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Aesthetics

Throughout this talk, we will refer to many sets of integers, in all
kinds of places. We will use a shorthand notation. Therefore, for
example, instead of

f{1,4}(n, {2, 9})
we will write

f1�4(n, 2 � 9)

and instead of

f{{1,2},{2,4}}(n, {{1, 3, 5}, {2, 4}})

we will write
f{1�2 , 2�4}(n, {1 � 3 � 5 , 2 � 4}).



Background - Coding Theory

We are interested in building words over the alphabet {x , y} in a
special way. For an integer m, let

Am = {x iyx j | i + j + 1 ≤ m}.

(Recall that x i is shorthand - for example, x4 = xxxx .)

Definition. A ⊆ Am is a code if any word created from the
concatenation of elements of A can be decomposed uniquely.
Algebraically speaking, A is a code if the free monoid A⋆ generated
by A exhibits unique factorization.



Examples

For any m, the set

Dm = {x iyxm−i−1 | 0 ≤ i < m}

is a code.

However, the set {xy , y , yx} is not a code, for

yxy = y · xy = yx · y .



The Triangle Conjecture

In 1981, D. Perrin and M. P. Schützenberger gave the following
conjecture, now called the Triangle Conjecture:

Conjecture. If A ⊆ Am is a code, then |A| ≤ m.

Why Triangle Conjecture? Viewed graphically, the elements of Am

form a triangle:



A Counterexample

The Triangle Conjecture did not last long - less than two years after
the conjecture was published, P. Shor provided a counterexample:

y x3y x8y x11y
yx x3yx2 x8yx2 x11yx
yx7 x3yx4 x8yx4 x11yx2

yx13 x3yx6 x8yx6

yx14



Proof

Suppose a word of length 2 could be decomposed in two unique
ways:

x iyx j1 · x i2yx j = x iyx j3 · x i4yx j

We must then have j1 + i2 = j3 + i4, or i2 − i4 = j3 − j1.

i2 and i4 were prefixes, so i2, i4 ∈ {0, 3, 8, 11}. Additionally, j1 and
j3 were suffixes of words with the same prefix. Therefore,
j1, j3 ∈ {0, 1, 7, 13, 14}, j1, j3 ∈ {0, 2, 4, 6}, or j1, j3 ∈ {0, 1, 2}.



Differences

However, denoting ∆(a1, a2, . . . , an) as the difference set of
{a1, a2, . . . , an}, we have

∆(0, 3, 8, 11) = {3, 5, 8, 11}
∆(0, 1, 7, 13, 14) = {1, 6, 7, 12, 13, 14}

∆(0, 2, 4, 6) = {2, 4, 6}
∆(0, 1, 2) = {1, 2}

Since ∆(0, 3, 8, 11) is disjoint from the other difference sets, our
proof is complete.



Consequences

We can define γ as

γ = sup
m

(

size of largest code in Am

m

)

.

The Triangle Conjecture can then be restated as saying γ ≤ 1.

By counting all words created from Am, G. Hansel showed that
γ ≤ 1 + 1√

2
. Hence, the current state of the Triangle Conjecture is

16

15
≤ γ ≤ 1 +

1√
2
.



Finding Large Sets Avoiding Differences

The key to Shor’s proof was finding large subsets of [15], [12], [7]
and [4] that avoided differences in ∆(0, 3, 8, 11) = {3, 5, 8, 11}.

Definition. Given a set ∆, f∆(n) is defined as the size of the
largest subset X ⊆ [n] such that X avoids differences in ∆. We
can extend this definition to f∆(I ), where I is any set of integers.



Rephrased: Words Avoiding Patterns

We can rephrase the problem as a problem of pattern avoidance in
words by viewing a subset of [n] as a n-length 0/1 string.

Example. Avoiding differences in {2, 3} is the same as avoiding
the pattern {1 • 1, 1 • •1}, where • can be either 0 or 1. The set
{1, 2, 6, 7} avoids the differences in {2, 3}, and the word 1100011
avoids the patterns in {1 • 1, 1 • •1}.



Rephrased: Circulant Graphs

We can also rephrase the problem in terms of circulant graphs,
which are very important structures in graph theory.

Definition. Given a set S of positive integers, the unhooked
circulant graph on n vertices UCS(n) is the graph with vertex set
[n] and

i ∼ j ⇐⇒ |i − j | ∈ S .



An Example

The following is UC1�3(8):

1 2 3 4 5 6 7 8



Another Example

Unhooked circulant graphs are very closely related to standard
circulant graphs, CS(n). Here is C1�3(8):

1

2

3

4

5

6

7

8



The Connection

It is clear that finding f∆(n) is the same as finding the
independence number of UC∆(n).

However: It is well-known that the problem of finding the clique
number in general graphs is NP-complete. In 1998, Codenotti et
al. showed that it is still NP-hard when reduced to considering
only circulant graphs. As far as I know, a similar result has not
been shown explicitly for unhooked circulant graphs, but it is likely
that it is also NP-hard.



A Very Useful Recurrence

We introduce another parameter, S , which denotes elements to
avoid outright. Therefore,

f∆(I ,S) = f∆(I \ S).

Theorem. If 1 ∈ S then

f∆(n,S) = f∆(n − 1,S − 1).

Otherwise,

f∆(n,S) = max{f∆(n − 1,S − 1), 1 + f∆(n − 1,∆ ∪ (S − 1))}.

Where
S − 1 = {s − 1 | s ∈ S}.



Proof

The proof is based on the following:

Claim. If 1 6∈ I , then the map X 7→ X − 1 is a
cardinality-preserving bijection between subsets of I that avoids
differences in ∆ and elements in S and subsets of I − 1 that avoids
differences in ∆ and elements in S − 1.

Furthermore, if 1 ∈ I , then the map X 7→ X − 1 is a bijection
between subsets of I that avoids differences in ∆ and elements in
S and subsets of I − 1 that avoids differences in ∆ and elements in
∆ ∪ (S − 1).



Proof - Continued

From the claim, the first part is immediate, for if 1 ∈ S , then

f∆(n,S) = f∆([2 . . . n],S) = f∆([1 . . . n−1],S−1) = f∆(n−1,S−1)

For the second part of the proof, we note that

f∆(n,S) = max{sets that don’t contain 1, sets that do contain 1}.



Using The Recurrence

We can define the ∆-closure of a set S to be the smallest family
S ∋ S that satisfies the following:

X ∈ S, 1 6∈ X ⇒ X − 1 ∈ S

X ∈ S, 1 ∈ X ⇒ X − 1 ∈ S,∆ ∪ (X − 1) ∈ S

The closure contains the other parameters S ′ that are necessary to
compute f∆(n,S).
We can graphically view the closure.



Investigating The Sequences

As an example, consider the first few terms of the sequence
f3�8�10(n):

1, 2, 3, 3, 3, 3, 4, 5, 5, 5, 5, 5, 6, 6, 6, 7, 7, 8, 8, 8, 9, 9, 9, 9, 10,

11, 11, 11, 12, 12, 12, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 16, 16, 17,

17, 17, 18, 18, 19, 19, 20, 20, 20, 20, 20



Any Pattern?

With clever structuring and coloring of the terms, a pattern
emerges.

Definition. A sequence of integers is (eventually) pseudoperiodic
if the sequence of successive differences is (eventually) periodic.

Theorem (Raff). For any ∆ and S , the sequence {f∆(n,S)} is
eventually pseudoperiodic.



Proof and Limitations

The proof is based on a standard finite-automata argument: the
“program” to compute the sequence {f∆(n,S)} can be expressed
as a finite automata, and it is then immediate that the sequence is
eventually pseudoperiodic.

However, there is little known about specifics:

◮ How long is the period?

◮ How much does the sequence increase over a period?

◮ How long is the offset?



Consequences

Corollary. For every ∆ and S , there is a rational α = α∆,S (or α∆

if S = ∅) such that

lim
n→∞

f∆(n,S)

n
= α.

α will be expressed as a potentially unreduced fraction r/s, where
s is the period length.

Finding α quickly is probably a hopeless problem, but some
special-case results are known, specifically:

Theorem. If ∆ = [i , i + 1, . . . , i + k], then α∆ = i
2i+k

.



Extensions - Part 1

By extending what it means to avoid a difference and avoid
elements, we can go further:

Definition. If D = {ii , . . . , ik} is a set of integers with
i1 < i2 < · · · < ik , then a set X avoids generalized differences in D
if

x ∈ X → {x , x + i1, x + i2, . . . , x + ik} 6⊆ X .

Similarly, if S is a set of integers, then X avoids S generally if
X 6⊆ S .

To achieve a similar recurrence, we need to extend and modify an
operator. If S is a family of sets, then

S − 1 = {S − 1 | S ∈ S}
(S − 1)⋆ = {S − 1 | S ∈ S, 1 6∈ S}



A New Recurrence

We can then extend the definition of f : for example, f{1�2,2�4}(n) is
the size of the largest subset of [n] that avoids three-term
arithmetic sequences of difference 1 and 2.

Theorem. If D and S are families of sets:
If {1} ∈ S, then

fD(n,S) = fD(n − 1, (S − 1)⋆).

If {1} 6∈ S, then

fD(n,S) = max{fD(n − 1, (S − 1)⋆), 1 + fD(n − 1,S − 1)}.



An Application - Experimental Roth’s Theorem

We can use the extended recurrence to find the sizes large sets of
integers that avoid 3-term arithmetic progressions.

max difference to avoid α

1,2 2/3
3 4/8

4,5,6,7,8 4/9
9 4/10
10 4/11
11 8/24
12 56/177

13,14,15,16,17 6/19



How To Be Sure?

The ratios given on the previous page were obtained by analyzing
the sequences and looking for the pseudoperiodic pattern. We can
obviously only compute a finite number of terms - how can we be
certain that we have the actual pattern instead of being part of a
larger pattern?

PROVE IT!



A Cyclic Extension

What if we want to avoid differences modulo n? We can define
f c
∆

(n) to be the size of the largest subset of [n] that avoids
differences modulo n in ∆.

There is a similar recurrence for the cyclic extension, and
everything stated previously about the structure of the sequence
{f c

∆
(n)} holds true for {f∆(n)}, with the following exception:

f∆(n + 1) may be smaller than f∆(n).



Conjectures

Since the Triangle Conjecture has been disproved, I offer the
following asymptotic version:

Conjecture. If I is a set and X is the difference set of I ,

αX ≤ 1

I
.

Another conjecture:

Conjecture. For any ∆ with |∆| ≥ 2, the period of {f∆(n)} is less
than or equal to the sum of the elements of ∆.



Future Work

◮ Find some sort of bounds on the period of {f∆(n)} in terms of
∆.

◮ Find more recurrences - specifically, recurrences that involve
changing ∆.

◮ Investigate connections between f∆(n) and f c
∆

(n).



Thanks!

Thanks for listening to the talk. Voltaire said:

The more you know, the less sure you are.

Contact me to learn more: praff@math.rutgers.edu.

Check my website (and OEIS) shortly for preprints and results:

http://math.rutgers.edu/∼ praff


