1) k(k-2) \ldots 312$.
Independently discovered (and generalized) by Dukes, Jelínek, Mansour, and Reifegerste.

Defining labels

Given $\pi \in \mathcal{S}_{n}$, let p_{i} be the side of the largest square in the upper-right corner of the graph of π that does not contain a decreasing sequence of length $2 i$ (k even, $1 \leq i \leq \frac{k}{2}-1$) or $2 i-1$ (k odd, $1 \leq i \leq \frac{k-1}{2}$).

In the generating tree for involutions avoiding $k(k-1) \ldots 321$, label π with $\left(n, p_{1}, p_{2}, \ldots, p_{a-1}, p_{m}\right)$. [$m=\frac{k}{2}-1$ or $\left.m=\frac{k-1}{2}\right]$

In the generating tree for involutions avoiding
$(k-1) k(k-2) \ldots 312$, label $\pi \in \mathcal{S}_{n}$ with
($n, p_{1}, p_{2}, \ldots, p_{m-1}, q_{m}$), where $q_{m}+1$ is the total number of depth-2 children of π.

The labels of the children of a node with label $\left(n, y_{1}, \ldots, y_{m}\right)$ are:

$$
\left\{\left(n+1, w, y_{2}+1, \ldots, y_{m}+1\right)\right\} \cup \bigcup_{j=0}^{y_{m}}\left\{\left(n+2, z_{1}, \ldots, z_{m}\right)\right\}
$$

where, in the label whose first component is $n+1$, w equals $y_{1}+1$ if k is even and 0 if k is odd, and in the label indexed by j :

$$
z_{i}= \begin{cases}y_{i}+2 & j \leq y_{i-1} \\ j+1 & y_{i-1}<j \leq y_{i} \quad\left(j \leq y_{i} \text { for } i=1\right) \\ y_{i}+1 & y_{i}<j\end{cases}
$$

In the tree of involutions avoiding 654321, 53281764 has label $\left(n, p_{1}, p_{2}\right)=(8,2,4)$. Its depth-2 children and their labels are:

$6329(10) 18745$	$(10,3,5)$
$53291(10) 8746$	$(10,3,4)$
$532918(10) 647$	$(10,3,6)$
$5329176(10) 48$	$(10,2,6)$
$53281764(10) 9$	$(10,1,6)$

In the tree of involutions avoiding 564312, 54821763 has label $\left(n, p_{1}, q_{2}\right)=(8,2,4)$. Its depth-2 children and their labels are:

$(10) 659328741$	$(10,3,4)$
$65(10) 9218743$	$(10,3,5)$
$549218(10) 637$	$(10,3,6)$
$5492176(10) 38$	$(10,2,6)$
$54821763(10) 9$	$(10,1,6)$

Subsequence containment

Definition

$\pi=\pi_{1} \ldots \pi_{n} \in \mathcal{S}_{n}$ contains the subsequence $\tau \in \mathcal{S}_{k}$ if there is a subsequence $\pi_{i_{1}} \ldots \pi_{i_{k}}$ of π such that $\pi_{i_{j}}=\tau_{j}$.

Unlike patterns, we care about the exact values!
Given $\tau \in \mathcal{S}_{k}$, it's trivial to see that the probability that $\pi \in \mathcal{S}_{n}$ (chosen u.a.r., $n \geq k$) contains τ as a subsequence is exactly

Subsequence containment

Definition

$\pi=\pi_{1} \ldots \pi_{n} \in \mathcal{S}_{n}$ contains the subsequence $\tau \in \mathcal{S}_{k}$ if there is a subsequence $\pi_{i_{1}} \ldots \pi_{i_{k}}$ of π such that $\pi_{i_{j}}=\tau_{j}$.

Unlike patterns, we care about the exact values!
Given $\tau \in \mathcal{S}_{k}$, it's trivial to see that the probability that $\pi \in \mathcal{S}_{n}$ (chosen u.a.r., $n \geq k$) contains τ as a subsequence is exactly 1/k!

Subsequence containment by involutions

Theorem (McKay, Morse, Wilf, 2002)
The probability that π (chosen u.a.r. from the involutions in \mathcal{S}_{n}, $n \geq k$) contains a subsequence $\tau \in \mathcal{S}_{k}$ equals $1 / k!+o(1)$ as $n \rightarrow \infty$.
I.e., imposing symmetry doesn't really change the answer!

Counting the involutions containing a subsequence

Theorem (J., 2005)

For a fixed permutation $\tau=\tau_{1} \tau_{2} \ldots \tau_{k} \in \mathcal{S}_{k}$ and $n \geq k$, the number of involutions in \mathcal{S}_{n} that contain τ as a subsequence equals

$$
\sum^{\prime}\binom{n-k}{k-j} t_{n-2 k+j}
$$

where the sum is taken over $j=0$ and those $j \in[k]$ such that the pattern of $\tau_{1} \ldots \tau_{j}$ is an involution in \mathcal{S}_{j}, and t_{m} equals the number of involutions in \mathcal{S}_{m}.

This allows us to sharpen the asymptotic results of [MMW]:
For $k>2, \tau \in \mathcal{S}_{k}$, the probability as $n \rightarrow \infty$ that an involution $\pi \in \mathcal{S}_{n}$ contains τ as a subsequence is

$$
\frac{1}{k!}-\frac{2}{3(k-3)!} n^{-3 / 2}+O\left(n^{-2}\right)
$$

if the pattern of $\tau_{1} \tau_{2} \tau_{3}$ is not an involution and

$$
\frac{1}{k!}+\frac{1}{3(k-3)!} n^{-3 / 2}+O\left(n^{-2}\right)
$$

if it is.

Counting tableaux containing a subtableau

The RSK algorithm gives a bijection between standard Young tableaux of size n and the involutions in \mathcal{S}_{n}.

In a tableau corresponding to an involution $\pi \in \mathcal{S}_{n}$, the subtableau on $[k]$ depends only on the subsequence of π formed by the elements of $[k]$.

We may thus recover a formula of Sagan and Stanley counting the tableaux that contain a given subtableau.

Another notion of equivalence

Inspired by pattern avoidance, we make the following definition:

Definition

Two patterns α and β are equivalent with respect to subsequence containment by involutions iff, for every n, the number of involutions in \mathcal{S}_{n} containing α as a subsequence equals the number containing β as a subsequence.

Characterizing this equivalence

Definition (j-set of a permutation)

Let $\mathcal{J}(\alpha)=\left\{j \mid\right.$ The pattern of $\alpha_{1} \ldots \alpha_{j}$ is an involution in $\left.\mathcal{S}_{j}\right\}$
Because each term in the sum counting the involutions containing a particular subsequence is asymptotically smaller than the previous one, α and β are equivalent in this sense iff $\mathcal{J}(\alpha)=\mathcal{J}(\beta)$.

Preliminary results

Theorem (J.)

The number of $\tau \in \mathcal{S}_{k}$ for which $\mathcal{J}(\tau)=\{0, \ldots, k\}$ equals 2^{k-1}.
Also, if we assume $\{0,1,2, k\} \subseteq E \subseteq\{0,1, \ldots, k\}$ and $|E|=k \geq 5$, then the number of $\tau \in \mathcal{S}_{k}$ for which $\mathcal{J}(\tau)=E$ equals 2^{k-3} if $k-1 \notin E$ and 2^{k-4} if $k-1 \in E$.

Preliminary results

Theorem (J.)

The number of $\tau \in \mathcal{S}_{k}$ for which $\mathcal{J}(\tau)=\{0, \ldots, k\}$ equals 2^{k-1}.
Also, if we assume $\{0,1,2, k\} \subseteq E \subseteq\{0,1, \ldots, k\}$ and $|E|=k \geq 5$, then the number of $\tau \in \mathcal{S}_{k}$ for which $\mathcal{J}(\tau)=E$ equals 2^{k-3} if $k-1 \notin E$ and 2^{k-4} if $k-1 \in E$.

Question

What is the sequence
$\left\{\left|\mathcal{J}\left(\mathcal{S}_{k}\right)\right|\right\}_{k \geq 3}=2,4,8,16,30,56,102, \ldots ?$

Extensions

Theorem (Kim and Kim, 2007)

Assume that $\left\{j_{1}, j_{2}, \ldots, j_{r-1}\right\}$ is a j-set and $j_{1}<\cdots<j_{r-1}<j_{r}$. Then $\left\{j_{1}, j_{2}, \ldots, j_{r-1}, j_{r}\right\}$ is a j-set iff one of the following holds:
(1) $j_{r}-j_{r-1}=1$
(2) $j_{r-1}-j_{r-2} \neq 1$ and $j_{r}-j_{r-1} \geq j_{r-1}-j_{r-2}$
(3) $j_{r-1}-j_{r-2}=1$ and $j_{r}-j_{r-1} \geq j_{r-1}-j_{r-3}$

They also find a functional equation for the generating function of the number of j-sets in \mathcal{S}_{k}.

Conclusions

Parallel properties of involutions and general permutations

- Prefix-exchange results
- Other families of involution-Wilf-equivalences that correspond to Wilf-equivalences
- Subsequence containment-asymptotically the same

