Large Sets Avoiding Prescribed Differences

Paul Raff

February 05, 2009

Aesthetics

Throughout this talk, we will refer to many sets of integers, in all kinds of places. We will use a shorthand notation. Therefore, for example, instead of

$$
f_{\{1,4\}}(n,\{2,9\})
$$

we will write

$$
f_{1.4}(n, 2.9)
$$

and instead of

$$
f_{\{\{1,2\},\{2,4\}\}}(n,\{\{1,3,5\},\{2,4\}\})
$$

we will write

$$
f_{\{1.2,2.4\}}(n,\{1.3 .5,2.4\}) .
$$

Background - Coding Theory

We are interested in building words over the alphabet $\{x, y\}$ in a special way. For an integer m, let

$$
\mathcal{A}_{m}=\left\{x^{i} y x^{j} \mid i+j+1 \leq m\right\} .
$$

(Recall that x^{i} is shorthand - for example, $x^{4}=x x x x$.)

Definition. $A \subseteq \mathcal{A}_{m}$ is a code if any word created from the concatenation of elements of A can be decomposed uniquely. Algebraically speaking, A is a code if the free monoid A^{\star} generated by A exhibits unique factorization.

Examples

For any m, the set

$$
D_{m}=\left\{x^{i} y x^{m-i-1} \mid 0 \leq i<m\right\}
$$

is a code.

However, the set $\{x y, y, y x\}$ is not a code, for

$$
y x y=y \cdot x y=y x \cdot y
$$

The Triangle Conjecture

In 1981, D. Perrin and M. P. Schützenberger gave the following conjecture, now called the Triangle Conjecture:

Conjecture. If $A \subseteq \mathcal{A}_{m}$ is a code, then $|A| \leq m$.
Why Triangle Conjecture? Viewed graphically, the elements of \mathcal{A}_{m} form a triangle:

A Counterexample

The Triangle Conjecture did not last long - less than two years after the conjecture was published, P. Shor provided a counterexample:

$$
\begin{array}{llll}
y & x^{3} y & x^{8} y & x^{11} y \\
y x & x^{3} y x^{2} & x^{8} y x^{2} & x^{11} y x \\
y x^{7} & x^{3} y x^{4} & x^{8} y x^{4} & x^{11} y x^{2} \\
y x^{13} & x^{3} y x^{6} & x^{8} y x^{6} & \\
y x^{14} & & &
\end{array}
$$

Proof

Suppose a word of length 2 could be decomposed in two unique ways:

$$
x^{i} y x^{j_{1}} \cdot x^{i_{2}} y x^{j}=x^{i} y x^{j_{3}} \cdot x^{i_{4}} y x^{j}
$$

We must then have $j_{1}+i_{2}=j_{3}+i_{4}$, or $i_{2}-i_{4}=j_{3}-j_{1}$.
i_{2} and i_{4} were prefixes, so $i_{2}, i_{4} \in\{0,3,8,11\}$. Additionally, j_{1} and j_{3} were suffixes of words with the same prefix. Therefore, $j_{1}, j_{3} \in\{0,1,7,13,14\}, j_{1}, j_{3} \in\{0,2,4,6\}$, or $j_{1}, j_{3} \in\{0,1,2\}$.

Differences

However, denoting $\Delta\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ as the difference set of $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, we have

$$
\begin{aligned}
\Delta(0,3,8,11) & =\{3,5,8,11\} \\
\Delta(0,1,7,13,14) & =\{1,6,7,12,13,14\} \\
\Delta(0,2,4,6) & =\{2,4,6\} \\
\Delta(0,1,2) & =\{1,2\}
\end{aligned}
$$

Since $\Delta(0,3,8,11)$ is disjoint from the other difference sets, our proof is complete.

Consequences

We can define γ as

$$
\gamma=\sup _{m}\left(\frac{\text { size of largest code in } \mathcal{A}_{m}}{m}\right) .
$$

The Triangle Conjecture can then be restated as saying $\gamma \leq 1$.
By counting all words created from \mathcal{A}_{m}, G. Hansel showed that $\gamma \leq 1+\frac{1}{\sqrt{2}}$. Hence, the current state of the Triangle Conjecture is

$$
\frac{16}{15} \leq \gamma \leq 1+\frac{1}{\sqrt{2}}
$$

Finding Large Sets Avoiding Differences

The key to Shor's proof was finding large subsets of [15], [12], [7] and [4] that avoided differences in $\Delta(0,3,8,11)=\{3,5,8,11\}$.

Definition. Given a set $\Delta, f_{\Delta}(n)$ is defined as the size of the largest subset $X \subseteq[n]$ such that X avoids differences in Δ. We can extend this definition to $f_{\Delta}(I)$, where I is any set of integers.

Rephrased: Words Avoiding Patterns

We can rephrase the problem as a problem of pattern avoidance in words by viewing a subset of $[n$] as a n-length $0 / 1$ string.

Example. Avoiding differences in $\{2,3\}$ is the same as avoiding the pattern $\{1 \bullet 1,1 \bullet \bullet 1\}$, where \bullet can be either 0 or 1 . The set $\{1,2,6,7\}$ avoids the differences in $\{2,3\}$, and the word 1100011 avoids the patterns in $\{1 \bullet 1,1 \bullet \bullet 1\}$.

Rephrased: Circulant Graphs

We can also rephrase the problem in terms of circulant graphs, which are very important structures in graph theory.

Definition. Given a set S of positive integers, the unhooked circulant graph on n vertices $U C_{S}(n)$ is the graph with vertex set [n] and

$$
i \sim j \Longleftrightarrow|i-j| \in S
$$

An Example

The following is $U C_{1.3}$ (8):

Another Example

Unhooked circulant graphs are very closely related to standard circulant graphs, $C_{S}(n)$. Here is $C_{1.3}(8)$:

The Connection

It is clear that finding $f_{\Delta}(n)$ is the same as finding the independence number of $U C_{\Delta}(n)$.

However: It is well-known that the problem of finding the clique number in general graphs is NP-complete. In 1998, Codenotti et al. showed that it is still NP-hard when reduced to considering only circulant graphs. As far as I know, a similar result has not been shown explicitly for unhooked circulant graphs, but it is likely that it is also NP-hard.

A Very Useful Recurrence

We introduce another parameter, S, which denotes elements to avoid outright. Therefore,

$$
f_{\Delta}(I, S)=f_{\Delta}(I \backslash S)
$$

Theorem. If $1 \in S$ then

$$
f_{\Delta}(n, S)=f_{\Delta}(n-1, S-1)
$$

Otherwise,

$$
f_{\Delta}(n, S)=\max \left\{f_{\Delta}(n-1, S-1), 1+f_{\Delta}(n-1, \Delta \cup(S-1))\right\} .
$$

Where

$$
S-1=\{s-1 \mid s \in S\} .
$$

Proof

The proof is based on the following:
Claim. If $1 \notin I$, then the map $X \mapsto X-1$ is a cardinality-preserving bijection between subsets of I that avoids differences in Δ and elements in S and subsets of $I-1$ that avoids differences in Δ and elements in $S-1$.

Furthermore, if $1 \in I$, then the map $X \mapsto X-1$ is a bijection between subsets of I that avoids differences in Δ and elements in S and subsets of $I-1$ that avoids differences in Δ and elements in $\Delta \cup(S-1)$.

Proof - Continued

From the claim, the first part is immediate, for if $1 \in S$, then
$f_{\Delta}(n, S)=f_{\Delta}([2 \ldots n], S)=f_{\Delta}([1 \ldots n-1], S-1)=f_{\Delta}(n-1, S-1)$
For the second part of the proof, we note that
$f_{\Delta}(n, S)=\max \{$ sets that don't contain 1 , sets that do contain 1$\}$.

Using The Recurrence

We can define the Δ-closure of a set S to be the smallest family $\mathfrak{S} \ni S$ that satisfies the following:

$$
\begin{aligned}
& X \in \mathfrak{S}, 1 \notin X \Rightarrow X-1 \in \mathfrak{S} \\
& X \in \mathfrak{S}, 1 \in X \Rightarrow X-1 \in \mathfrak{S}, \Delta \cup(X-1) \in \mathfrak{S}
\end{aligned}
$$

The closure contains the other parameters S^{\prime} that are necessary to compute $f_{\Delta}(n, S)$.
We can graphically view the closure.

Investigating The Sequences

As an example, consider the first few terms of the sequence $f_{3.8 .10}(n)$:
$1,2,3,3,3,3,4,5,5,5,5,5,6,6,6,7,7,8,8,8,9,9,9,9,10$, $11,11,11,12,12,12,12,12,13,13,14,14,15,15,16,16,16,16,17$, $17,17,18,18,19,19,20,20,20,20,20$

Any Pattern?

With clever structuring and coloring of the terms, a pattern emerges.

Definition. A sequence of integers is (eventually) pseudoperiodic if the sequence of successive differences is (eventually) periodic.

Theorem (Raff). For any Δ and S, the sequence $\left\{f_{\Delta}(n, S)\right\}$ is eventually pseudoperiodic.

Proof and Limitations

The proof is based on a standard finite-automata argument: the "program" to compute the sequence $\left\{f_{\Delta}(n, S)\right\}$ can be expressed as a finite automata, and it is then immediate that the sequence is eventually pseudoperiodic.

However, there is little known about specifics:

- How long is the period?
- How much does the sequence increase over a period?
- How long is the offset?

Consequences

Corollary. For every Δ and S, there is a rational $\alpha=\alpha_{\Delta, S}$ (or α_{Δ} if $S=\emptyset$) such that

$$
\lim _{n \rightarrow \infty} \frac{f_{\Delta}(n, S)}{n}=\alpha
$$

α will be expressed as a potentially unreduced fraction r / s, where s is the period length.

Finding α quickly is probably a hopeless problem, but some special-case results are known, specifically:

Theorem. If $\Delta=[i, i+1, \ldots, i+k]$, then $\alpha_{\Delta}=\frac{i}{2 i+k}$.

Extensions - Part 1

By extending what it means to avoid a difference and avoid elements, we can go further:

Definition. If $D=\left\{i_{i}, \ldots, i_{k}\right\}$ is a set of integers with $i_{1}<i_{2}<\cdots<i_{k}$, then a set X avoids generalized differences in D if

$$
x \in X \rightarrow\left\{x, x+i_{1}, x+i_{2}, \ldots, x+i_{k}\right\} \nsubseteq X
$$

Similarly, if S is a set of integers, then X avoids S generally if $X \nsubseteq S$.

To achieve a similar recurrence, we need to extend and modify an operator. If \mathfrak{S} is a family of sets, then

$$
\begin{aligned}
\mathfrak{S}-1 & =\{S-1 \mid S \in \mathfrak{S}\} \\
(\mathfrak{S}-1)^{\star} & =\{S-1 \mid S \in \mathfrak{S}, 1 \notin S\}
\end{aligned}
$$

A New Recurrence

We can then extend the definition of f : for example, $f_{\{1.2,2.4\}}(n)$ is the size of the largest subset of [n] that avoids three-term arithmetic sequences of difference 1 and 2 .

Theorem. If \mathfrak{D} and \mathfrak{S} are families of sets:
If $\{1\} \in \mathfrak{S}$, then

$$
f_{\mathfrak{D}}(n, \mathfrak{S})=f_{\mathfrak{D}}\left(n-1,(\mathfrak{S}-1)^{\star}\right)
$$

If $\{1\} \notin \mathfrak{S}$, then

$$
f_{\mathfrak{D}}(n, \mathfrak{S})=\max \left\{f_{\mathfrak{D}}\left(n-1,(\mathfrak{S}-1)^{\star}\right), 1+f_{\mathfrak{D}}(n-1, \mathfrak{S}-1)\right\}
$$

An Application - Experimental Roth's Theorem

We can use the extended recurrence to find the sizes large sets of integers that avoid 3 -term arithmetic progressions.

max difference to avoid	α
1,2	$2 / 3$
3	$4 / 8$
$4,5,6,7,8$	$4 / 9$
9	$4 / 10$
10	$4 / 11$
11	$8 / 24$
12	$56 / 177$
$13,14,15,16,17$	$6 / 19$

How To Be Sure?

The ratios given on the previous page were obtained by analyzing the sequences and looking for the pseudoperiodic pattern. We can obviously only compute a finite number of terms - how can we be certain that we have the actual pattern instead of being part of a larger pattern?

PROVE IT!

A Cyclic Extension

What if we want to avoid differences modulo n ? We can define $f_{\Delta}^{c}(n)$ to be the size of the largest subset of $[n]$ that avoids differences modulo n in Δ.

There is a similar recurrence for the cyclic extension, and everything stated previously about the structure of the sequence $\left\{f_{\Delta}^{c}(n)\right\}$ holds true for $\left\{f_{\Delta}(n)\right\}$, with the following exception:
$f_{\Delta}(n+1)$ may be smaller than $f_{\Delta}(n)$.

Conjectures

Since the Triangle Conjecture has been disproved, I offer the following asymptotic version:

Conjecture. If I is a set and X is the difference set of I,

$$
\alpha_{X} \leq \frac{1}{l}
$$

Another conjecture:
Conjecture. For any Δ with $|\Delta| \geq 2$, the period of $\left\{f_{\Delta}(n)\right\}$ is less than or equal to the sum of the elements of Δ.

Future Work

- Find some sort of bounds on the period of $\left\{f_{\Delta}(n)\right\}$ in terms of Δ.
- Find more recurrences - specifically, recurrences that involve changing Δ.
- Investigate connections between $f_{\Delta}(n)$ and $f_{\Delta}^{c}(n)$.

Thanks!

Thanks for listening to the talk. Voltaire said:
The more you know, the less sure you are.
Contact me to learn more: praff@math.rutgers.edu.
Check my website (and OEIS) shortly for preprints and results:
http://math.rutgers.edu/~ praff

