Entropy with Signed and Complex Measures

Michael K.-H. Kiessling

Department of Mathematics Rutgers University – New Brunswick

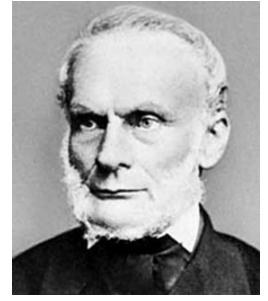
Rutgers Experimental Mathematics Seminar September 20, 2018 Minor revisions: Sept. 22, 2018

CREDIT: All photos from: WIKIPEDIA

	< ⊑	< ≣ > _ ≣	うみで
Michael KH. Kiessling (Rutgers)	Entropy with Signed and Complex Measures		1 / 27

In the beginning

1865: Clausius invents ENTROPY in Thermodynamics



Rudolf Julius Emanuel Clausius

] ▶	□▶∢⊒▶∢≣▶∢≣▶	₹.	$\mathcal{O}\mathcal{Q}\mathcal{O}$
Michael KH. Kiessling (Rutgers)	Entropy with Signed and Complex Measures			2 / 27

Clausius was thinking BIG !

Clausius proposes two Fundamental Laws of the Universe:

- 1) The energy (E) of the world remains constant.
- 2) The entropy (S) of the world tends toward its maximum.

Michael KH. Kiessling (Rutgers)	Entropy with Signed and Complex Measures	3 / 27

Soon after

1872: Boltzmann's ENTROPY formula in Kinetic Gas Theory

Ludwig Eduard Boltzmann

	< ロ > < 回 > < 直 > < 直 >	1	$\mathcal{O}\mathcal{Q}\mathcal{O}$
Michael KH. Kiessling (Rutgers)	Entropy with Signed and Complex Measures		4 / 27

Boltzmann's H functional and ENTROPY for a GAS

$$H_{\rm B}(f) = \int_{\mathbb{R}^3} \int_{\mathbb{R}^3_s} f(s, p, t) \ln f(s, p, t) d^3p \, d^3s$$
$$S_{\rm B}(f) = -Nk_{\rm B}H(f)$$

 $k_{\rm B}$ introduced by Planck \approx 1900

Max Karl Ernst Ludwig Planck

Michael K.-H. Kiessling (Rutgers)

Entropy with Signed and Complex Measures

クへで <mark>5/27</mark>

Ē

Boltzmann's ENTROPY for Thermal Equilibrium

In the 1860s/70s Boltzmann proposes that in THERMAL EQUILIBRIUM:

$$S_{\mathsf{B}}(E, N, V|U) = k_{\mathsf{B}} \ln \int_{V^{\mathsf{N}} \subset \mathbb{R}^{3\mathsf{N}}} \int_{\mathbb{R}^{3\mathsf{N}}_{\mathsf{q}}} \delta(H - E) d^{3\mathsf{N}}p d^{3\mathsf{N}}q$$
$$H(\mathbf{p}, \mathbf{q}) = \sum_{1 \le k \le \mathsf{N}} \frac{|p_k|^2}{2m} + \sum_{1 \le k < l \le \mathsf{N}} U(|q_k - q_l|)$$

with

$$U(r) = \frac{c^2}{r^4} \qquad (or \ such!)$$

the pair interaction energy.

REMARK: for Neon, Argon, Krypton, Xenon, Radon $U_{L-J}(r) = A(\frac{R^{12}}{r^{12}} - \frac{R^6}{r^6})$ [Lennard-Jones (1924)]

Michael K.-H. Kiessling (Rutgers)

Entropy with Signed and Complex Measures

6 / 27

590

E

□ ► < E ► < E ►</p>

The Boltzmann Maximum ENTROPY Principle

Boltzmann shows for the PERFECT GAS ($U \equiv 0$) that:

$$\lim_{N\to\infty}\frac{1}{N}S_{\rm B}(\varepsilon N, N, vN|0) = \max_{f} -k_{\rm B}H_{\rm B}(f)$$

where *f* is constrained by

 $f \ge 0;$ $\int_{v \subset \mathbb{R}^3} \int_{\mathbb{R}^3_s} f(s,p) d^3p \, d^3s = 1;$ $\int_{v \subset \mathbb{R}^3} \int_{\mathbb{R}^3_s} \frac{1}{2m} |p|^2 f(s,v) d^3p \, d^3s = \varepsilon.$

Michael K.-H. Kiessling (Rutgers)

Entropy with Signed and Complex Measures

◆□▶ ◆□▶ ◆ □▶ ◆ □▶

500

Planck's formula for Boltzmann's equilibrium ENTROPY

Max Planck later epitomizes Boltzmann's entropy as:

 $S = k \log W$

Boltzmann's Tomb Stone in Vienna De E De Co

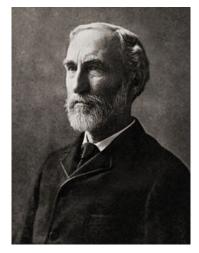
Michael K.-H. Kiessling (Rutgers)

Entropy with Signed and Complex Measures

Also around 1900 ...

Gibbs introduces his ensemble ENTROPY:

$$S_{\rm G}(F) = -k_{\rm B} \int_{\mathbb{R}^{3N}} \int_{\mathbb{R}^{3N}_{\mathbf{q}}} F(\mathbf{q}, \mathbf{p}, t) \ln F(\mathbf{q}, \mathbf{p}, t) d^{3N} p d^{3N} q$$



Josiah Willard Gibbs

Michael KH. Kiessling (Rutgers)	Entropy with Signed and Complex Measures	9 / 27
Michael IX. H. Ressling (Hugers)	Entropy with orginal and complex measures	5, Z,

▲□▶▲圖▶▲圖▶▲圖▶ ▲ 圖▶ — 圖

590

The Gibbs Maximum ENTROPY Principle

Gibbs shows for "reasonable" $U(\neq 0)$ that:

$$\max_{F} S_{F}(F) = \frac{E}{T} + k_{B} \ln \int_{\mathbb{R}^{3N}} \int_{\mathbb{R}^{3N}_{\mathbf{q}}} e^{-\frac{1}{k_{B}T}H(\mathbf{q},\mathbf{p})} d^{3N}p d^{3N}q;$$

here, F is constrained by

 $F \ge 0;$ $\int_{\mathbb{R}^{3N}} \int_{\mathbb{R}^{3N}_{\mathbf{q}}} F(\mathbf{q}, \mathbf{p}) d^{3N} p \, d^{3N} q = 1;$ $\int_{\mathbb{R}^{3N}} \int_{\mathbb{R}^{3N}_{\mathbf{q}}} F(\mathbf{q}, \mathbf{p}) \mathcal{H}(\mathbf{q}, \mathbf{p}) d^{3N} p \, d^{3N} q = E.$

Michael K.-H. Kiessling (Rutgers)

Entropy with Signed and Complex Measures

10 / 27

590

< ロ > < 団 > < 巨 > < 巨 >

Probability, Quantum Physics, and The Information Age ...

von Neumann's quantum ENTROPY:

$$S_{\rm vN}(
ho) = -k_{\rm B} Tr(
ho \ln
ho)$$

Shannon's Information ENTROPY:

$$H_{\rm S}(\{p\}) = -\sum_k p_k \log_2 p_k$$

Kullback-Leibler's DIVERGENCE (aka RELATIVE ENTROPY):

$$D_{ ext{KL}}(P \| Q) = \int_X \ln rac{dP}{dQ} dP$$

N.B.: In the following, *P* is a probability measure, while *Q* may be just a measure.

Michael KH. Kiessling (Rutgers)	Entropy with Signed and Complex Measures	11/27
	Entropy man eighed and complex meddered	

▲□ → ▲圖 → ▲ 国 → ▲ 国 →

Ξ.

Onsager's Vortex Ensembles and Differential Geometry

THM: Let $X = \mathbb{R}^{2N}$ and $dQ = e^{-H/N} \prod_{k=1}^{N} K(q_k) dq_k$, with K(q) a Schwartz function, and

$$\mathcal{H}(\mathbf{q}) = \sum_{1 \leq k < l \leq N} \ln |q_k - q_l|.$$

Then

$$\lim_{N\to\infty}\frac{1}{N}\min_{P}\int_{X}\ln\frac{dP}{dQ}dP = \min_{f}\left[H_{B}(f) + \frac{1}{2}\iint_{\mathbb{R}^{2}\times\mathbb{R}^{2}}f(s)f(s')\ln|s-s'|d^{2}s\,d^{2}s'\right]$$

where f is a probability density. Moreover, defining

$$-\int_{\mathbb{R}^2} f(s') \ln |s-s'| d^2 s' =: 2u(s) + C$$

then C can be chosen so that the maximizing f (viz. u) satisfies the PRESCRIBED GAUSS CURVATURE EQUATION

$$-\Delta u(s) = K(s)e^{2u(s)}$$

Michael K.-H. Kiessling (Rutgers)

Entropy with Signed and Complex Measures

クへで <mark>12/27</mark>

▲ □ ▶ ▲ 臣 ▶ ▲ 臣 ♪

Onsager's Vortex Ensembles and Differential Geometry

A question by Alice Chang (ca. 2000):

"Can you do this also for sign-changing Gauss curvatures?"

Michael K.-H. Kiessling (Rutgers) Entropy with Signed and Complex Measures

っへで 13/27

∃ ▶

Some Random Polynomials

Let
$$z \in \mathbb{C}$$
, let $\sigma^2 > 0$ be a variance, $N \in \mathbb{N}$, and define the integrals

$$E_N(z;\sigma) = \begin{cases} \frac{1}{\sigma} \int_{\mathbb{R}} (x^2 + z^2) \frac{e^{-\frac{1}{2\sigma^2}x^2}}{\sqrt{2\pi}} dx \dots & \text{if } N = 1, \\ \frac{1}{\sigma} \int_{\mathbb{R}^N} \prod_{1 \le k < l \le N} e^{-\frac{1}{2N}(1 - \sigma^{-2})(x_k - x_l)^2} \prod_{1 \le n \le N} (x_n^2 + z^2) \frac{e^{-\frac{1}{2\sigma^2}x_n^2}}{\sqrt{2\pi}} dx_n & \text{if } N > 1. \end{cases}$$

These are expected values of the polynomials

$$\mathsf{P}_{N}(z) = \prod_{1 \le n \le N} (X_n^2 + z^2)$$

whose 2*N* zeros $\{\pm iX_k\}_{k=1,...,N}$ are generated by *N* identically distributed multi-variate mean-zero normal random variables $\{X_k\}_{k=1}^N$ with co-variance

 $\operatorname{Cov}_N(X_k, X_l) = (1 + \frac{\sigma^2 - 1}{N})\delta_{k,l} + \frac{\sigma^2 - 1}{N}(1 - \delta_{k,l}).$ The $E_N(z; \sigma)$ are polynomials in z^2 , explicitly computable for all N,

$$E_N(z;\sigma) = \sum_{j=0}^N z^{2j} \binom{N}{j} \sum_{k=0}^{N-j} \binom{N-j}{k} \frac{(2k)!}{2^k k!} \left(\frac{\sigma^2 - 1}{N}\right)^k \tag{1}$$

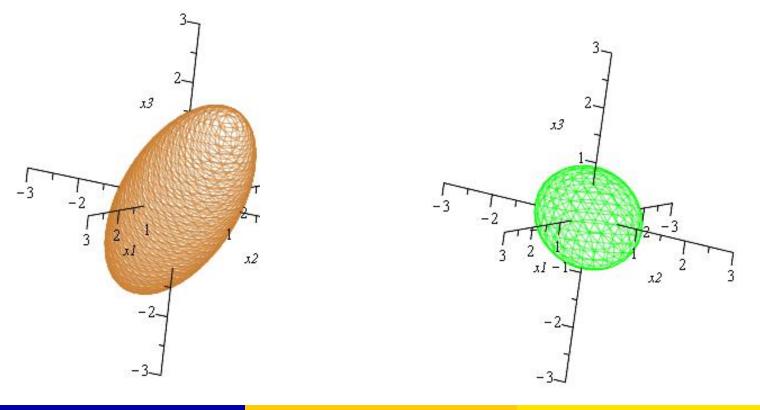
14 / 27

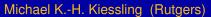
When $\sigma = 1$, then $E_N(z; 1) = (1 + z^2)^N$ for all $z \in \mathbb{C}$ and $N \in \mathbb{N}$.

Michael K.-H. Kiessling (Rutgers) Entropy with Signed and Complex Measures

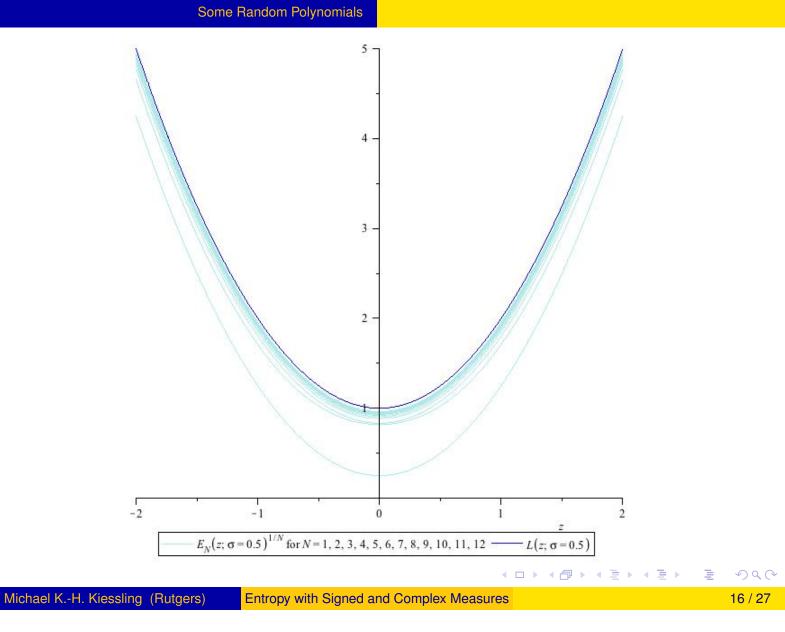
Some Random Polynomials

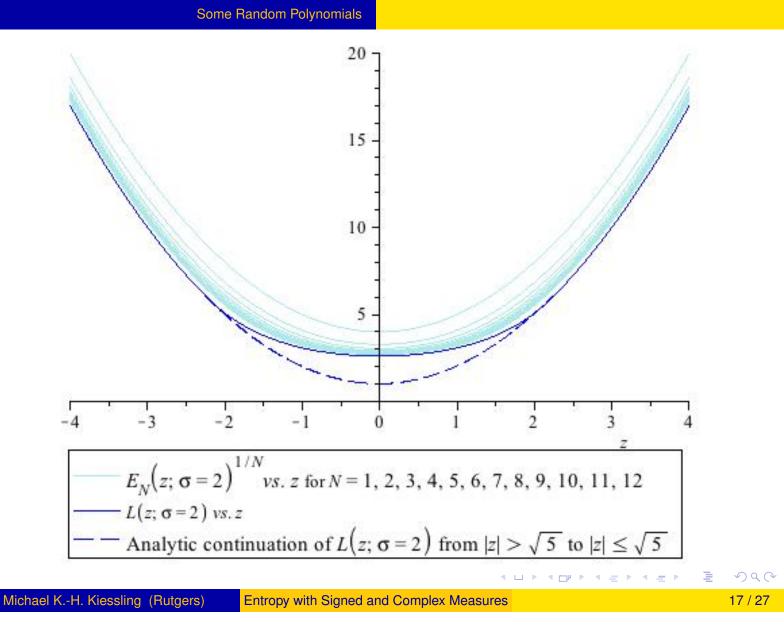
Multivariate Normal Level Surfaces: $\sigma > 1$ (left) and $0 < \sigma < 1$ (right)



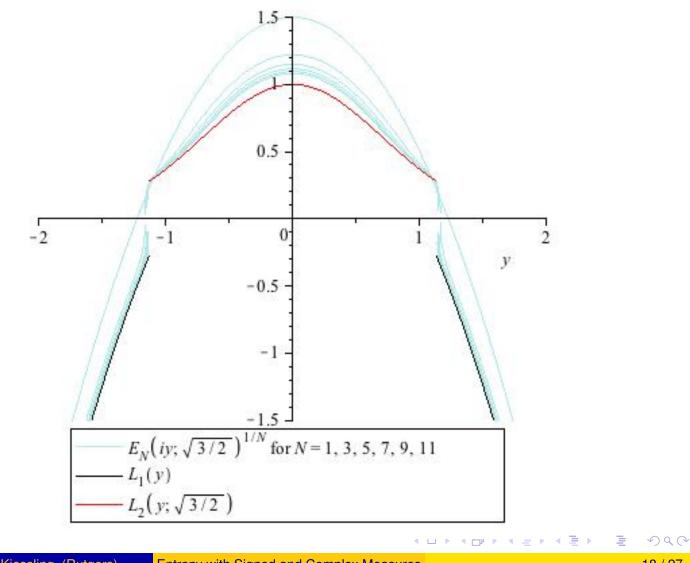


Entropy with Signed and Complex Measures





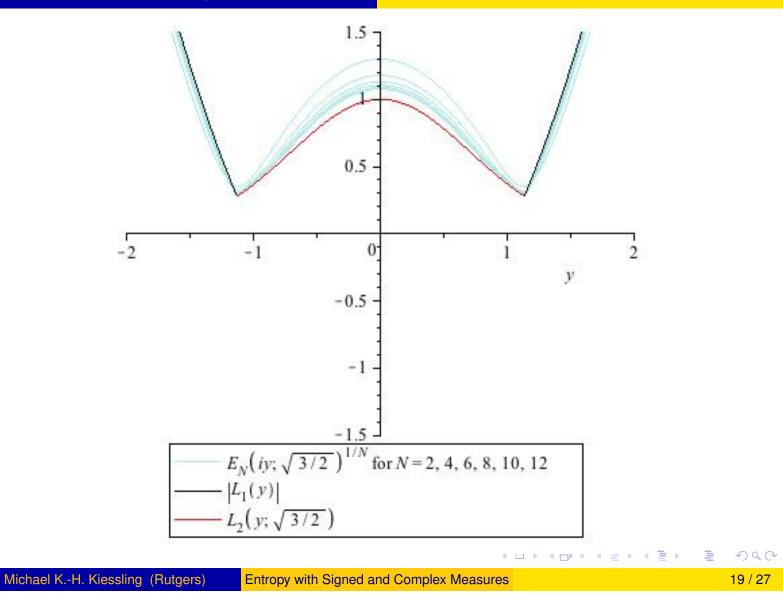
Experimental Mathematics ...



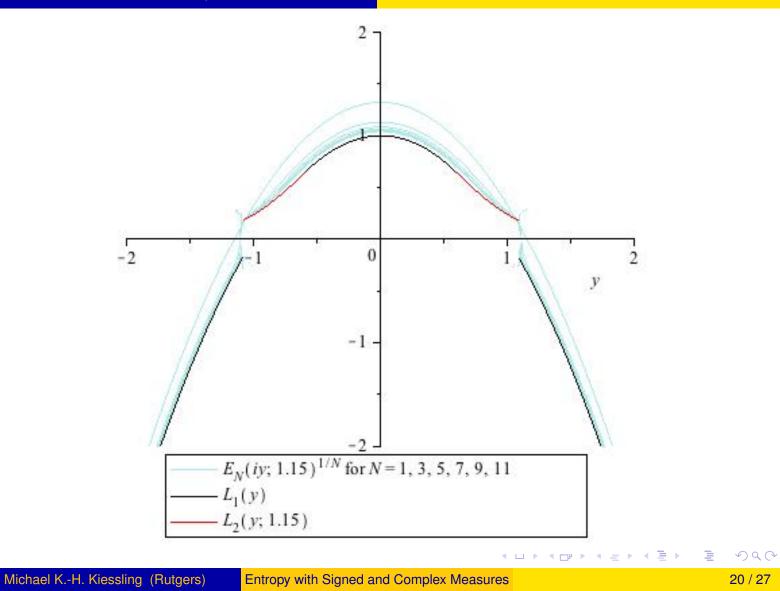
Michael K.-H. Kiessling (Rutgers)

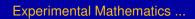
Entropy with Signed and Complex Measures

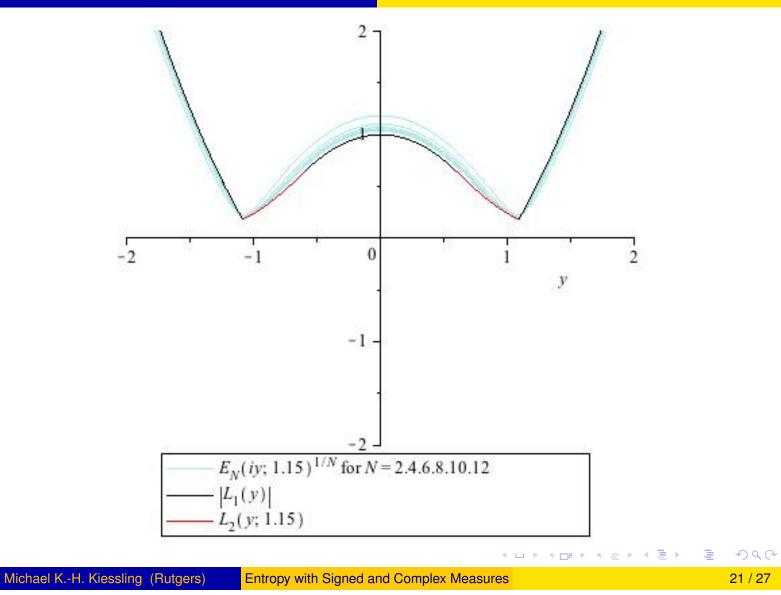
Experimental Mathematics ...

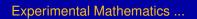


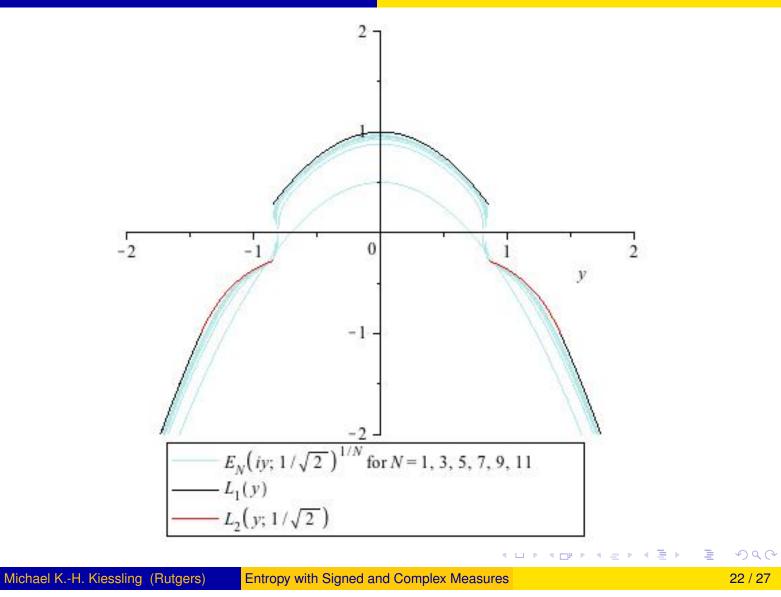
Experimental Mathematics ...

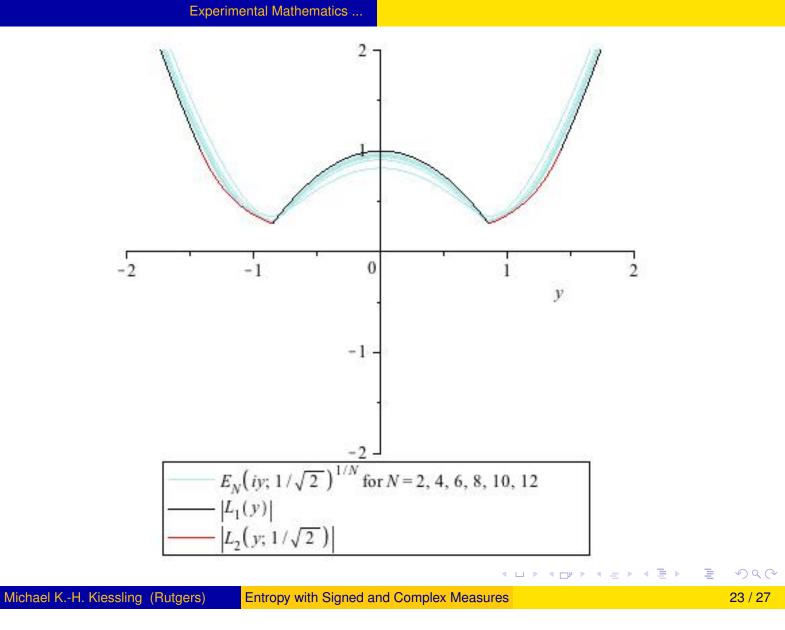


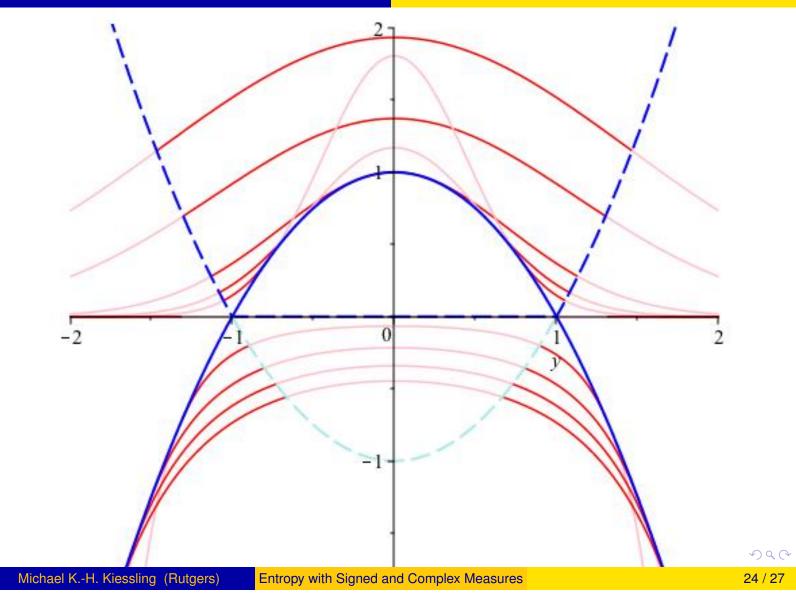




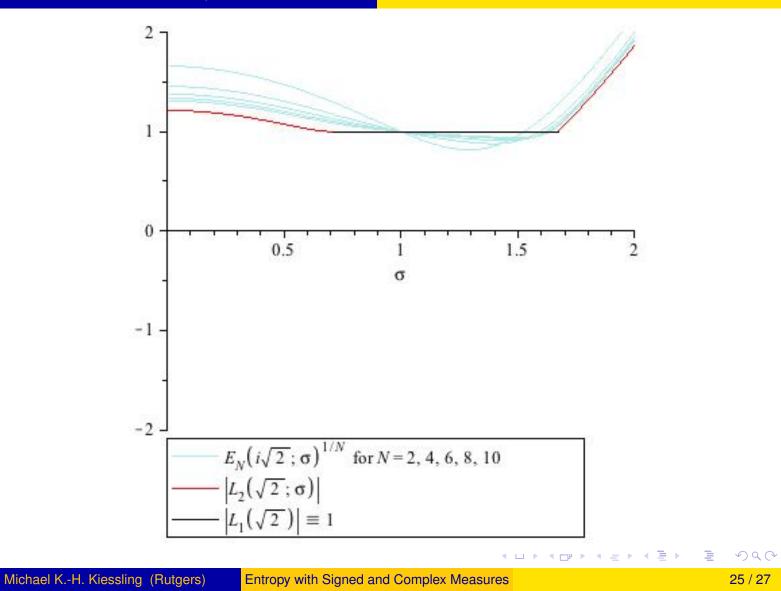




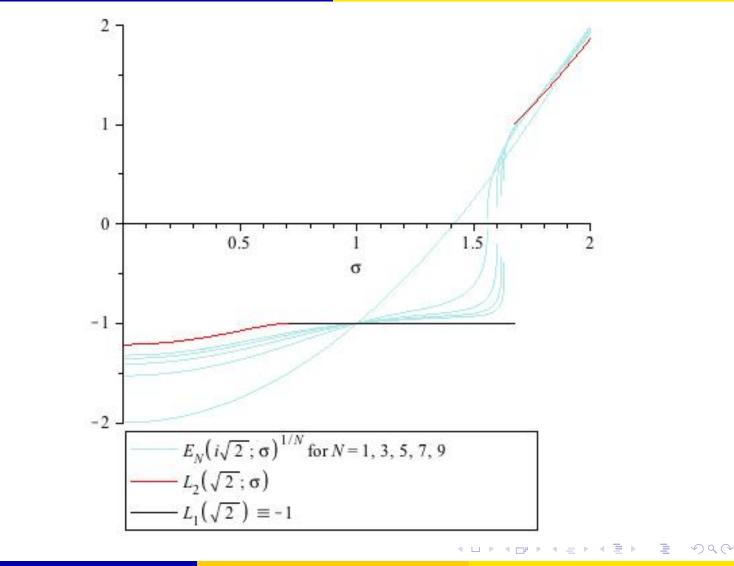




Experimental Mathematics ...



Experimental Mathematics ...



Experimental Mathematics ...

Michael K.-H. Kiessling (Rutgers)

Entropy with Signed and Complex Measures

Experimental Mathematics ...

Further reading:

Heuristic Relative Entropy Principles with Complex Measures: Large-Degree Asymptotics of a Family of Multi-Variate Normal Random Polynomials J. Stat. Phys. **169**:63–106 (2017).

THANK YOU FOR LISTENING!

 Michael K.-H. Kiessling (Rutgers)
 Entropy with Signed and Complex Measures
 27 / 27