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Introduction

There’s “normal” graph coloring:

Def. A graph is k-colorable if there is a function
c : V (G ) → {1, . . . , k} such that

v ∼ w ⇒ c(v) 6= c(w)

Then we can define the chromatic number as

χ(G ) = min{k | G is k-colorable.}



Introduction
Then there is list coloring:

Def. A list assignment for a graph G is an
assignment of a list Lv (usually a subset of N) to each vertex v ∈ G .

Let
L = {Lv | v ∈ V (G )}

and we define the palette as

PL =
⋃

v∈V (G)

Lv

We then say that G is L-choosable if there is a function
c : V (G ) → PL such that

v ∼ w ⇒ c(v) 6= c(w) and c(v) ∈ Lv , c(w) ∈ Lw



List Coloring Definition

Def. For a function f : V (G ) → N, we say that G is f -choosable if
for any list assignment L satisfying |Lv | = f (v) for all v ∈ V (G ),
G is L-choosable.

If f ≡ k is a constant
function, then we say that G is k-choosable and say that χl(G ) = k.

Most of the interest so far in list coloring has dealt with
k-choosability.



List Coloring is Different!

χl(G ) ≥ χ(G ) since “normal” coloring is equivalent to assigning
the same list of colors to each vertex in the graph. However,
notice:



The First Example, Always, With List Coloring

{2, 3}

{1, 3}

{1, 2}

{2, 3}

{1, 3}

{1, 2}

This list assignment shows that χl(K3,3) = 3 6= χ(K3,3).



More Generally . . .

Fact.
χl

(

K(2n−1
n

),(2n−1
n

)

)

= n + 1

Proof. We assign as lists on each side the n-subsets of
{1, 2, . . . , 2n − 1}. Then we can color if and only if we use only
n − 1 colors on one side. However, for each choice of n − 1 colors
there is a
vertex that misses precisely those colors, and hence can’t be colored.

Consequence: In general we cannot say anything about χl(G )
given χ(G ).



Conclusions for Planar Graphs

Theorem [Thomassen 1993]: Every planar graph is 5-choosable.

Theorem [Voigt 1993]: There are planar graphs that are not
4-choosable.

Voigt’s example had

The smallest-known example of a non-4-choosable planar graph
has 75 vertices [Gutner 1996].



What’s Different About List Coloring?

There are some obvious statements about “normal” coloring whose
list-coloring counterparts aren’t so obvious. For example,

Obvious Fact. If χ(G ) = t and s < t, then there is a subgraph
H ⊆ G such that

|V (H)| ≥
s

t
|V (G )|

and χ(H) = s.

Proof. Color G with t colors and select the s largest color classes
as H.



Conjecture 1: Albertson, Haas, Grossman [2000]

If χl(G ) = t and L is a family of assignments where each vertex is
assigned a list Lv of s colors (s < t), then there is a subgraph
H ⊆ G such that

|V (H)| ≥
s

t
|V (G )|

and H is L-choosable.

Note: The more direct analogue is not true: there are graphs G

with χl (G ) = t and s < t such that there are no subgraphs H ⊆ G

with χl(H) = s satisfying

|V (H)| ≥
s

t
|V (G )|



Progress on Conjecture 1

Theorem: If s|t, then the conjecture is true.

Proof: For sake of clarity, let s = 2 and t = 4. Each vertex v ∈ G

is given a list of two colors Lv = {av , bv}. Append doppelgänger
colors a′v and b′

v to each list, so each new list is
L′v = {av , bv , a′v , b′

v}. If L′ is the family of new lists, then G is
L′-choosable.



Progress of Conjecture 1 (Continued)

Color G using L′.

Now, for each color c in the palette, some vertices may have been
colored c and some may have been colored c ′. Let Vc be the
bigger of those two sets of vertices. Finally, let

H =
⋃

c∈PL

Vc

and notice that each vertex in H colored by a doppelgänger can be
re-colored with its original color.



More Progress

Theorem [Chappell 1999]: If χl(G ) = t and s < t then there is
a subgraph H with the required properties such that

|V (H)| ≥
6

7

(s

t
|V (G )|

)

Chappell’s proof is based on simple probabilistic arguments.

The rest of the conjecture is still wide open. Even the case of
s = 2, t = 3 remains a mystery.



Another Direction: Graphs where χl(G ) = χ(G ).

The following graphs are known to satisfy χl (G ) = χ(G ):

◮ (Galvin 1995) Line graphs of bipartite graphs.

◮ (Gravier, Maffray 1995) Complements of triangle-free graphs.

◮ (Ohba 2001) Graphs satisfying |V (G )| ≤ χ(G ) +
√

2χ(G ).

◮ (Reed, Sudakov 2005) Graphs satisfying |V (G )| ≤ 5
3χ(G )− 4

3 .



Hard Conjecture Number 1

Conjecture [Vizing 1976]: Every line graph satisfies
χl(G ) = χ(G ).

This conjecture is important enough to be called The List Coloring

Conjecture.



Hard Conjecture Number 2

Conjecture [Gravier, Maffray 1997]: Every claw-free graph
satisfies χl (G ) = χ(G ).

Note that this conjecture is more general than hard conjecture
number 1, and many people believe it is so general as to actually
be false.



Ohba’s Conjecture

Conjecture [Ohba 2001]: If |V (G )| ≤ 2χ(G ) + 1 then
χl(G ) = χ(G ).

For Ohba’s Conjecture it suffices to consider only complete partite
graphs where equality holds.



Complete Partite Graph Notation

Definition: K (a1, a2, . . . , ak) is the complete k-partite graph with
ai vertices in part i . Usually we write it so a1 ≥ a2 ≥ · · · ≥ ak . If
there are repetitions, we also write as shorthand

K (a1 ∗ n1, a2 ∗ n2, . . . , ak ∗ nk)



Complete Partite Graph Example

So, for example, the following graph is K (3, 3, 1) = K (3 ∗ 2, 1):

Motivation: The graph G = K (4, 2 ∗ (k − 1)) satisfies χ(G ) = k,
|V (G )| = 2k + 2, and χl(G ) = k + 1 iff k is even!



Progress Towards Ohba’s Conjecture

Graphs for which Ohba’s Conjecture is true:

◮ (Erdős, Rubin, Taylor 1979) K (2 ∗ k).

◮ (Gravier, Maffray 1998) K (3, 3, 2 ∗ (k − 2)).

◮ (Enomoto, Ohba, Ota, Sakamoto 2002) K (4, 2 ∗ (k − 2), 1).

◮ (Cranston 2007) G such that α(G ) = 3, or G with one part of
size 4.

◮ (Shen, He, Zheng, Wang, Zhang 2007)
K (5, 3, 2 ∗ (k − 5), 1 ∗ 3).

◮ (Enomoto, Ohba, Ota, Sakamoto 2002)
K (m, 2 ∗ (k − s − 1), 1 ∗ s) for m ≤ 2s − 1.



Machinery (Old)

The following ideas are used heavily in the previous results:

1. (Hall 1935) If G = (A,B) is a bipartite graph such that
|N(S)| ≥ |S | for all S ⊆ A, then there is a matching that saturates
A.



Machinery (New)

2. (Kierstead 2000) Let G be given with list assignment L. Let
X be a maximal set of vertices so that

|L(X )| :=

∣

∣

∣

∣

∣

⋃

v∈X

Lv

∣

∣

∣

∣

∣

< |X |

Then if X is L|X -choosable, then G is L-choosable.

3. (Kierstead 2000, Reed, Sudakov 2001) If G is L-choosable
for all list assignments such that |Lv | = k and |PL| < |V (G )|, then
χl(G ) ≤ k.



Where To Go From Here

Chappell’s result suggests that the conjecture of Albertson, et. al.
is true.

Ambiguous Philosophical Thought: Most results concerning
Ohba’s Conjecture rely on heavy case analysis. Can it be avoided?



Example Of What I’d Like To See More Of

Lemma. K (4, 3, 1, 1) is 4-choosable.

Proof. From the machinery mentioned earlier, it suffices to
consider when the palette has at most 8 colors. If that is the case,
then there is a set C of at least 4 colors such that for each color
c ∈ C , there are at least two vertices in the 4-set that has c in
their list.

Case to Always Exclude: If there is a color that is shared by all
the vertices of the 4-set or the 3-set, then use that color and you’re
in a much easier situation.



Example Of What I’d Like To See More Of (Continued)

Case to Exclude: If both singleton vertices have the same list of
colors, and that list is also the same as some vertex in the 3-set,
then we can color everything.

Now, take a color c ∈ C , and WLOG there are two vertices, v1 and
v2, in the 3-set that have c in their list. Since we’ve excluded the
singleton lists being equal and equal to a vertex in the 3-set, there
is a choice of colors to color the singletons so that the remaining
two vertices in the 4-set and the 3-set still have two valid colors
remaining. So - what’s left if K (3, 2), which we know is
2-choosable.



Finally . . .

Thank you for listening!


