Combinatorial interpretations of binomial coefficient analogues related to Lucas sequences

by
Bruce E. Sagan
Department of Mathematics, Michigan State University
East Lansing, MI 48824-1027, USA, sagan@math.msu.edu
and
Carla D. Savage
Department of Computer Science, North Carolina State University Raleigh, NC 27695-8206, USA, savage@cayley.csc.ncsu.edu

Let s and t be variables. Define polynomials $\{n\}$ in s, t by $\{0\}=0$, $\{1\}=1$, and $\{n\}=s\{n-1\}+t\{n-2\}$ for $n \geq 2$. If s, t are integers then the corresponding sequence of integers is called a Lucas sequence. Define an analogue of the binomial coefficients by

$$
\left\{\begin{array}{c}
n \\
k
\end{array}\right\}=\frac{\{n\}!}{\{k\}!\{n-k\}!}
$$

where $\{n\}!=\{1\}\{2\} \cdots\{n\}$. It is easy to see that $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ is a polynomial in s and t. We give two combinatorial interpretations for this polynomial in terms of statistics on integer partitions inside a $k \times(n-k)$ rectangle. When $s=t=1$ we obtain combinatorial interpretations of the fibonomial coefficients which are simpler than any that have previously appeared in the literature.

