## On What We Don't Know (About List Coloring)

Paul Raff

January 24, 2008

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

#### Introduction

There's "normal" graph coloring:

**Def.** A graph is *k*-colorable if there is a function  $c: V(G) \rightarrow \{1, \ldots, k\}$  such that

$$v \sim w \Rightarrow c(v) \neq c(w)$$

Then we can define the chromatic number as

 $\chi(G) = \min\{k \mid G \text{ is } k\text{-colorable.}\}$ 

### Introduction

Then there is *list coloring*:

**Def.** A *list assignment* for a graph G is an assignment of a list  $L_v$  (usually a subset of  $\mathbb{N}$ ) to each vertex  $v \in G$ .

Let

$$\mathcal{L} = \{L_v \mid v \in V(G)\}$$

and we define the palette as

$$P_{\mathcal{L}} = \bigcup_{v \in V(G)} L_v$$

We then say that G is  $\mathcal{L}$ -choosable if there is a function  $c: V(G) \rightarrow P_{\mathcal{L}}$  such that

 $v \sim w \Rightarrow c(v) \neq c(w)$  and  $c(v) \in L_v, c(w) \in L_w$ 

## List Coloring Definition

**Def.** For a function  $f : V(G) \to \mathbb{N}$ , we say that G is f-choosable if for any list assignment  $\mathcal{L}$  satisfying  $|L_v| = f(v)$  for all  $v \in V(G)$ , G is  $\mathcal{L}$ -choosable.

If  $f \equiv k$  is a constant function, then we say that G is k-choosable and say that  $\chi_I(G) = k$ .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Most of the interest so far in list coloring has dealt with k-choosability.

## List Coloring is Different!

 $\chi_l(G) \ge \chi(G)$  since "normal" coloring is equivalent to assigning the same list of colors to each vertex in the graph. However, notice:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The First Example, Always, With List Coloring



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

This list assignment shows that  $\chi_l(K_{3,3}) = 3 \neq \chi(K_{3,3})$ .

## More Generally . . .

Fact.

$$\chi_{I}\left(\mathsf{K}_{\binom{2n-1}{n},\binom{2n-1}{n}}\right) = n+1$$

**Proof.** We assign as lists on each side the *n*-subsets of  $\{1, 2, ..., 2n - 1\}$ . Then we can color if and only if we use only n - 1 colors on one side. However, for each choice of n - 1 colors there is a

vertex that misses precisely those colors, and hence can't be colored.

**Consequence:** In general we cannot say anything about  $\chi_l(G)$  given  $\chi(G)$ .

Conclusions for Planar Graphs

Theorem [Thomassen 1993]: Every planar graph is 5-choosable.

**Theorem [Voigt 1993]:** There are planar graphs that are not 4-choosable.

Voigt's example had

The smallest-known example of a non-4-choosable planar graph has 75 vertices [Gutner 1996].

### What's Different About List Coloring?

There are some obvious statements about "normal" coloring whose list-coloring counterparts aren't so obvious. For example,

**Obvious Fact.** If  $\chi(G) = t$  and s < t, then there is a subgraph  $H \subseteq G$  such that  $|V(H)| \ge \frac{s}{t}|V(G)|$ and  $\chi(H) = s$ .

**Proof.** Color G with t colors and select the s largest color classes as H.

### Conjecture 1: Albertson, Haas, Grossman [2000]

If  $\chi_I(G) = t$  and  $\mathcal{L}$  is a family of assignments where each vertex is assigned a list  $L_v$  of s colors (s < t), then there is a subgraph  $H \subseteq G$  such that

$$|V(H)| \geq \frac{s}{t}|V(G)|$$

and H is  $\mathcal{L}$ -choosable.

**Note:** The more direct analogue is *not* true: there are graphs *G* with  $\chi_I(G) = t$  and s < t such that there are no subgraphs  $H \subseteq G$  with  $\chi_I(H) = s$  satisfying

$$|V(H)| \geq \frac{s}{t}|V(G)|$$

**Theorem:** If s|t, then the conjecture is true.

**Proof:** For sake of clarity, let s = 2 and t = 4. Each vertex  $v \in G$  is given a list of two colors  $L_v = \{a_v, b_v\}$ . Append doppelgänger colors  $a'_v$  and  $b'_v$  to each list, so each new list is  $L'_v = \{a_v, b_v, a'_v, b'_v\}$ . If  $\mathcal{L}'$  is the family of new lists, then G is  $\mathcal{L}'$ -choosable.

Progress of Conjecture 1 (Continued)

Color G using  $\mathcal{L}'$ .

Now, for each color c in the palette, some vertices may have been colored c and some may have been colored c'. Let  $V_c$  be the bigger of those two sets of vertices. Finally, let

$$H = \bigcup_{c \in P_{\mathcal{L}}} V_c$$

and notice that each vertex in H colored by a doppelgänger can be re-colored with its original color.

### More Progress

**Theorem [Chappell 1999]:** If  $\chi_I(G) = t$  and s < t then there is a subgraph H with the required properties such that

$$|V(H)| \geq \frac{6}{7} \left(\frac{s}{t} |V(G)|\right)$$

Chappell's proof is based on simple probabilistic arguments.

The rest of the conjecture is still wide open. Even the case of s = 2, t = 3 remains a mystery.

Another Direction: Graphs where  $\chi_I(G) = \chi(G)$ .

The following graphs are known to satisfy  $\chi_I(G) = \chi(G)$ :

- (Galvin 1995) Line graphs of bipartite graphs.
- ▶ (Gravier, Maffray 1995) Complements of triangle-free graphs.
- (Ohba 2001) Graphs satisfying  $|V(G)| \le \chi(G) + \sqrt{2\chi(G)}$ .
- (Reed, Sudakov 2005) Graphs satisfying  $|V(G)| \leq \frac{5}{3}\chi(G) \frac{4}{3}$ .

## Hard Conjecture Number 1

# **Conjecture [Vizing 1976]:** Every line graph satisfies $\chi_l(G) = \chi(G)$ .

This conjecture is important enough to be called *The List Coloring Conjecture*.

## Hard Conjecture Number 2

**Conjecture [Gravier, Maffray 1997]:** Every claw-free graph satisfies  $\chi_I(G) = \chi(G)$ .



Note that this conjecture is more general than hard conjecture number 1, and many people believe it is so general as to actually be false.

# **Conjecture [Ohba 2001]:** If $|V(G)| \le 2\chi(G) + 1$ then $\chi_l(G) = \chi(G)$ .

For Ohba's Conjecture it suffices to consider only complete partite graphs where equality holds.

**Definition:**  $K(a_1, a_2, ..., a_k)$  is the complete *k*-partite graph with  $a_i$  vertices in part *i*. Usually we write it so  $a_1 \ge a_2 \ge \cdots \ge a_k$ . If there are repetitions, we also write as shorthand

$$K(a_1 * n_1, a_2 * n_2, \ldots, a_k * n_k)$$

### Complete Partite Graph Example

So, for example, the following graph is K(3,3,1) = K(3\*2,1):



**Motivation:** The graph G = K(4, 2 \* (k - 1)) satisfies  $\chi(G) = k$ , |V(G)| = 2k + 2, and  $\chi_l(G) = k + 1$  iff k is even!

### Progress Towards Ohba's Conjecture

Graphs for which Ohba's Conjecture is true:

- ► (Erdős, Rubin, Taylor 1979) *K*(2 \* *k*).
- ▶ (Gravier, Maffray 1998) K(3,3,2 \* (k 2)).
- (Enomoto, Ohba, Ota, Sakamoto 2002) K(4, 2 \* (k 2), 1).
- ► (Cranston 2007) G such that a(G) = 3, or G with one part of size 4.

- ► (Shen, He, Zheng, Wang, Zhang 2007) K(5,3,2 \* (k - 5), 1 \* 3).
- ► (Enomoto, Ohba, Ota, Sakamoto 2002) K(m, 2 \* (k - s - 1), 1 \* s) for  $m \le 2s - 1$ .

The following ideas are used heavily in the previous results:

**1.** (Hall 1935) If G = (A, B) is a bipartite graph such that  $|N(S)| \ge |S|$  for all  $S \subseteq A$ , then there is a matching that saturates A.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

## Machinery (New)

**2.** (Kierstead 2000) Let G be given with list assignment  $\mathcal{L}$ . Let X be a maximal set of vertices so that

$$|L(X)| := \left| \bigcup_{v \in X} L_v \right| < |X|$$

Then if X is  $\mathcal{L}|_X$ -choosable, then G is  $\mathcal{L}$ -choosable.

3. (Kierstead 2000, Reed, Sudakov 2001) If G is  $\mathcal{L}$ -choosable for all list assignments such that  $|L_v| = k$  and  $|P_{\mathcal{L}}| < |V(G)|$ , then  $\chi_l(G) \leq k$ .

### Where To Go From Here

Chappell's result suggests that the conjecture of Albertson, et. al. is true.

**Ambiguous Philosophical Thought:** Most results concerning Ohba's Conjecture rely on *heavy* case analysis. Can it be avoided?

### Example Of What I'd Like To See More Of

```
Lemma. K(4, 3, 1, 1) is 4-choosable.
```

**Proof.** From the machinery mentioned earlier, it suffices to consider when the palette has at most 8 colors. If that is the case, then there is a set C of at least 4 colors such that for each color  $c \in C$ , there are at least two vertices in the 4-set that has c in their list.

**Case to Always Exclude:** If there is a color that is shared by all the vertices of the 4-set or the 3-set, then use that color and you're in a much easier situation.

**Case to Exclude:** If both singleton vertices have the same list of colors, and that list is also the same as some vertex in the 3-set, then we can color everything.

Now, take a color  $c \in C$ , and WLOG there are two vertices,  $v_1$  and  $v_2$ , in the 3-set that have c in their list. Since we've excluded the singleton lists being equal and equal to a vertex in the 3-set, there is a choice of colors to color the singletons so that the remaining two vertices in the 4-set and the 3-set still have two valid colors remaining. So - what's left if K(3, 2), which we know is 2-choosable.

## Finally . . .

Thank you for listening!

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>