Abstract

1. Ramajujan's tau function is given by $\tau(n)=A(n)-B(n)$, where $A(n):=\frac{65}{756} \sigma_{11}(n)+$ $\frac{691}{756} \sigma_{5}(n) ; B(n):=691 \sum_{j=1}^{n-1} \sigma_{5}(j) \sigma_{(}(n-j)$. It suffices therefore to prove $\tau(n) \neq 0$ for prime p, since $\tau(n)$ is multiplicative.
2. $A(p)$ has a prime factor $q>p$.
3. We construct a matrix $\left[a_{i, k}\right]$ modulo q. Then $\tau(p) \neq 0$ is equivalent to the additive group $\left\{\sum_{k=0}^{q-1} k a_{i, k}\right\}_{i=0}^{q-1}$ forms a nontrivial group.
4. We show that $\left\{\sum_{k=0}^{q-1} k a_{i, k}\right\}_{i=0}^{q-1}$ indeed forms an additive group of order q.
5. From \#4 above, Lehmer's Conjecture follows.
