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Notation for continued fractions 
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Morphing Wallis into Vieta 
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Derivation of the Wallis product 
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This last expression is the product of Wallis. The convergence is 
very slow. Multiplying 100,000 factors of the above product using 
Mathematica approximates π  to only 4 decimal places! 
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Derivation of Vieta’s product 
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If we set  θ π= / 2  and simplify we obtain Vieta’s product 
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 Multiplying 35 factors of the above product will 
approximateπ  to 20 decimal places. 
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LORD BROUNCKER’S FORGOTTEN 

SEQUENCE OF CONTINUED 

FRACTIONS FOR PI 
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Table from Wallis’s Arithmetica  
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In the second row Wallis uses a box Π  to stand for  

our π
4

 and the remaining letters B, C, D, etc., to 

stand for fractions beneath them. Continuing down 

the columns we find values for the fractions. For 

example, at the bottom of the third column we find 
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1
4
⋅  the correct value for the third 

fraction in Brouncker’s list. We see in this table that 

Wallis and Brouncker have written the equivalent of 

the value of these fractions in terms of rational 

numbers and pi.  
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Morphing Brounckner into Wallis 
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Another Morphing of Brouncker 
into Wallis 
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Derivation of the results 
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valid for either y an odd integer and x any complex 

number or y any complex number and 0)Re( >x . 
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Euler has shown  
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The Tables of John Wallis and the 
Discovery of his Product for Pi 
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How Wallis did it in modern notation 
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( ) dxx PQ∫ −
1

0

/11/1
  

 

We will use the symbol {Q, P} to denote the 

entry in a cell of the table where Q is the row 

and P is the column. Notice that π/4}2/1,2/1{ =  since 

we know that 4
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 We also notice that the values 

obtained are symmetric. The number  

{ QP, }is the same as the number  { PQ, }.  
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Table 1:  The reciprocal integral  

( ) dxx PQ∫ −
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0
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 for integer P and Q. 
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Table 2: Extending the table  first by integration to  

fractional Q then to fractional P using symmetry. 
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Table 3: Replacing cells with integer P  by 

“growth revealing expressions” 
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Table 4: Replacing cells by improved “growth 

revealing expressions” 
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Table 5: More growth revealing expressions in rows where Q is 

a fraction followed by new growth revealing expressions in 

columns where P is a fraction. 
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Looking at the column where 1/ 2P =  It seems clear from 
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Table 6: Completing the critical row with Q = ½ 
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Final argument 

Call the ratio of two successive entries in the row where  
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What can we say about )(nR as n grows large? To answer 

this question Wallis  examines another ratio in this row 

where 2/1=Q . He looks at the ratio of two entries with 

integer values of P.  He observes  

5
4

}2,2/1{
}1,2/1{
=

, 7
6
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}2,2/1{
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, 9
8
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=

, etc. , 

and it is clear that  

1
}1,2/1{

},2/1{lim =
+∞→ n
n

n . 

Now assume that also 

1)(
}1,2/1{

}2/1,2/1{ limlim ==
+
+

∞→∞→

nR
n

n
nn .  

Returning to (1) and letting n  tend to infinity, Wallis 

now has his product  
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This completes our explanation of how Wallis 

conjectured his product. 
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THE LEMNISCATE CONSTANT AND THE 

MISSING FRACTIONS IN  BROUNCKER’S 

SEQUENCE OF CONTINUED FRACTIONS FOR PI 

 

Lemniscates curve 
2 cos 2r θ= . 

Lemniscate constant is ½ the perimeter 
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New list of items missing from Brouncker’s 
sequence: 

 

( )
2

42222

8
4/1

4
5

4
3

4
12

ππ
Γ

==
+++

+
L


 

( )4

2

2

222

4/1
729

8
5

8
3

8
14

Γ
==

+++
+

ππ
L


 

 

( )
22

42

2

22222

38
4/15

3
5

12
5

12
3

12
16

ππ ⋅
Γ

==
+++

+
L


 

( )4

2

2

2

22

2222

4/1
72

5
79

5
7

16
5

16
3

16
18

Γ
⋅=

⋅
⋅=

+++
+

ππ
L



( ) 2
738

4/195
73
95

20
5

20
3

20
110 222

422

22

222222

ππ ⋅⋅
Γ⋅

=
⋅
⋅

=
+++

+
L


 

( )4

2

22

22

222

22222

4/1
72

95
1179

95
117

24
5

24
3

24
112

Γ
⋅

⋅
⋅

=
⋅

⋅
⋅
⋅

=
+++

+
ππ

L
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These can be expressed in general by: 


+++

+=
xxx

xxCF
2
5

2
3

2
1)0,(

222

 
 

2 2 2 2 2

2 2 2 2

5 9 13 (4 1)(4 2,0)
3 7 11 (4 1)

n LCF n
n π

⋅⋅ ⋅ +
+ =

⋅ ⋅ −
�

�  

 

2 2 2 2

2 2 2 2 2

7 11 15 (4 1) 9(4 ,0)
5 9 13 (4 3)

nCF n
n L

π⋅ ⋅ − ⋅
= ⋅

⋅ ⋅ −
�

�  

for  ,3,2,1=n . 
 

Notice also that 

2)2()12()12( nnCFnCF =+− . 
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Continued Fractions of Brouncker and 

Wallis 

2 1 3 3 5 5 7
2 2 4 4 6 6π
⋅ ⋅ ⋅

= ⋅ ⋅ ⋅⋅ ⋅
⋅ ⋅ ⋅  

Double each factor 

2 2 6 6 10 10 14
4 4 8 8 12 12π
⋅ ⋅ ⋅

= ⋅ ⋅ ⋅⋅ ⋅
⋅ ⋅ ⋅  

Multiply by 2 
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4 2 2 6 6 10 10
4 4 8 8 12 12

AB CD EF

A

BC DE FG
π

⋅ ⋅ ⋅
= ⋅ ⋅ ⋅⋅⋅ =

⋅ ⋅ ⋅
 

2

2

2

2

2
4
6
8

AB
BC
CD
DE

=

=

=

=
 

This leads to 


+++

+==
2
5

2
3

2
114 222

π
A
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