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Game-theoretic probability

Glenn Shafer, Rutgers University

Mathematics: Game theory in place of measure theory

Interpretation: Validity for probabilities or other prices means only that a
speculator will not multiply the capital he risks by a large factor.

Applications:

• Parsimonious explanation of
√

dt, CAPM, & lead-lag effects.

• Defensive forecasting.

• Betting interpretation of Dempster-Shafer.
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Heroes of game-theoretic probability

Blaise Pascal

(1623–1662)

Probability is about
betting.

Antoine Cournot

(1801–1877)

Events of small
probability do not

happen.

Jean Ville

(1910–1988)

Pascal + Cournot:

If the probabilities are
right, you don’t get

rich.
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Antoine Cournot

(1801–1877)

“A physically impossible event is

one whose probability is infinitely

small. This remark alone gives

substance—an objective and

phenomenological value—to the

mathematical theory of probability.”

(1843)

This is more basic than frequentism.
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Émile Borel

1871–1956

Inventor of measure
theory.

Minister of the French
navy in 1925.

Borel was emphatic: the principle

that an event with very small proba-

bility will not happen is the only law

of chance.

• Impossibility on the human

scale: p < 10−6.

• Impossibility on the terrestrial

scale: p < 10−15.

• Impossibility on the cosmic

scale: p < 10−50.
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Andrei Kolmogorov

1903–1987

Hailed as the Soviet Euler,
Kolmogorov was credited
with establishing measure
theory as the mathematical
foundation for probability.

In his celebrated 1933 book, Kol-

mogorov wrote:

When P(A) very small, we

can be practically certain

that the event A will not hap-

pen on a single trial of the

conditions that define it.
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Jean Ville,

1910–1988, on

entering the École

Normale Supérieure.

In 1939, Ville showed that the laws of

probability can be derived from this

principle:

You will not multiply the cap-

ital you risk by a large factor.

Ville showed that this principle is

equivalent to the principle that

events of small probability will not

happen.

We call both principles Cournot’s

principle.
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Suppose you gamble without risking more than your initial

capital.

Your resulting wealth is a nonnegative random variable X with

expected value E(X) equal to your initial capital.

Markov’s inequality says

P

(
X ≥ E(X)

ε

)
≤ ε.

You have probability ε or less of multiplying your initial capital

by 1/ε or more.

Ville proved what is now called Doob’s inequality, which

generalizes Markov’s inequality to a sequence of bets.
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Volodya Vovk atop

the World Trade

Center in 1998.

• Born 1960.

• Student of Kolmogorov.

• Born in Ukraine, educated in

Moscow, teaches in London.

• Volodya is a nickname for the

Ukrainian Volodimir and the

Russian Vladimir.
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The Ville/Vovk perfect-information protocol for probability

K0 = 1.

FOR n = 1,2, . . . , N :

Forecaster announces prices for various payoffs.

Skeptic decides which payoffs to buy.

Reality determines the payoffs.

Kn := Kn−1 + Skeptic’s net gain or loss.

Ville showed that any test of Forecaster can be expressed as a

betting strategy for Skeptic.

Vovk, Takemura, and I showed that Forecaster can beat

Skeptic.
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Ville/Vovk game-theoretic testing

In Ville’s theory, Forecaster is a known probability distribution

for Reality’s move. It always gives conditional probabilities for

Reality’s next move given her past moves.

In Vovk’s generalization, (1) Forecaster does not necessarily

use a known probability distribution, and (2) he may give less

than a probability distribution for Reality’s next move. For both

reasons, we get upper and lower probabilities instead of

probabilities.
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Ville’s strong law of large numbers.

(Special case where probability is always 1/2.)

K0 = 1.

FOR n = 1,2, . . . :

Skeptic announces sn ∈ R.

Reality announces yn ∈ {0,1}.
Kn := Kn−1 + sn(yn − 1

2).

Skeptic wins if

(1) Kn is never negative and

(2) either limn→∞ 1
n

∑n
i=1 yi = 1

2 or limn→∞Kn = ∞.

Theorem Skeptic has a winning strategy.
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Ville’s strategy

K0 = 1.
FOR n = 1,2, . . . :

Skeptic announces sn ∈ R.
Reality announces yn ∈ {0,1}.
Kn := Kn−1 + sn(yn − 1

2
).

Ville suggested the strategy

sn(y1, . . . , yn−1 =
4

n + 1
Kn−1

(
rn−1 − n− 1

2

)
, where rn−1 :=

n−1∑

i=1

yi.

It produces the capital

Kn = 2nrn!(n− rn)!

(n + 1)!
.

From the assumption that this remains bounded by some constant C, you
can easily derive the strong law of large numbers using Stirling’s formula.
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Vovk’s weak law of large numbers

K0 := 1.

FOR n = 1, . . . , N :

Skeptic announces sn ∈ R.

Reality announces yn ∈ {0,1}.
Kn := Kn−1 + sn

(
yn − 1

2

)
.

Winning: Skeptic wins if Kn is never negative and either

KN ≥ C or | 1N
∑N

n=1 yn − 1
2| < ε.

Theorem. Skeptic has a winning strategy if N ≥ C/4ε2.
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Ville’s more general game.
Ville started with a probability distribution for P for y1, y2, . . . .
The conditional probability for yn = 1 given y1, . . . , yn−1 is not
necessarily 1/2.

K0 := 1.

FOR n = 1,2, . . . :

Skeptic announces sn ∈ R.

Reality announces yn ∈ {0,1}.
Kn := Kn−1 + sn

(
yn − P(yn = 1|y1, . . . , yn−1)

)
.

Skeptic wins if

(1) Kn is never negative and

(2) either limn→∞ 1
n

∑n
i=1

(
yi − P(yi = 1|y1, . . . , yi−1)

)
= 0

or limn→∞Kn = ∞.

Theorem Skeptic has a winning strategy.
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Vovk’s generalization: Replace P with a forecaster.
K0 := 1.

FOR n = 1,2, . . . :

Forecaster announces pn ∈ [0,1].

Skeptic announces sn ∈ R.

Reality announces yn ∈ {0,1}.
Kn := Kn−1 + sn(yn − pn).

Skeptic wins if

(1) Kn is never negative and

(2) either limn→∞ 1
n

∑n
i=1 (yi − pi) = 0

or limn→∞Kn = ∞.

Theorem Skeptic has a winning strategy.
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Vovk’s weak law of large numbers

K0 := 1.

FOR n = 1, . . . , N :

Forecaster announces pn ∈ [0,1].

Skeptic announces sn ∈ R.

Reality announces yn ∈ {0,1}.
Kn := Kn−1 + sn (yn − pn).

Winning: Skeptic wins if Kn is never negative and either

KN ≥ C or
∣∣∣ 1N

∑N
n=1(yn − pn)

∣∣∣ < ε.

Theorem. Skeptic has a winning strategy if N ≥ C/4ε2.

17



Put it in terms of upper probability

K0 := 1.

FOR n = 1, . . . , N :

Forecaster announces pn ∈ [0,1].

Skeptic announces sn ∈ R.

Reality announces yn ∈ {0,1}.
Kn := Kn−1 + sn (yn − pn).

Theorem. P
{

1
N |

∑N
n=1(yn − pn)| ≥ ε

}
≤ 1

4Nε2
.
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Definition of upper price and upper probability

K0 := α.
FOR n = 1, . . . , N :

Forecaster announces pn ∈ [0,1].
Skeptic announces sn ∈ R.
Reality announces yn ∈ {0,1}.
Kn := Kn−1 + sn (yn − pn).

For any real-valued function X on ([0,1]× {0,1})N ,

EX := inf{α | Skeptic has a strategy guaranteeing KN ≥ X(p1, y1, . . . , pN , yN)}

For any subset A ⊆ ([0,1]× {0,1})N ,

PA := inf{α | Skeptic has a strategy guaranteeing KN ≥ 1 if A happens
and KN ≥ 0 otherwise}.

EX = −E(−X) PA = 1− PA
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Defensive forecasting

Under repetition, good probability forecasting is possible.

• We call it defensive because it defends against a

quasi-universal test.

• Your probability forecasts will pass this test even if reality

plays against you.
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Why Phil Dawid thought good probability prediction is impossible. . .

FOR n = 1,2, . . .
Forecaster announces pn ∈ [0,1].
Skeptic announces continuous sn ∈ R.
Reality announces yn ∈ {0,1}.
Skeptic’s profit := sn(yn − pn).

Reality can make Forecaster uncalibrated by setting

yn :=

{
1 if pn < 0.5

0 if pn ≥ 0.5,

Skeptic can then make steady money with

sn :=

{
1 if p < 0.5

−1 if p ≥ 0.5,

But if Skeptic is forced to approximate sn by a continuous function of pn,
then the continuous function will be zero close to p = 0.5, and Forecaster
can set pn equal to this point.
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Skeptic adopts a continuous strategy S.
FOR n = 1,2, . . .

Reality announces xn ∈ X.
Forecaster announces pn ∈ [0,1].
Skeptic makes the move sn specified by S.
Reality announces yn ∈ {0,1}.
Skeptic’s profit := sn(yn − pn).

Theorem Forecaster can guarantee that Skeptic never makes money.

We actually prove a stronger theorem. Instead of making Skeptic announce
his entire strategy in advance, only make him reveal his strategy for each
round in advance of Forecaster’s move.

FOR n = 1,2, . . .
Reality announces xn ∈ X.
Skeptic announces continuous Sn : [0,1] → R.
Forecaster announces pn ∈ [0,1].
Reality announces yn ∈ {0,1}.
Skeptic’s profit := Sn(pn)(yn − pn).

Theorem. Forecaster can guarantee that Skeptic never makes money.
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FOR n = 1,2, . . .
Reality announces xn ∈ X.
Skeptic announces continuous Sn : [0,1] → R.
Forecaster announces pn ∈ [0,1].
Reality announces yn ∈ {0,1}.
Skeptic’s profit := Sn(pn)(yn − pn).

Theorem Forecaster can guarantee that Skeptic never makes money.

Proof:

• If Sn(p) > 0 for all p, take pn := 1.

• If Sn(p) < 0 for all p, take pn := 0.

• Otherwise, choose pn so that Sn(pn) = 0.
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TWO APPROACHES TO FORECASTING

FOR n = 1,2, . . .
Forecaster announces pn ∈ [0,1].
Skeptic announces sn ∈ R.
Reality announces yn ∈ {0,1}.

1. Start with strategies for Forecaster. Improve by averaging (Bayes,
prediction with expert advice).

2. Start with strategies for Skeptic. Improve by averaging (defensive
forecasting).
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We can always give probabilities with good calibration and

resolution.

FOR n = 1,2, . . .

Forecaster announces pn ∈ [0,1].

Reality announces yn ∈ {0,1}.

There exists a strategy for Forecaster that gives pn with good

calibration and resolution.
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FOR n = 1,2, . . .

Reality announces xn ∈ X.

Forecaster announces pn ∈ [0,1].

Reality announces yn ∈ {0,1}.

1. Fix p∗ ∈ [0,1]. Look at n for which pn ≈ p∗. If the frequency

of yn = 1 always approximates p∗, Forecaster is properly

calibrated.

2. Fix x∗ ∈ X and p∗ ∈ [0,1]. Look at n for which xn ≈ x∗ and

pn ≈ p∗. If the frequency of yn = 1 always approximates p∗,
Forecaster is properly calibrated and has good resolution.
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Fundamental idea: Average strategies for Skeptic for a grid of

values of p∗. (The p∗-strategy makes money if calibration fails

for pn close to p∗.) The derived strategy for Forecaster

guarantees good calibration everywhere.

Example of a resulting strategy for Skeptic:

Sn(p) :=
n−1∑

i=1

e−C(p−pi)
2
(yi − pi)

Any kernel K(p, pi) can be used in place of e−C(p−pi)
2
.
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Skeptic’s strategy:

Sn(p) :=
n−1∑

i=1

e−C(p−pi)
2
(yi − pi)

Forecaster’s strategy: Choose pn so that

n−1∑

i=1

e−C(pn−pi)
2
(yi − pi) = 0.

The main contribution to the sum comes from i for which pi is

close to pn. So Forecaster chooses pn in the region where the

yi − pi average close to zero.

On each round, choose as pn the probability value where

calibration is the best so far.
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The
√

dt effect:

• The average change over one day is about 22% of the

average change over one month. (
√

1/20 ≈ 0.22)

• The average change over one day is about 6% of the

average change over one year. (
√

1/250 ≈ 0.06)

• The average change over one year is about 32% of the

average change over ten years. (
√

1/10 ≈ 0.32)
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Why does the
√

dt effect happen?

Because otherwise a speculator could multiply the capital he

risks by a large factor.

• If prices are more jagged than
√

dt (daily changes tend to ex-

ceed 6% of annual changes), then a simple contrarian strat-

egy can make a lot of money.

• If prices are less jagged than
√

dt (daily changes tend to be

less than 6% of annual changes), then a simple momentum

strategy can make a lot of money.
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• More jagged than
√

dt means
∑

n |dSn|2 is large relative to

maxn |Sn − S0|.

• Less jagged than
√

dt means
∑

n |dSn|2 is small relative to

maxn |Sn − S0|.
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• Less jagged than
√

dt means
∑

n |dSn|2 is small relative to

maxn |Sn − S0|.

• If we can count on
∑

n |dSn|2 ≤ σ2
max and maxn |Sn − S0| ≥ D,

then a simple momentum strategy can turn $1 into

$D2/σ2
max or more for sure.

• To wit, invest

2
1

σ2
max

Sn−1

in the security on round n.
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CLASSICAL CAPM

E(s̃) = f + (E(m̃)− f)
Cov(s̃, m̃)

Var(m̃)
.

• s̃ is the random variable whose realization is the simple

return s for the stock.

• m̃ is the random variable whose realization is the simple

return m for the market index.

• f is risk-free rate.
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The game-theoretic CAPM is an analogous relation between

empirical (ex post) quantities:

µs :=
1

N

N∑

n=1

sn µm :=
1

N

N∑

n=1

mn

σ2
m :=

1

N

N∑

n=1

m2
n σsm :=

1

N

N∑

n=1

snmn

βs := σsm/σ2
m
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GAME-THEORETIC CAPM

µs ≈ (µm − σ2
m) + σ2

mβs, (1)

If we write µf for µm − σ2
m, then the game-theoretic CAPM can

be written in the form

µs ≈ µf + (µm − µf)βs.
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Aleatory (objective) vs. epistemic (subjective)

From a 1970s perspective:

• Aleatory probability is the irreducible uncertainty that remains when
knowledge is complete.

• Epistemic probability arises when knowledge is incomplete.

New game-theoretic perspective:

• Under a repetitive structure you can make make good probability
forecasts relative to whatever state of knowledge you have.

• If there is no repetitive structure, your task is to combine evidence
rather than to make probability forecasts.
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Cournotian understanding of Dempster-Shafer

• Fundamental idea: transferring belief

• Conditioning

• Independence

• Dempster’s rule
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Fundamental idea: transferring belief

• Variable ω with set of possible values Ω.

• Random variable X with set of possible values X .

• We learn a mapping Γ : X → 2Ω with this meaning:

If X = x, then ω ∈ Γ(x).

• For A ⊆ Ω, our belief that ω ∈ A is now

B(A) = P{x|Γ(x) ⊆ A}.

Cournotian judgement of independence: Learning the relationship between
X and ω does not affect our inability to beat the probabilities for X.
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Example: The sometimes reliable witness

• Joe is reliable with probability 30%. When he is reliable, what he says is
true. Otherwise, it may or may not be true.

X = {reliable,not reliable} P(reliable) = 0.3 P(not reliable) = 0.7

• Did Glenn pay his dues for coffee? Ω = {paid,not paid}

• Joe says “Glenn paid.”

Γ(reliable) = {paid} Γ(not reliable) = {paid,not paid}

• New beliefs:

B(paid) = 0.3 B(not paid) = 0

Cournotian judgement of independence: Hearing what Joe said does not
affect our inability to beat the probabilities concerning his reliability.
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Art Dempster (born 1929) with his Meng & Shafer hatbox.

Retirement dinner at Harvard, May 2005.

See http://www.stat.purdue.edu/ chuanhai/projects/DS/ for Art’s D-S papers.
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