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Introduction

There's “normal” graph coloring:

Def. A graph is k-colorable if there is a function
c: V(G) —{1,...,k} such that

v~w = c(v) #c(w)
Then we can define the chromatic number as

X(G) = min{k | G is k-colorable.}



Introduction
Then there is list coloring:

Def. A list assignment for a graph G is an
assignment of a list L, (usually a subset of N) to each vertex v € G.

Let
L={L,|veV(G)}

and we define the palette as
Pe= |J L
veV(G)

We then say that G is £-choosable if there is a function
c: V(G) — P, such that

v~w= c(v)#c(w)and ¢c(v) € L,,c(w) € L,



List Coloring Definition

Def. For a function f : V(G) — N, we say that G is f-choosable if
for any list assignment L satisfying |L,| = f(v) for all v € V(G),
G is L-choosable.

If f =k is a constant
function, then we say that G is k-choosable and say that x,(G) = k.

Most of the interest so far in list coloring has dealt with
k-choosability.



List Coloring is Different!

X1(G) > x(G) since “normal” coloring is equivalent to assigning
the same list of colors to each vertex in the graph. However,
notice:



The First Example, Always, With List Coloring

{1,2} {1,2}
{1,3} {1,3}
{2,3} {2,3}

This list assignment shows that x(K33) = 3 # x(K3.3).



More Generally . . .

Fact.
X! (K(2n—1)7(2,,71)) —n+1

n n

Proof. We assign as lists on each side the n-subsets of

{1,2,...,2n—1}. Then we can color if and only if we use only
n — 1 colors on one side. However, for each choice of n — 1 colors
there is a

vertex that misses precisely those colors, and hence can't be colored.

Consequence: In general we cannot say anything about x,(G)
given x(G).



Conclusions for Planar Graphs

Theorem [Thomassen 1993]: Every planar graph is 5-choosable.

Theorem [Voigt 1993]: There are planar graphs that are not
4-choosable.
Voigt's example had

The smallest-known example of a non-4-choosable planar graph
has 75 vertices [Gutner 1996].



What's Different About List Coloring?

There are some obvious statements about “normal” coloring whose
list-coloring counterparts aren't so obvious. For example,

Obvious Fact. If x(G) =t and s < t, then there is a subgraph
H C G such that <
V()] = 3IV(6)

and x(H) =s.

Proof. Color G with t colors and select the s largest color classes
as H.



Conjecture 1: Albertson, Haas, Grossman [2000]

If x;(G) =t and L is a family of assignments where each vertex is
assigned a list L, of s colors (s < t), then there is a subgraph
H C G such that <

V(H) = 2V (6)

and H is L-choosable.

Note: The more direct analogue is not true: there are graphs G
with x;(G) = t and s < t such that there are no subgraphs H C G
with x/(H) = s satisfying

V(H)| = 2|V(6)



Progress on Conjecture 1

Theorem: If s|t, then the conjecture is true.

Proof: For sake of clarity, let s =2 and t = 4. Each vertex v € G
is given a list of two colors L, = {a,, b,}. Append doppelganger
colors a,, and b/, to each list, so each new list is

L, ={ay, by, a,,b,}. If L"is the family of new lists, then G is
L’-choosable.



Progress of Conjecture 1 (Continued)

Color G using L.

Now, for each color ¢ in the palette, some vertices may have been
colored ¢ and some may have been colored ¢’. Let V. be the
bigger of those two sets of vertices. Finally, let

H = U V,
ceP,

and notice that each vertex in H colored by a doppelganger can be
re-colored with its original color.



More Progress

Theorem [Chappell 1999]: If x,(G) =t and s < t then there is
a subgraph H with the required properties such that

V(H) = 2 (31v(6))

Chappell’s proof is based on simple probabilistic arguments.

The rest of the conjecture is still wide open. Even the case of
s = 2,t = 3 remains a mystery.



Another Direction: Graphs where x,(G) = x(G).

The following graphs are known to satisfy x;(G) = x(G):

(Galvin 1995) Line graphs of bipartite graphs.

(Gravier, Maffray 1995) Complements of triangle-free graphs.
(Ohba 2001) Graphs satisfying |V(G)| < x(G) + v/2x(G).
(

>
>
>
> (Reed, Sudakov 2005) Graphs satisfying |V(G)| < 3x(G) — 3.



Hard Conjecture Number 1

Conjecture [Vizing 1976]: Every line graph satisfies
xi(G) = x(G).

This conjecture is important enough to be called The List Coloring
Conjecture.



Hard Conjecture Number 2

Conjecture [Gravier, Maffray 1997]: Every claw-free graph
satisfies x;(G) = x(G).

Note that this conjecture is more general than hard conjecture
number 1, and many people believe it is so general as to actually
be false.



Ohba's Conjecture

Conjecture [Ohba 2001]: If |V(G)| < 2x(G) + 1 then
xi(G) = x(G).

For Ohba's Conjecture it suffices to consider only complete partite
graphs where equality holds.



Complete Partite Graph Notation

Definition: K(a1, az,...,ax) is the complete k-partite graph with
a; vertices in part i. Usually we write it so a; > ap > -+ > ay. If
there are repetitions, we also write as shorthand

K(a1 * ny,ax % np, ..., ak * ng)



Complete Partite Graph Example

So, for example, the following graph is K(3,3,1) = K(3%2,1):

Motivation: The graph G = K(4,2 x (k — 1)) satisfies x(G) = k,
[V(G)| =2k +2, and x/(G) = k + 1 iff k is even!



Progress Towards Ohba's Conjecture

Graphs for which Ohba’s Conjecture is true:

» (Erdds, Rubin, Taylor 1979) K(2 * k).

» (Gravier, Maffray 1998) K(3,3,2 * (k —2)).

» (Enomoto, Ohba, Ota, Sakamoto 2002) K(4,2 * (k —2),1).

» (Cranston 2007) G such that a(G) = 3, or G with one part of
size 4.

» (Shen, He, Zheng, Wang, Zhang 2007)
K(5,3,2 % (k —5),1%3).

» (Enomoto, Ohba, Ota, Sakamoto 2002)
K(m,2x(k—s—1),1xs) for m<2s—1.



Machinery (Old)

The following ideas are used heavily in the previous results:

1. (Hall 1935) If G = (A, B) is a bipartite graph such that

IN(S)| > |S| for all S C A, then there is a matching that saturates
A.



Machinery (New)

2. (Kierstead 2000) Let G be given with list assignment L. Let
X be a maximal set of vertices so that

Ju

veX

LX) = < IX]

Then if X is £|x-choosable, then G is L£-choosable.

3. (Kierstead 2000, Reed, Sudakov 2001) If G is £-choosable
for all list assignments such that |L,| = k and |Pz| < |V/(G)], then
xi1(G) < k.



Where To Go From Here

Chappell’s result suggests that the conjecture of Albertson, et. al.
is true.

Ambiguous Philosophical Thought: Most results concerning
Ohba’s Conjecture rely on heavy case analysis. Can it be avoided?



Example Of What I'd Like To See More Of

Lemma. K(4,3,1,1) is 4-choosable.

Proof. From the machinery mentioned earlier, it suffices to
consider when the palette has at most 8 colors. If that is the case,
then there is a set C of at least 4 colors such that for each color
c € C, there are at least two vertices in the 4-set that has c in
their list.

Case to Always Exclude: If there is a color that is shared by all
the vertices of the 4-set or the 3-set, then use that color and you're
in a much easier situation.



Example Of What I'd Like To See More Of (Continued)

Case to Exclude: If both singleton vertices have the same list of
colors, and that list is also the same as some vertex in the 3-set,
then we can color everything.

Now, take a color ¢ € C, and WLOG there are two vertices, v; and
Vo, in the 3-set that have c in their list. Since we've excluded the
singleton lists being equal and equal to a vertex in the 3-set, there
is a choice of colors to color the singletons so that the remaining
two vertices in the 4-set and the 3-set still have two valid colors
remaining. So - what's left if K(3,2), which we know is
2-choosable.



Finally . . .

Thank you for listening!



