# On What We Don't Know (About List Coloring) 

Paul Raff

January 24, 2008

## Introduction

There's "normal" graph coloring:
Def. A graph is $k$-colorable if there is a function $c: V(G) \rightarrow\{1, \ldots, k\}$ such that

$$
v \sim w \Rightarrow c(v) \neq c(w)
$$

Then we can define the chromatic number as

$$
\chi(G)=\min \{k \mid G \text { is } k \text {-colorable. }\}
$$

## Introduction

Then there is list coloring:

Def. A list assignment for a graph $G$ is an assignment of a list $L_{v}$ (usually a subset of $\mathbb{N}$ ) to each vertex $v \in G$.

Let

$$
\mathcal{L}=\left\{L_{v} \mid v \in V(G)\right\}
$$

and we define the palette as

$$
P_{\mathcal{L}}=\bigcup_{v \in V(G)} L_{v}
$$

We then say that $G$ is $\mathcal{L}$-choosable if there is a function $c: V(G) \rightarrow P_{\mathcal{L}}$ such that

$$
v \sim w \Rightarrow c(v) \neq c(w) \text { and } c(v) \in L_{v}, c(w) \in L_{w}
$$

## List Coloring Definition

Def. For a function $f: V(G) \rightarrow \mathbb{N}$, we say that $G$ is $f$-choosable if for any list assignment $\mathcal{L}$ satisfying $\left|L_{v}\right|=f(v)$ for all $v \in V(G)$, $G$ is $\mathcal{L}$-choosable.

If $f \equiv k$ is a constant
function, then we say that $G$ is $k$-choosable and say that $\chi_{l}(G)=k$.

Most of the interest so far in list coloring has dealt with $k$-choosability.

## List Coloring is Different!

$\chi_{I}(G) \geq \chi(G)$ since "normal" coloring is equivalent to assigning the same list of colors to each vertex in the graph. However, notice:

The First Example, Always, With List Coloring


This list assignment shows that $\chi_{l}\left(K_{3,3}\right)=3 \neq \chi\left(K_{3,3}\right)$.

## More Generally . . .

Fact.

$$
\chi_{I}\left(K_{\binom{2 n-1}{n},\binom{2 n-1}{n}}\right)=n+1
$$

Proof. We assign as lists on each side the $n$-subsets of $\{1,2, \ldots, 2 n-1\}$. Then we can color if and only if we use only $n-1$ colors on one side. However, for each choice of $n-1$ colors there is a vertex that misses precisely those colors, and hence can't be colored.

Consequence: In general we cannot say anything about $\chi_{I}(G)$ given $\chi(G)$.

## Conclusions for Planar Graphs

Theorem [Thomassen 1993]: Every planar graph is 5-choosable.

Theorem [Voigt 1993]: There are planar graphs that are not 4-choosable.

Voigt's example had
The smallest-known example of a non-4-choosable planar graph has 75 vertices [Gutner 1996].

## What's Different About List Coloring?

There are some obvious statements about "normal" coloring whose list-coloring counterparts aren't so obvious. For example,

Obvious Fact. If $\chi(G)=t$ and $s<t$, then there is a subgraph $H \subseteq G$ such that

$$
|V(H)| \geq \frac{s}{t}|V(G)|
$$

and $\chi(H)=s$.

Proof. Color $G$ with $t$ colors and select the $s$ largest color classes as $H$.

## Conjecture 1: Albertson, Haas, Grossman [2000]

If $\chi_{I}(G)=t$ and $\mathcal{L}$ is a family of assignments where each vertex is assigned a list $L_{v}$ of $s$ colors $(s<t)$, then there is a subgraph $H \subseteq G$ such that

$$
|V(H)| \geq \frac{s}{t}|V(G)|
$$

and $H$ is $\mathcal{L}$-choosable.

Note: The more direct analogue is not true: there are graphs $G$ with $\chi_{I}(G)=t$ and $s<t$ such that there are no subgraphs $H \subseteq G$ with $\chi_{l}(H)=s$ satisfying

$$
|V(H)| \geq \frac{s}{t}|V(G)|
$$

## Progress on Conjecture 1

Theorem: If $s \mid t$, then the conjecture is true.

Proof: For sake of clarity, let $s=2$ and $t=4$. Each vertex $v \in G$ is given a list of two colors $L_{v}=\left\{a_{v}, b_{v}\right\}$. Append doppelgänger colors $a_{v}^{\prime}$ and $b_{v}^{\prime}$ to each list, so each new list is $L_{v}^{\prime}=\left\{a_{v}, b_{v}, a_{v}^{\prime}, b_{v}^{\prime}\right\}$. If $\mathcal{L}^{\prime}$ is the family of new lists, then $G$ is $\mathcal{L}^{\prime}$-choosable.

## Progress of Conjecture 1 (Continued)

Color $G$ using $\mathcal{L}^{\prime}$.

Now, for each color $c$ in the palette, some vertices may have been colored $c$ and some may have been colored $c^{\prime}$. Let $V_{c}$ be the bigger of those two sets of vertices. Finally, let

$$
H=\bigcup_{c \in P_{\mathcal{L}}} V_{c}
$$

and notice that each vertex in $H$ colored by a doppelgänger can be re-colored with its original color.

## More Progress

Theorem [Chappell 1999]: If $\chi_{I}(G)=t$ and $s<t$ then there is a subgraph $H$ with the required properties such that

$$
|V(H)| \geq \frac{6}{7}\left(\frac{s}{t}|V(G)|\right)
$$

Chappell's proof is based on simple probabilistic arguments.

The rest of the conjecture is still wide open. Even the case of $s=2, t=3$ remains a mystery.

## Another Direction: Graphs where $\chi_{l}(G)=\chi(G)$.

The following graphs are known to satisfy $\chi_{l}(G)=\chi(G)$ :

- (Galvin 1995) Line graphs of bipartite graphs.
- (Gravier, Maffray 1995) Complements of triangle-free graphs.
- (Ohba 2001) Graphs satisfying $|V(G)| \leq \chi(G)+\sqrt{2 \chi(G)}$.
- (Reed, Sudakov 2005) Graphs satisfying $|V(G)| \leq \frac{5}{3} \chi(G)-\frac{4}{3}$.


## Hard Conjecture Number 1

Conjecture [Vizing 1976]: Every line graph satisfies $\chi_{I}(G)=\chi(G)$.

This conjecture is important enough to be called The List Coloring Conjecture.

## Hard Conjecture Number 2

Conjecture [Gravier, Maffray 1997]: Every claw-free graph satisfies $\chi_{l}(G)=\chi(G)$.


Note that this conjecture is more general than hard conjecture number 1 , and many people believe it is so general as to actually be false.

## Ohba's Conjecture

Conjecture [Ohba 2001]: If $|V(G)| \leq 2 \chi(G)+1$ then $\chi_{I}(G)=\chi(G)$.

For Ohba's Conjecture it suffices to consider only complete partite graphs where equality holds.

## Complete Partite Graph Notation

Definition: $K\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ is the complete $k$-partite graph with $a_{i}$ vertices in part $i$. Usually we write it so $a_{1} \geq a_{2} \geq \cdots \geq a_{k}$. If there are repetitions, we also write as shorthand

$$
K\left(a_{1} * n_{1}, a_{2} * n_{2}, \ldots, a_{k} * n_{k}\right)
$$

## Complete Partite Graph Example

So, for example, the following graph is $K(3,3,1)=K(3 * 2,1)$ :


Motivation: The graph $G=K(4,2 *(k-1))$ satisfies $\chi(G)=k$, $|V(G)|=2 k+2$, and $\chi_{I}(G)=k+1$ iff $k$ is even!

## Progress Towards Ohba's Conjecture

Graphs for which Ohba's Conjecture is true:

- (Erdős, Rubin, Taylor 1979) K $(2 * k)$.
- (Gravier, Maffray 1998) K(3, 3, $2 *(k-2))$.
- (Enomoto, Ohba, Ota, Sakamoto 2002) K(4, $2 *(k-2), 1)$.
- (Cranston 2007) $G$ such that $\alpha(G)=3$, or $G$ with one part of size 4.
- (Shen, He, Zheng, Wang, Zhang 2007) $K(5,3,2 *(k-5), 1 * 3)$.
- (Enomoto, Ohba, Ota, Sakamoto 2002) $K(m, 2 *(k-s-1), 1 * s)$ for $m \leq 2 s-1$.


## Machinery (Old)

The following ideas are used heavily in the previous results:

1. (Hall 1935) If $G=(A, B)$ is a bipartite graph such that $|N(S)| \geq|S|$ for all $S \subseteq A$, then there is a matching that saturates $A$.

## Machinery (New)

2. (Kierstead 2000) Let $G$ be given with list assignment $\mathcal{L}$. Let $X$ be a maximal set of vertices so that

$$
|L(X)|:=\left|\bigcup_{v \in X} L_{v}\right|<|X|
$$

Then if $X$ is $\left.\mathcal{L}\right|_{X}$-choosable, then $G$ is $\mathcal{L}$-choosable.
3. (Kierstead 2000, Reed, Sudakov 2001) If $G$ is $\mathcal{L}$-choosable for all list assignments such that $\left|L_{v}\right|=k$ and $\left|P_{\mathcal{L}}\right|<|V(G)|$, then $\chi_{I}(G) \leq k$.

## Where To Go From Here

Chappell's result suggests that the conjecture of Albertson, et. al. is true.

Ambiguous Philosophical Thought: Most results concerning Ohba's Conjecture rely on heavy case analysis. Can it be avoided?

## Example Of What I'd Like To See More Of

Lemma. $K(4,3,1,1)$ is 4-choosable.

Proof. From the machinery mentioned earlier, it suffices to consider when the palette has at most 8 colors. If that is the case, then there is a set $C$ of at least 4 colors such that for each color $c \in C$, there are at least two vertices in the 4 -set that has $c$ in their list.

Case to Always Exclude: If there is a color that is shared by all the vertices of the 4 -set or the 3 -set, then use that color and you're in a much easier situation.

## Example Of What I'd Like To See More Of (Continued)

Case to Exclude: If both singleton vertices have the same list of colors, and that list is also the same as some vertex in the 3-set, then we can color everything.

Now, take a color $c \in C$, and WLOG there are two vertices, $v_{1}$ and $v_{2}$, in the 3 -set that have $c$ in their list. Since we've excluded the singleton lists being equal and equal to a vertex in the 3-set, there is a choice of colors to color the singletons so that the remaining two vertices in the 4 -set and the 3 -set still have two valid colors remaining. So - what's left if $K(3,2)$, which we know is 2-choosable.

## Finally . . .

Thank you for listening!

