On the minors of the paths matrix in a tree

Pierre Lalonde, LaCIM \&

Collège de Maisonneuve

With the support of NSERC (Canada)

- The Graham-Pollak theorem:
- The Graham-Pollak theorem:
- A tree with n vertices

- The Graham-Pollak theorem:
- A tree with n vertices
- \exists ! (shortest) path between any 2 vertices
- The Graham-Pollak theorem:
- A tree with n vertices
- \exists ! (shortest) path between any 2 vertices
- Distance matrix $D=\left(d_{i j}\right)_{n \times n}$ where $d_{i j}$ is the length of the path from i to j

$$
D=\left(\begin{array}{lllll}
0 & 2 & 1 & 2 & 3 \\
2 & 0 & 1 & 2 & 3 \\
1 & 1 & 0 & 1 & 2 \\
2 & 2 & 1 & 0 & 1 \\
3 & 3 & 2 & 1 & 0
\end{array}\right)
$$

- The Graham-Pollak theorem:
- A tree with n vertices
- \exists ! (shortest) path between any 2 vertices
- Distance matrix $D=\left(d_{i j}\right)_{n \times n}$ where $d_{i j}$ is the length of the path from i to j
- Thm (Graham-Pollak, 71)
- The Graham-Pollak theorem:
- A tree with n vertices
- \exists ! (shortest) path between any 2 vertices
- Distance matrix $D=\left(d_{i j}\right)_{n \times n}$ where $d_{i j}$ is the length of the path from i to j

Thm (Graham-Pollak, 71)

$$
\operatorname{det}(D)=(-1)^{n-1}(n-1) 2^{n-2}
$$

$$
D=\left(\begin{array}{lllll}
0 & 2 & 1 & 2 & 3 \\
2 & 0 & 1 & 2 & 3 \\
1 & 1 & 0 & 1 & 2 \\
2 & 2 & 1 & 0 & 1 \\
3 & 3 & 2 & 1 & 0
\end{array}\right)
$$

$$
\operatorname{det}(D)=(-1)^{4} \times 4 \times 2^{3}=32
$$

- The Graham-Pollak theorem:
- A tree with n vertices
- \exists ! (shortest) path between any 2 vertices
- Distance matrix $D=\left(d_{i j}\right)_{n \times n}$ where $d_{i j}$ is the length of the path from i to j

Thm (Graham-Pollak, 71)

$$
\operatorname{det}(D)=(-1)^{n-1}(n-1) 2^{n-2}
$$

$$
\begin{gathered}
D=\left(\begin{array}{ccccc}
0 & 2 & 1 & 2 & 3 \\
2 & 0 & 1 & 2 & 3 \\
1 & 1 & 0 & 1 & 2 \\
2 & 2 & 1 & 0 & 1 \\
3 & 3 & 2 & 1 & 0
\end{array}\right) \\
\operatorname{det}(D)=(-1)^{4} \times 4 \times 2^{3}=32
\end{gathered}
$$

- (Graham-Lovász, 78): $\operatorname{det}(D-x I)$
- Generalizations:
- Formal distances a, b, \ldots, c on the edges

- Formal distances a, b, \ldots, c on the edges

Formal distance matrix $D=\left(d_{i j}\right)_{n \times n}$, where $\quad D=\left(\begin{array}{ccccc}0 & a+b & a & a+c & a+c+d \\ a+b & 0 & b & b+c & b+c+d \\ a & b & 0 & c & c+d \\ a+c & b+c & c & 0 & d \\ d_{i j} \text { is the sum of the distances from } i \text { to } j\end{array}\right)$

- Generalizations:
- Formal distances a, b, \ldots, c on the edges

- Formal distance matrix $D=\left(d_{i j}\right)_{n \times n}$, where $\quad D=\left(\begin{array}{ccccc}0 & a+b & a & a+c & a+c+d \\ a+b & 0 & b & b+c & b+c+d \\ a & b & 0 & c & c+d \\ a+c & b+c & c & 0 & d \\ d_{i j} \text { is the sum of the distances from } i \text { to } j\end{array}\right)$
- Thm (Bapat-Kirkland-Neumann, 05)

$$
\operatorname{det}(D+x J)=(-1)^{n-1} a b \cdots c(2 x+a+b+\cdots+c) 2^{n-2}
$$

- The setting:
- The setting:
- Asymmmetric weight a, b, \ldots, c on the edges (e in one direction, \bar{e} in the other)

- The setting:
- Asymmmetric weight a, b, \ldots, c on the edges (e in one direction, \bar{e} in the other)
- Forest $\left(V, E^{+} \cup E^{-}\right)$

- The setting:
- Asymmmetric weight a, b, \ldots, c on the edges (e in one direction, \bar{e} in the other)
- Forest $\left(V, E^{+} \cup E^{-}\right)$
- Multiplicative weight (in $\left.\mathbb{Z}\left(E^{+} \cup E^{-}\right)\right)$

- The setting:
- Asymmmetric weight a, b, \ldots, c on the edges (e in one direction, \bar{e} in the other)
- Forest $\left(V, E^{+} \cup E^{-}\right)$
- Multiplicative weight (in $\left.\mathbb{Z}\left(E^{+} \cup E^{-}\right)\right)$
- Paths matrix $P=\left(p_{i j}\right)_{n \times n}$, where $p_{i j}$ is the product of the weights from i to j

$$
P=\left(\begin{array}{ccccc}
1 & a \bar{b} & a & a c & a c d \\
\bar{a} b & 1 & b & b c & b c d \\
\bar{a} & \bar{b} & 1 & c & c d \\
\bar{a} \bar{c} & \bar{b} \bar{c} & \bar{c} & 1 & d \\
\bar{a} \bar{c} \bar{d} & \bar{b} \bar{c} \bar{d} & \bar{c} \bar{d} & \bar{d} & 1
\end{array}\right)
$$

- The setting:
- Asymmmetric weight a, b, \ldots, c on the edges (e in one direction, \bar{e} in the other)
- Forest $\left(V, E^{+} \cup E^{-}\right)$
- Multiplicative weight (in $\left.\mathbb{Z}\left(E^{+} \cup E^{-}\right)\right)$
- Paths matrix $P=\left(p_{i j}\right)_{n \times n}$, where $p_{i j}$ is the product of the weights from i to j

$$
P=\left(\begin{array}{ccccc}
1 & a \bar{b} & a & a c & a c d \\
\bar{a} b & 1 & b & b c & b c d \\
\bar{a} & \bar{b} & 1 & c & c d \\
\bar{a} \bar{c} & \bar{b} \bar{c} & \bar{c} & 1 & d \\
\bar{a} \bar{c} \bar{d} & \bar{b} \bar{c} \bar{d} & \bar{c} \bar{d} & \bar{d} & 1
\end{array}\right)
$$

- Thm (Yan-Yeh, 06)

$$
\begin{aligned}
& \operatorname{det}(P)=(1-a \bar{a})(1-b \bar{b}) \cdots(1-c \bar{c}) \\
& (\text { when } e=\bar{e})
\end{aligned}
$$

- Thm (Yan-Yeh, 06)

$$
\operatorname{det}(P)=(1-a \bar{a})(1-b \bar{b}) \cdots(1-c \bar{c})
$$

- Thm (Yan-Yeh, 06)

$$
\operatorname{det}(P)=(1-a \bar{a})(1-b \bar{b}) \cdots(1-c \bar{c})
$$

- Thm (Yan-Yeh, 06)

$$
\operatorname{det}(P)=(1-a \bar{a})(1-b \bar{b}) \cdots(1-c \bar{c})
$$

$$
\operatorname{det}(P)=\left|\begin{array}{ll}
1 & x \\
\bar{x} & 1
\end{array}\right|=1-x \bar{x}
$$

Thm (Yan-Yeh, 06)
$\operatorname{det}(P)=(1-a \bar{a})(1-b \bar{b}) \cdots(1-c \bar{c})$

$$
\operatorname{det}(P)=\left|\begin{array}{ll}
1 & x \\
\bar{x} & 1
\end{array}\right|=1-x \bar{x}
$$

Thm (Yan-Yeh, 06)

$$
\operatorname{det}(P)=(1-a \bar{a})(1-b \bar{b}) \cdots(1-c \bar{c})
$$

$\operatorname{det}(P)=\left|\begin{array}{ll}1 & x \\ \bar{x} & 1\end{array}\right|=1-x \bar{x}$

\downarrow

$$
P=\left(\begin{array}{ccccc}
1 & a \bar{b} & a & a c & a c d \\
\bar{a} b & 1 & b & b c & b c d \\
\bar{a} & \bar{b} & 1 & c & c d \\
\bar{a} \bar{c} & \bar{b} \bar{c} & \bar{c} & 1 & d \\
\bar{a} \bar{c} \bar{d} & \bar{b} \bar{c} \bar{d} & \bar{c} \bar{d} & \bar{d} & 1
\end{array}\right)
$$

$$
P=\left(\begin{array}{ccccc}
1 & a \bar{b} & a & a c & a c d \\
\bar{a} b & 1 & b & b c & b c d \\
\bar{a} & \bar{b} & 1 & c & c d \\
\bar{a} \bar{c} & \bar{b} \bar{c} & \bar{c} & 1 & d \\
\bar{a} \bar{c} \bar{d} & \bar{b} \bar{c} \bar{d} & \bar{c} \bar{d} & \bar{d} & 1
\end{array}\right)
$$

- More generally, what can we say about the minors of P ?

$$
P=\left(\begin{array}{ccccc}
1 & a \bar{b} & a & a c & a c d \\
\bar{a} b & 1 & b & b c & b c d \\
\bar{a} & \bar{b} & 1 & c & c d \\
\bar{a} \bar{c} & \bar{b} \bar{c} & \bar{c} & 1 & d \\
\bar{a} \bar{c} \bar{d} & \bar{b} \bar{c} \bar{d} & \bar{c} \bar{d} & \bar{d} & 1
\end{array}\right)
$$

- More generally, what can we say about the minors of P ?
- For instance, P is invertible (formal serie). When $a=\bar{a}=b=\ldots=q$,

Bapat, Lal, Sukanta Pati (06) have a formula for P^{-1}

$$
P=\left(\begin{array}{ccccc}
1 & a \bar{b} & a & a c & a c d \\
\bar{a} b & 1 & b & b c & b c d \\
\bar{a} & \bar{b} & 1 & c & c d \\
\bar{a} \bar{c} & \bar{b} \bar{c} & \bar{c} & 1 & d \\
\bar{a} \bar{c} \bar{d} & \bar{b} \bar{c} \bar{d} & \bar{c} \bar{d} & \bar{d} & 1
\end{array}\right)
$$

- More generally, what can we say about the minors of P ?
- For instance, P is invertible (formal serie). When $a=\bar{a}=b=\ldots=q$,

Bapat, Lal, Sukanta Pati (06) have a formula for P^{-1}

$$
P^{-1}=\frac{1}{1-q^{2}}\left(\begin{array}{ccccc}
1 & 0 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 \\
-1 & -1 & 1+2 q^{2} & -1 & 0 \\
0 & 0 & -1 & 1+q^{2} & -1 \\
0 & 0 & 0 & -1 & 1
\end{array}\right)
$$

$$
P=\left(\begin{array}{ccccc}
1 & a \bar{b} & a & a c & a c d \\
\bar{a} b & 1 & b & b c & b c d \\
\bar{a} & \bar{b} & 1 & c & c d \\
\bar{a} \bar{c} & \bar{b} \bar{c} & \bar{c} & 1 & d \\
\bar{a} \bar{c} \bar{d} & \bar{b} \bar{c} \bar{d} & \bar{c} \bar{d} & \bar{d} & 1
\end{array}\right)
$$

$$
P=\left(\begin{array}{ccccc}
1 & a \bar{b} & a & a c & a c d \\
\bar{a} b & 1 & b & b c & b c d \\
\bar{a} & \bar{b} & 1 & c & c d \\
\bar{a} \bar{c} & \bar{b} \bar{c} & \bar{c} & 1 & d \\
\bar{a} \bar{c} \bar{d} & \bar{b} \bar{c} \bar{d} & \bar{c} \bar{d} & \bar{d} & 1
\end{array}\right)
$$

- Notation: let

$$
S=\left\{s_{1}<s_{2}<\cdots<s_{k}\right\} \text { and } T=\left\{t_{1}<t_{2}<\cdots<t_{k}\right\}
$$

be sets of vertices,
then

$$
P(S, T)=\left(p_{s_{i} t_{j}}\right)_{i, j \in[k]}
$$

- For instance:

- For instance:

$$
P=\left(\begin{array}{ccccc}
1 & a \bar{b} & a & a c & a c d \\
\bar{a} b & 1 & b & b c & b c d \\
\bar{a} & \bar{b} & 1 & c & c d \\
\bar{a} \bar{c} & \bar{b} \bar{c} & \bar{c} & 1 & d \\
\bar{a} \bar{c} \bar{d} & \bar{b} \bar{c} \bar{d} & \bar{c} \bar{d} & \bar{d} & 1
\end{array}\right)<
$$

- For instance:

$$
\operatorname{det}(P(\{1,3,5\},\{2,3,4\}))=\left|\begin{array}{ccc}
a \bar{b} & a & a c \\
\bar{b} & 1 & c \\
\bar{b} \bar{c} \bar{d} & \bar{c} \bar{d} & \bar{d}
\end{array}\right|=0
$$

- For instance:

- For instance:

$$
P=\left(\begin{array}{ccccc}
1 & a \bar{b} & a & a c & a c d \\
\bar{a} b & 1 & b & b c & b c d \\
\bar{a} & \bar{b} & 1 & c & c d \\
\bar{a} \bar{c} & \bar{b} \bar{c} & \bar{c} & 1 & d \\
\bar{a} \bar{c} \bar{d} & \bar{b} \bar{c} \bar{d} & \bar{c} \bar{d} & \bar{d} & 1
\end{array}\right)<
$$

- For instance:

$$
\operatorname{det}(P(\{1,2,4\},\{1,3,4\}))=\left|\begin{array}{ccc}
1 & a & a c \\
\bar{a} b & b & b c \\
\bar{a} \bar{c} & \bar{c} & 1
\end{array}\right|=b(1-a \bar{a})(1-c \bar{c})
$$

- For instance:

- For instance:

$$
P=\left(\begin{array}{ccccc}
1 & a \bar{b} & a & a c & a c d \\
\bar{a} b & 1 & b & b c & b c d \\
\bar{a} & \bar{b} & 1 & c & c d \\
\bar{a} \bar{c} & \bar{b} \bar{c} & \bar{c} & 1 & d \\
\bar{a} \bar{c} \bar{d} & \bar{b} \bar{c} \bar{d} & \bar{c} \bar{d} & \bar{d} & 1
\end{array}\right)<
$$

- For instance:

$$
\begin{aligned}
\operatorname{det}(P(\{1,2,4\},\{1,2,4\})) & =\left|\begin{array}{ccc}
1 & a \bar{b} & a c \\
\bar{a} b & 1 & b c \\
\bar{a} \bar{c} & \bar{b} \bar{c} & 1
\end{array}\right| \\
& =1-a \bar{a} b \bar{b}-a \bar{a} c \bar{c}-b \bar{b} c \bar{c}+2 a \bar{a} b \bar{b} c \bar{c}
\end{aligned}
$$

On the minors ... : Interpreting the minors

- Given a forest with 2 sets S, T of vertices (such that $|S|=|T|$), we have

$$
\operatorname{det}(P(S, T))=\sum_{\sigma} \operatorname{sgn}(\sigma) p_{s_{1}, t_{\sigma(1)}} \cdots p_{s_{k}, t_{\sigma(k)}}
$$

On the minors ... : Interpreting the minors

- Given a forest with 2 sets S, T of vertices (such that $|S|=|T|$), we have

$$
\operatorname{det}(P(S, T))=\sum_{\sigma} \operatorname{sgn}(\sigma) p_{s_{1}, t_{\sigma(1)}} \cdots p_{s_{k}, t_{\sigma(k)}}
$$

- The minor enumerates configurations of paths from S to T

On the minors ... : Interpreting the minors

- Given a forest with 2 sets S, T of vertices (such that $|S|=|T|$), we have

$$
\operatorname{det}(P(S, T))=\sum_{\sigma} \operatorname{sgn}(\sigma) p_{s_{1}, t_{\sigma(1)}} \cdots p_{s_{k}, t_{\sigma(k)}}
$$

- The minor enumerates configurations of paths from S to T

On the minors ... : Interpreting the minors

- Given a forest with 2 sets S, T of vertices (such that $|S|=|T|$), we have

$$
\operatorname{det}(P(S, T))=\sum_{\sigma} \operatorname{sgn}(\sigma) p_{s_{1}, t_{\sigma(1)}} \cdots p_{s_{k}, t_{\sigma(k)}}
$$

- The minor enumerates configurations of paths from S to T
- The permutation is determined by the configuration

On the minors ... : Interpreting the minors

- Given a forest with 2 sets S, T of vertices (such that $|S|=|T|$), we have

$$
\operatorname{det}(P(S, T))=\sum_{\Omega: S \rightarrow T} \operatorname{sgn}(\Omega) \mathrm{wt}(\Omega)
$$

- The minor enumerates configurations of paths from S to T
- The permutation is determined by the configuration

- Consider a configuration in a general digraph.

On the minors ... : Interpreting the minors

- Consider a configuration in a general digraph.
- Suppose that two paths of the configuration have a common vertex

On the minors ... : Interpreting the minors

- Consider a configuration in a general digraph.
- Suppose that two paths of the configuration have a common vertex
- Exchange their end-parts

On the minors ... : Interpreting the minors

- Consider a configuration in a general digraph.
- Suppose that two paths of the configuration have a common vertex
- Exchange their end-parts

On the minors ... : Interpreting the minors

- Consider a configuration in a general digraph.
- Suppose that two paths of the configuration have a common vertex
- Exchange their end-parts
- The new permutation differs from the old one by a transposition. A change of sign occurs.

permutation σ

permutation $\sigma \circ(i, j)$
- Consider a configuration in a general digraph.
- Suppose that two paths of the configuration have a common vertex
- Exchange their end-parts
- The new permutation differs from the old one by a transposition. A change of sign occurs.
- The old and the new configurations cancel out

- Consider a configuration in a general digraph.
- Suppose that two paths of the configuration have a common vertex
- Exchange their end-parts
- The new permutation differs from the old one by a transposition. A change of sign occurs.
- The old and the new configurations cancel out
- Problems...
- Problems...
- Problem I:

- Problems...
- Problem i:

- Problem 2: What are the paths to be transformed ?
- Problems...
- Problem I:

- Problem 2: What are the paths to be transformed ?

- Partial solution:

The exchange works if there is a common arrow, the configurations cancel out

- Partial solution:

The exchange works if there is a common arrow, the configurations cancel out

exchange

- Thm:

$$
\operatorname{det}(P(S, T))=\sum_{\Omega: S \rightarrow T} \operatorname{sgn}(\Omega) \mathrm{wt}(\Omega)
$$

the sum being restricted to configurations Ω with no double arrows.

- Partial solution:

The exchange works if there is a common arrow, the configurations cancel out

exchange

- Thm:

$$
\operatorname{det}(P(S, T))=\sum_{\Omega: S \rightarrow T} \operatorname{sgn}(\Omega) \mathrm{wt}(\Omega)
$$

the sum being restricted to configurations Ω with no double arrows.

- The arrows in the surviving configurations are either single or come in pairs of opposite.
- Some configurations $\Omega: S \rightarrow T$
- Some configurations $\Omega: S \rightarrow T$

- Some configurations $\Omega: S \rightarrow T$

- Some configurations $\Omega: S \rightarrow T$

- Some configurations $\Omega: S \rightarrow T$

- Remarks:
- Single arrows are the same for all configurations (?)
- Pairs of opposites may vary
- Consider a single arrow in a configuration

- Consider a single arrow in a configuration

- In this subtree, $|S|-|T|=1$

In this subtree, $|S|-|T|=-1$

- Consider a single arrow in a configuration

In this subtree, $|S|-|T|=1$
In this subtree, $|S|-|T|=-1$

- The single arrows are determined by S and T
- Consider a single arrow in a configuration

In this subtree, $|S|-|T|=1$
In this subtree, $|S|-|T|=-1$

- The single arrows are determined by S and T
- N.B. $||S|-|T||>1$ would implies double arrows in all configurations
- Any configuration $\Omega: S \rightarrow T$ contains the forced (single) arrows

- Any configuration $\Omega: S \rightarrow T$ contains the forced (single) arrows

- Forced arrows can be connected to one another to form minimal configurations

$$
\Omega_{\mathrm{o}}: S \rightarrow T
$$

(not necessarily unique)

- Any configuration $\Omega: S \rightarrow T$ contains the forced (single) arrows

- Forced arrows can be connected to one another to form minimal configurations

$$
\Omega_{\mathrm{o}}: S \rightarrow T
$$

(not necessarily unique)

- Any configuration $\Omega: S \rightarrow T$ contains the forced (single) arrows

- Forced arrows can be connected to one another to form minimal configurations

$$
\Omega_{\mathrm{o}}: S \rightarrow T
$$

(not necessarily unique)

- Necessary conditions for $\operatorname{det}(P[S, T]) \neq 0$:
- Necessary conditions for $\operatorname{det}(P[S, T]) \neq 0$:
- There must exist at least one minimal configuration.

On the minors ...: When does $|P[S, T]| \neq 0$?

- Necessary conditions for $\operatorname{det}(P[S, T]) \neq 0$:
- There must exist at least one minimal configuration.

No configuration $\Omega: S \rightarrow T$ exists

$$
\operatorname{det}(P[S, T])=0
$$

- Necessary conditions for $\operatorname{det}(P[S, T]) \neq 0$:
- There must exist at least one minimal configuration.
- The minimal configuration must be unique

On the minors ... : When does $|P[S, T]| \neq 0$?

- Necessary conditions for $\operatorname{det}(P[S, T]) \neq 0$:
- There must exist at least one minimal configuration.
- The minimal configuration must be unique

Minimal configurations not unique

On the minors ... : When does $|P[S, T]| \neq 0$?

- Necessary conditions for $\operatorname{det}(P[S, T]) \neq 0$:
- There must exist at least one minimal configuration.
- The minimal configuration must be unique

Minimal configurations not unique

$\operatorname{det}(P[S, T])=0$

On the minors ... : When does $|P[S, T]| \neq 0$?

- Necessary conditions for $\operatorname{det}(P[S, T]) \neq 0$:
- There must exist at least one minimal configuration.
- The minimal configuration must be unique
- Sufficient conditions

We have:

$$
\operatorname{det}(P[S, T])= \pm \mathrm{wt}\left(\Omega_{0}\right)+\text { higher degree terms }
$$

On the minors ... : When does $|P[S, T]| \neq 0$?

- Necessary conditions for $\operatorname{det}(P[S, T]) \neq 0$:
- There must exist at least one minimal configuration.
- The minimal configuration must be unique
- Sufficient conditions

We have:

$$
\operatorname{det}(P[S, T])= \pm \mathrm{wt}\left(\Omega_{0}\right)+\text { higher degree terms }
$$

- Remark: If no two paths of a minimal configuration have a common vertex, the minimal configuration is unique
- For instance:
- For instance:

On the minors ... : When does $|P[S, T]| \neq 0$?

- For instance:

Minimal configurations not unique

$$
\operatorname{det}(P[S, T])=0
$$

- For instance: $S=T=V$

On the minors ... : When does $|P[S, T]| \neq 0$?

- For instance: $S=T=V$

Unique minimal configuration

$$
\operatorname{det}(P) \neq 0
$$

- For instance: $S=V-\{j\}, T=V-\{i\}$ (for $i \neq j)$
- For instance: $S=V-\{j\}, T=V-\{i\}($ for $i \neq j)$
- If (i, j) forms an arrow:

On the minors ... : When does $|P[S, T]| \neq 0$?

- For instance: $S=V-\{j\}, T=V-\{i\}$ (for $i \neq j$)
- If (i, j) forms an arrow:

Unique minimal configuration

$$
\operatorname{det}(P[S, T]) \neq 0
$$

On the minors ... : When does $|P[S, T]| \neq 0$?

- For instance: $S=V-\{j\}, T=V-\{i\}$ (for $i \neq j)$
- If (i, j) forms an arrow:

Unique minimal configuration

$$
\operatorname{det}(P[S, T]) \neq 0
$$

- If (i, j) is not an arrow:
- For instance: $S=V-\{j\}, T=V-\{i\}$ (for $i \neq j$)
- If (i, j) forms an arrow:

Unique minimal configuration

$$
\operatorname{det}(P[S, T]) \neq 0
$$

- If (i, j) is not an arrow:

Minimal configurations not unique

$$
\operatorname{det}(P[S, T])=0
$$

- Let S, T be such that the minimal configuration Ω_{0} is unique
- Let S, T be such that the minimal configuration Ω_{0} is unique
- Let S, T be such that the minimal configuration Ω_{0} is unique
- Single arrows will be part of any configuration
- Let S, T be such that the minimal configuration Ω_{0} is unique
- Single arrows will be part of any configuration
- Let S, T be such that the minimal configuration Ω_{0} is unique
- Single arrows will be part of any configuration
- Choose some set F of (other) arrows that will appear with their opposite ($F \subseteq E^{+}-E\left(\omega_{0}\right)$).
- Let S, T be such that the minimal configuration Ω_{0} is unique
- Single arrows will be part of any configuration
- Choose some set F of (other) arrows that will appear with their opposite $\left(F \subseteq E^{+}-E\left(\omega_{0}\right)\right)$.
- Let S, T be such that the minimal configuration Ω_{0} is unique
- Single arrows will be part of any configuration

- Choose some set F of (other) arrows that will appear with their opposite ($F \subseteq E^{+}-E\left(\omega_{0}\right)$).
- How many configurations have this weight? Many configurations are possible. Some with opposite signs. Cancellations?
- Let S, T be such that the minimal configuration Ω_{0} is unique
- Single arrows will be part of any configuration
- Choose some set F of (other) arrows that will appear with their opposite ($F \subseteq E^{+}-E\left(\omega_{0}\right)$).
- How many configurations have this weight? Many configurations are possible. Some with opposite signs. Cancellations?

- Let S, T be such that the minimal configuration Ω_{0} is unique
- Single arrows will be part of any configuration
- Choose some set F of (other) arrows that will appear with their opposite ($F \subseteq E^{+}-E\left(\omega_{0}\right)$).
- How many configurations have this weight? Many configurations are possible.
Some with opposite signs. Cancellations?
- Wanted:

- Let S, T be such that the minimal configuration Ω_{0} is unique
- Single arrows will be part of any configuration
- Choose some set F of (other) arrows that will appear with their opposite ($F \subseteq E^{+}-E\left(\omega_{0}\right)$).
- How many configurations have this weight? Many configurations are possible.
Some with opposite signs. Cancellations?
- Wanted:
- A sign-reversing involution s.t. all survivors have the same sign

- Let S, T be such that the minimal configuration Ω_{0} is unique
- Single arrows will be part of any configuration
- Choose some set F of (other) arrows that will appear with their opposite ($F \subseteq E^{+}-E\left(\omega_{0}\right)$).
- How many configurations have this weight? Many configurations are possible.
Some with opposite signs. Cancellations?
- Wanted:
- A sign-reversing involution s.t. all survivors have the same sign
- A bijection on survivors allowing their enumeration

- Configurations with fixed weight differ by the way the arrows are connected at each vertex
- Configurations with fixed weight differ by the way the arrows are connected at each vertex

- Configurations with fixed weight differ by the way the arrows are connected at each vertex

- Configurations with fixed weight differ by the way the arrows are connected at each vertex

- Configurations with fixed weight differ by the way the arrows are connected at each vertex

- Configurations with fixed weight differ by the way the arrows are connected at each vertex

- Configurations with fixed weight differ by the way the arrows are connected at each vertex

- Configurations with fixed weight differ by the way the arrows are connected at each vertex

- Configurations with fixed weight differ by the way the arrows are connected at each vertex

- Configurations with fixed weight differ by the way the arrows are connected at each vertex

- Configurations with fixed weight differ by the way the arrows are connected at each vertex

- Configurations with fixed weight differ by the way the arrows are connected at each vertex
- There are two kinds of vertices:

- Configurations with fixed weight differ by the way the arrows are connected at each vertex
I. On the minimal configuration

2. Not on the minimal configuration

- i. Vertex on the minimal configuration:
- i. Vertex on the minimal configuration:

- i. Vertex on the minimal configuration:
- Choose a pair of opposites
- i. Vertex on the minimal configuration:
- Choose a pair of opposites
- i. Vertex on the minimal configuration:
- Choose a pair of opposites
- Exchange the connections of the chosen incoming path and of the incoming single arrow ...

- i. Vertex on the minimal configuration:
- Choose a pair of opposites
- Exchange the connections of the chosen incoming path and of the incoming single arrow ...

- i. Vertex on the minimal configuration:
- Choose a pair of opposites
- Exchange the connections of the chosen incoming path and of the incoming single arrow ...

- i. Vertex on the minimal configuration:
- Choose a pair of opposites
- Exchange the connections of the chosen incoming path and of the incoming single arrow ...
- ... causing a change of sign: cancellation

- i. Vertex on the minimal configuration:
- Choose a pair of opposites
- Exchange the connections of the chosen incoming path and of the incoming single arrow ...
- ... causing a change of sign: cancellation

- A connection survives if the single incoming arrow is connected to the chosen pair
- A connection survives if the single incoming arrow is connected to the chosen pair

- A connection survives if the single incoming arrow is connected to the chosen pair
- The exchange does not produce an allowed path

- A connection survives if the single incoming arrow is connected to the chosen pair
- The exchange does not produce an allowed path

- A connection survives if the single incoming arrow is connected to the chosen pair
- The exchange does not produce an allowed path
- Do it anyway! But create a new source-target vertex for the illegal path

- A connection survives if the single incoming arrow is connected to the chosen pair
- The exchange does not produce an allowed path

- Do it anyway! But create a new source-target vertex for the illegal path

- A connection survives if the single incoming arrow is connected to the chosen pair
- The exchange does not produce an allowed path

- Do it anyway! But create a new source-target vertex for the illegal path
- This change the associated permutation by a 3 -cycle. No sign change

- A connection survives if the single incoming arrow is connected to the chosen pair
- The exchange does not produce an allowed path
- Do it anyway! But create a new source-target vertex for the illegal path
- This change the associated permutation by a 3 -cycle. No sign change
from s_{j}

$\bigcirc \quad$ from s_{i}

- A connection survives if the single incoming arrow is connected to the chosen pair
- The exchange does not produce an allowed path
- Do it anyway! But create a new source-target vertex for the illegal path
- This change the associated permutation by a 3 -cycle. No sign change
- This is the bijection

$$
\sigma^{\circ}\left(i, j, v^{\prime}\right)
$$

- Repeat with the others pairs of opposites adjacent to the vertex. Only one connection survives.
- Repeat with the others pairs of opposites adjacent to the vertex. Only one connection survives.

- Repeat with the others pairs of opposites adjacent to the vertex. Only one connection survives.

- Repeat with the others pairs of opposites adjacent to the vertex. Only one connection survives.

- Repeat with every vertex on the minimal configuration
- Repeat with the others pairs of opposites adjacent to the vertex. Only one connection survives.

- Repeat with every vertex on the minimal configuration

- Repeat with the others pairs of opposites adjacent to the vertex. Only one connection survives.

- Repeat with every vertex on the minimal configuration

Cancellations
Bijections

- Repeat with the others pairs of opposites adjacent to the vertex. Only one connection survives.

- Repeat with every vertex on the minimal configuration

Cancellations
Bijections

- Repeat with the others pairs of opposites adjacent to the vertex. Only one connection survives.

- Repeat with every vertex on the minimal configuration
- We can even extract the minimal configuration

- Repeat with the others pairs of opposites adjacent to the vertex. Only one connection survives.

- Repeat with every vertex on the minimal configuration
- We can even extract the minimal configuration
+ others

- Repeat with the others pairs of opposites adjacent to the vertex. Only one connection survives.
- Repeat with every vertex on the minimal configuration
- We can even extract the minimal configuration

+ others

$\operatorname{det}(P[S, T])=(-1)^{\Omega_{0}} \mathrm{wt}\left(\Omega_{0}\right) \times ? ?$
- 2. Vertex not on the minimal configuration. Choose a leaf to become the root
- 2. Vertex not on the minimal configuration. Choose a leaf to become the root

- 2. Vertex not on the minimal configuration. Choose a leaf to become the root
- Take the incoming path from the edge that leads to the root

- 2. Vertex not on the minimal configuration. Choose a leaf to become the root
- Take the incoming path from the edge that leads to the root

- 2. Vertex not on the minimal configuration. Choose a leaf to become the root
- Take the incoming path from the edge that leads to the root
- This defines two opposite arrows
to the root
- 2. Vertex not on the minimal configuration. Choose a leaf to become the root
- Take the incoming path from the edge that leads to the root

- This defines two opposite arrows
to the root
- 2. Vertex not on the minimal configuration. Choose a leaf to become the root
- Take the incoming path from the edge that leads to the root
- This defines two opposite arrows
- Cancellations/bijection
- 2. Vertex not on the minimal configuration. Choose a leaf to become the root
- Take the incoming path from the edge that leads to the root
- This defines two opposite arrows
- Cancellations/bijection
to the root

- 2. Vertex not on the minimal configuration. Choose a leaf to become the root
- Take the incoming path from the edge that leads to the root
- This defines two opposite arrows
- Cancellations/bijection
- One last cut
to the root

- 2. Vertex not on the minimal configuration. Choose a leaf to become the root
- Take the incoming path from the edge that leads to the root
- This defines two opposite arrows
- Cancellations/bijection
- One last cut

- 2. Vertex not on the minimal configuration. Choose a leaf to become the root
- Take the incoming path from the edge that leads to the root
- This defines two opposite arrows
- Cancellations/bijection
- One last cut
- Record the edge that was connected to edge leading to the root

- 2. Vertex not on the minimal configuration. Choose a leaf to become the root
- Take the incoming path from the edge that leads to the root
- This defines two opposite arrows
- Cancellations/bijection
- One last cut
- Record the edge that was connected to edge leading to the root
- The last cut changes the sign

- 2. Vertex not on the minimal configuration. Choose a leaf to become the root
- Take the incoming path from the edge that leads to the root
- This defines two opposite arrows
- Cancellations/bijection
- One last cut
- Record the edge that was connected to edge leading to the root
- The last cut changes the sign

- All pairs of opposite are now separated
- Thus given S,T

- Thus given S,T
- with an unique minimal configuration

- Thus given S, T
- with an unique minimal configuration
- How many surviving configurations have weight:

- Thus given S, T
- with an unique minimal configuration

- How many surviving configurations have weight:

- Thus given S, T
- with an unique minimal configuration

- How many surviving configurations have weight:

- Thus given S, T
- with an unique minimal configuration
- How many surviving configurations have weight:
- What is the sign?
- Thus given S, T
- with an unique minimal configuration

- How many surviving configurations have weight:
-What is the sign?

- Thus given S, T
- with an unique minimal configuration

- How many surviving configurations have weight:
-What is the sign?

- Thus given S, T
- with an unique minimal configuration

- How many surviving configurations have weight:
- What is the sign?

$\#$ transposition $=\# F=5$
\#sign change = I
- Thus given S, T
- with an unique minimal configuration

- How many surviving configurations have weight:
-What is the sign?

$$
\operatorname{sgn}\left(\Omega_{0}\right) \times(-1)^{6}
$$

$\#$ transposition $=\# F=5$
\#sign change = I

- Main theorem: Let $d_{F}(v)$ be the degree of v in F. Then:

$$
\operatorname{det}(P[S, T])=(-1)^{\Omega_{0}} \mathrm{wt}\left(\Omega_{0}\right) \times \sum_{F \subseteq E^{+}-E\left(\Omega_{0}\right)}(-1)^{|F|} \mathrm{wt}(F) \mathrm{wt}(\bar{F}) \prod_{v \in V-V\left(\Omega_{0}\right)}\left(1-d_{F}(v)\right)
$$

- Main theorem: Let $d_{F}(v)$ be the degree of v in F. Then:

$$
\begin{aligned}
& \operatorname{det}(P[S, T])=\sum_{F \subseteq)^{(-1)^{\Omega_{0}}} \mathrm{wt}\left(\Omega_{0}\right) \times \sum_{F \subseteq E^{+}-E\left(\Omega_{0}\right)}(-1)^{|F|} \mathrm{wt}(F) \mathrm{wt}(\bar{F}) \prod_{v \in V\left(\Omega_{0}\right)}\left(1-d_{F}(v)\right)} \\
& \begin{array}{l}
\text { sign-weight due to the } \\
\text { minimal configuration }
\end{array}
\end{aligned}
$$

- Main theorem: Let $d_{F}(v)$ be the degree of v in F. Then:

$$
\operatorname{det}(P[S, T])=(-1)^{\Omega_{0}} \mathrm{wt}\left(\Omega_{0}\right) \times \sum_{F \subseteq E^{+}-E\left(\Omega_{0}\right)}(-1)^{|F|} \mathrm{wt}(F) \mathrm{wt}(\bar{F}) \prod_{v \in V-V\left(\Omega_{0}\right)}\left(1-d_{F}(v)\right)
$$

- Main theorem: Let $d_{F}(v)$ be the degree of v in F. Then:
- Main theorem: Let $d_{F}(v)$ be the degree of v in F. Then:

$$
\operatorname{det}(P[S, T])=(-1)^{\Omega_{0}} \mathrm{wt}\left(\Omega_{0}\right) \times \sum_{F \subseteq E^{+}-E\left(\Omega_{0}\right)}(-1)^{|F|} \frac{\mathrm{wt}(F) \mathrm{wt}(\bar{F})}{\uparrow} \prod_{v \in V-V\left(\Omega_{0}\right)}\left(1-d_{F}(v)\right)
$$

- Main theorem: Let $d_{F}(v)$ be the degree of v in F. Then:

$$
\begin{gathered}
\operatorname{det}(P[S, T])=(-1)^{\Omega_{0}} \mathrm{wt}\left(\Omega_{0}\right) \times \sum_{F \subseteq E^{+}-E\left(\Omega_{0}\right)}(-1)^{|F|} \mathrm{wt}(F) \mathrm{wt}(\bar{F})
\end{gathered} \prod_{v \in V-V\left(\Omega_{0}\right)}\left(1-d_{F}(v)\right)
$$

- Main theorem: Let $d_{F}(v)$ be the degree of v in F. Then:

$$
\operatorname{det}(P[S, T])=(-1)^{\Omega_{0}} \mathrm{wt}\left(\Omega_{0}\right) \times \sum_{F \subseteq E^{+}-E\left(\Omega_{0}\right)}(-1)^{|F|} \mathrm{wt}(F) \mathrm{wt}(\bar{F}) \prod_{v \in V-V\left(\Omega_{0}\right)}\left(1-d_{F}(v)\right)
$$

- Main theorem: Let $d_{F}(v)$ be the degree of v in F. Then:

$$
\operatorname{det}(P[S, T])=(-1)^{\Omega_{0}} \mathrm{wt}\left(\Omega_{0}\right) \times \sum_{F \subseteq E^{+}-E\left(\Omega_{0}\right)}(-1)^{|F|} \mathrm{wt}(F) \mathrm{wt}(\bar{F}) \prod_{v \in V-V\left(\Omega_{0}\right)}\left(1-d_{F}(v)\right)
$$

- For instance: let $S=T$.

What is the coefficient of
(within some forest) in $\operatorname{det}(P[S, T])$?

- Main theorem: Let $d_{F}(v)$ be the degree of v in F. Then:

$$
\operatorname{det}(P[S, T])=(-1)^{\Omega_{0}} \mathrm{wt}\left(\Omega_{0}\right) \times \sum_{F \subseteq E^{+}-E\left(\Omega_{0}\right)}(-1)^{|F|} \mathrm{wt}(F) \mathrm{wt}(\bar{F}) \prod_{v \in V-V\left(\Omega_{0}\right)}\left(1-d_{F}(v)\right)
$$

- For instance: let $S=T$.

What is the coefficient of (within some forest) in $\operatorname{det}(P[S, T])$?

$$
|F|=14
$$

$$
\text { \#sign changes = } 4
$$

- Main theorem: Let $d_{F}(v)$ be the degree of v in F. Then:

$$
\operatorname{det}(P[S, T])=(-1)^{\Omega_{0}} \mathrm{wt}\left(\Omega_{0}\right) \times \sum_{F \subseteq E^{+}-E\left(\Omega_{0}\right)}(-1)^{|F|} \mathrm{wt}(F) \mathrm{wt}(\bar{F}) \prod_{v \in V-V\left(\Omega_{0}\right)}\left(1-d_{F}(v)\right)
$$

- For instance: let $S=T$.

What is the coefficient of (within some forest) in $\operatorname{det}(P[S, T])$?

$$
|F|=14
$$

$$
\text { \#sign changes = } 4
$$

$$
(-1)^{14}(-2)(-1)(-3)(-5)=30
$$

$$
\operatorname{det}(P[S, T])=(-1)^{\Omega_{0}} \mathrm{wt}\left(\Omega_{0}\right) \times \sum_{F \subseteq E^{+}-E\left(\Omega_{0}\right)}(-1)^{|F|} \mathrm{wt}(F) \mathrm{wt}(\bar{F}) \prod_{v \in V-V\left(\Omega_{0}\right)}\left(1-d_{F}(v)\right)
$$

$\operatorname{det}(P[S, T])=(-1)^{\Omega_{0}} \mathrm{wt}\left(\Omega_{0}\right) \times \sum_{F \subseteq E^{+}-E\left(\Omega_{0}\right)}(-1)^{|F|} \mathrm{wt}(F) \mathrm{wt}(\bar{F}) \prod_{v \in V-V\left(\Omega_{0}\right)}\left(1-d_{F}(v)\right)$

- If $S=T=V$.
$\operatorname{det}(P[S, T])=(-1)^{\Omega_{0}} \mathrm{wt}\left(\Omega_{0}\right) \times \sum_{F \subseteq E^{+}-E\left(\Omega_{0}\right)}(-1)^{|F|} \mathrm{wt}(F) \mathrm{wt}(\bar{F}) \prod_{v \in V-V\left(\Omega_{0}\right)}\left(1-d_{F}(v)\right)$
- If $S=T=V$.
- Minimal configuration: weight $=1$, sign $=+1$
$\operatorname{det}(P[S, T])=(-1)^{\Omega_{0}} \mathrm{wt}\left(\Omega_{0}\right) \times \sum_{F \subseteq E^{+}-E\left(\Omega_{0}\right)}(-1)^{|F|} \mathrm{wt}(F) \mathrm{wt}(\bar{F}) \prod_{v \in V-V\left(\Omega_{0}\right)}\left(1-d_{F}(v)\right)$
- If $S=T=V$.
- Minimal configuration: weight $=1$, sign $=+1$

$$
\begin{aligned}
\operatorname{det}(P) & =\sum_{F \subseteq E^{+}}(-1)^{|F|} \mathrm{wt}(F) \mathrm{wt}(\bar{F}) \\
& =\prod_{e \in E^{+}}(1-e \bar{e})
\end{aligned}
$$

(Yan-Yeh 06)

$$
\operatorname{det}(P[S, T])=(-1)^{\Omega_{0}} \mathrm{wt}\left(\Omega_{0}\right) \times \sum_{F \subseteq E^{+}-E\left(\Omega_{0}\right)}(-1)^{|F|} \mathrm{wt}(F) \mathrm{wt}(\bar{F}) \prod_{v \in V-V\left(\Omega_{0}\right)}\left(1-d_{F}(v)\right)
$$

On the minors ... : Consequences

$$
\operatorname{det}(P[S, T])=(-1)^{\Omega_{0}} \mathrm{wt}\left(\Omega_{0}\right) \times \sum_{F \subseteq E^{+}-E\left(\Omega_{0}\right)}(-1)^{|F|} \mathrm{wt}(F) \mathrm{wt}(\bar{F}) \prod_{v \in V-V\left(\Omega_{0}\right)}\left(1-d_{F}(v)\right)
$$

- Cofactors: Let $S=V-\{j\}, T=V-\{i\}$.
$(-1)^{i+j} \operatorname{det}(P[S, T])= \begin{cases}0 & \text { if } i \neq j \text { and }(i, j) \text { is no } \\ -\frac{e}{1-e \bar{e}}|P| & \text { if }(i, j) \text { is the arrow } e, \\ \left(1+\sum_{e \in t^{-1}(i)} \frac{e \bar{e}}{1-e \bar{e}}\right)|P| & \text { if } i=j .\end{cases}$
(all $e=q$: Bapat, Lal, Sukanta Pati 06)

On the minors ... : Consequences

$$
\operatorname{det}(P[S, T])=(-1)^{\Omega_{0}} \mathrm{wt}\left(\Omega_{0}\right) \times \sum_{F \subseteq E^{+}-E\left(\Omega_{0}\right)}(-1)^{|F|} \mathrm{wt}(F) \mathrm{wt}(\bar{F}) \prod_{v \in V-V\left(\Omega_{0}\right)}\left(1-d_{F}(v)\right)
$$

- Cofactors: Let $S=V-\{j\}, T=V-\{i\}$.
$(-1)^{i+j} \operatorname{det}(P[S, T])= \begin{cases}0 & \text { if } i \neq j \text { and }(i, j) \text { is not } \\ -\frac{e}{1-e \bar{e}}|P| & \text { if }(i, j) \text { is the arrow } e, \\ \left(1+\sum_{e \in t^{-1}(i)} \frac{e \bar{e}}{1-e \bar{e}}\right)|P| & \text { if } i=j\end{cases}$
(all $e=q$: Bapat, Lal, Sukanta Pati 06)

On the minors ... : Consequences

$$
\operatorname{det}(P[S, T])=(-1)^{\Omega_{0}} \mathrm{wt}\left(\Omega_{0}\right) \times \sum_{F \subseteq E^{+}-E\left(\Omega_{0}\right)}(-1)^{|F|} \mathrm{wt}(F) \mathrm{wt}(\bar{F}) \prod_{v \in V-V\left(\Omega_{0}\right)}\left(1-d_{F}(v)\right)
$$

- Cofactors: Let $S=V-\{j\}, T=V-\{i\}$.
$(-1)^{i+j} \operatorname{det}(P[S, T])= \begin{cases}0 & \text { if } i \neq j \text { and }(i, j) \text { is not } \\ -\frac{e}{1-e \bar{e}}|P| & \text { if }(i, j) \text { is the arrow } e, \\ \left(1+\sum_{e \in t^{-1}(i)} \frac{e \bar{e}}{1-e \bar{e}}\right)|P| & \text { if } i=j .\end{cases}$
(all $e=q$: Bapat, Lal, Sukanta Pati 06)

On the minors ... : Consequences

$$
\operatorname{det}(P[S, T])=(-1)^{\Omega_{0}} \mathrm{wt}\left(\Omega_{0}\right) \times \sum_{F \subseteq E^{+}-E\left(\Omega_{0}\right)}(-1)^{|F|} \mathrm{wt}(F) \mathrm{wt}(\bar{F}) \prod_{v \in V-V\left(\Omega_{0}\right)}\left(1-d_{F}(v)\right)
$$

- Cofactors: Let $S=V-\{j\}, T=V-\{i\}$.
$(-1)^{i+j} \operatorname{det}(P[S, T])= \begin{cases}0 & \text { if } i \neq j \text { and }(i, j) \text { is not } \\ -\frac{e}{1-e \bar{e}}|P| & \text { if }(i, j) \text { is the arrow } e, \\ \left(1+\sum_{e \in t^{-1}(i)} \frac{e \bar{e}}{1-e \bar{e}}\right)|P| & \text { if } i=j .\end{cases}$
(all $e=q$: Bapat, Lal, Sukanta Pati 06)

$$
\operatorname{det}(P[S, T])=(-1)^{\Omega_{0}} \mathrm{wt}\left(\Omega_{0}\right) \times \sum_{F \subseteq E^{+}-E\left(\Omega_{0}\right)}(-1)^{|F|} \mathrm{wt}(F) \mathrm{wt}(\bar{F}) \prod_{v \in V-V\left(\Omega_{0}\right)}\left(1-d_{F}(v)\right)
$$

On the minors ... : Consequences

$$
\operatorname{det}(P[S, T])=(-1)^{\Omega_{0}} \mathrm{wt}\left(\Omega_{0}\right) \times \sum_{F \subseteq E^{+}-E\left(\Omega_{0}\right)}(-1)^{|F|} \mathrm{wt}(F) \mathrm{wt}(\bar{F}) \prod_{v \in V-V\left(\Omega_{0}\right)}\left(1-d_{F}(v)\right)
$$

- Let J be the all l's matrix and c the number of trees in the forest. Then

$$
\begin{aligned}
\operatorname{det}(P+x J) & =|P|+x \text { (sum of the cofactors of } P) \\
& =(1+c x)|P|+x\left(\sum_{e \in E} \frac{(1-e)(1-\bar{e})}{1-e \bar{e}}\right)|P|
\end{aligned}
$$

Bapat, Kirkland, Neumann (05): D instead of P.

$$
\operatorname{det}(P[S, T])=(-1)^{\Omega_{0}} \mathrm{wt}\left(\Omega_{0}\right) \times \sum_{F \subseteq E^{+}-E\left(\Omega_{0}\right)}(-1)^{|F|} \mathrm{wt}(F) \mathrm{wt}(\bar{F}) \prod_{v \in V-V\left(\Omega_{0}\right)}\left(1-d_{F}(v)\right)
$$

$\operatorname{det}(P[S, T])=(-1)^{\Omega_{0}} \mathrm{wt}\left(\Omega_{0}\right) \times \sum_{F \subseteq E^{+}-E\left(\Omega_{0}\right)}(-1)^{|F|} \mathrm{wt}(F) \mathrm{wt}(\bar{F}) \prod_{v \in V-V\left(\Omega_{0}\right)}\left(1-d_{F}(v)\right)$

- When $S=T$...

$$
\operatorname{det}(P[U, U])=\sum_{F \subseteq E^{+}}(-1)^{|F|} \mathrm{wt}(F) \mathrm{wt}(\bar{F}) \prod_{v \in V-U}\left(1-d_{F}(v)\right)
$$

$$
\operatorname{det}(P[S, T])=(-1)^{\Omega_{0}} \mathrm{wt}\left(\Omega_{0}\right) \times \sum_{F \subseteq E^{+}-E\left(\Omega_{0}\right)}(-1)^{|F|} \mathrm{wt}(F) \mathrm{wt}(\bar{F}) \prod_{v \in V-V\left(\Omega_{0}\right)}\left(1-d_{F}(v)\right)
$$

- When $S=T$...

$$
\operatorname{det}(P[U, U])=\sum_{F \subseteq E^{+}}(-1)^{|F|} \mathrm{wt}(F) \mathrm{wt}(\bar{F}) \prod_{v \in V-U}\left(1-d_{F}(v)\right)
$$

- For $e \in E^{+} \cup E^{-}$, let $\delta_{e}($ monomial $)=\left\{\begin{array}{ll}0 & \text { if } e \notin \text { monomial, } \\ \text { monomial } & \text { if } e \in \text { monomial. }\end{array}=e \frac{\partial}{\partial e}\right.$
$\operatorname{det}(P[S, T])=(-1)^{\Omega_{0}} \mathrm{wt}\left(\Omega_{0}\right) \times \sum_{F \subseteq E^{+}-E\left(\Omega_{0}\right)}(-1)^{|F|} \mathrm{wt}(F) \mathrm{wt}(\bar{F}) \prod_{v \in V-V\left(\Omega_{0}\right)}\left(1-d_{F}(v)\right)$
- When $S=T$...

$$
\operatorname{det}(P[U, U])=\sum_{F \subseteq E^{+}}(-1)^{|F|} \mathrm{wt}(F) \mathrm{wt}(\bar{F}) \prod_{v \in V-U}\left(1-d_{F}(v)\right)
$$

- For $e \in E^{+} \cup E^{-}$, let $\delta_{e}($ monomial $)=\left\{\begin{array}{ll}0 & \text { if } e \notin \text { monomial, } \\ \text { monomial } & \text { if } e \in \text { monomial. }\end{array}=e \frac{\partial}{\partial e}\right.$
- For $v \in V$, let $\delta_{v}=\sum_{e \in t^{-1}(v)} \delta_{e}$
$\operatorname{det}(P[S, T])=(-1)^{\Omega_{0}} \mathrm{wt}\left(\Omega_{0}\right) \times \sum_{F \subseteq E^{+}-E\left(\Omega_{0}\right)}(-1)^{|F|} \mathrm{wt}(F) \mathrm{wt}(\bar{F}) \prod_{v \in V-V\left(\Omega_{0}\right)}\left(1-d_{F}(v)\right)$
- When $S=T \ldots$

$$
\operatorname{det}(P[U, U])=\sum_{F \subseteq E^{+}}(-1)^{|F|} \mathrm{wt}(F) \mathrm{wt}(\bar{F}) \prod_{v \in V-U}\left(1-d_{F}(v)\right)
$$

- For $e \in E^{+} \cup E^{-}$, let $\delta_{e}($ monomial $)=\left\{\begin{array}{ll}0 & \text { if } e \notin \text { monomial, } \\ \text { monomial } & \text { if } e \in \text { monomial. }\end{array}=e \frac{\partial}{\partial e}\right.$
- For $v \in V$, let $\delta_{v}=\sum_{e \in t^{-1}(v)} \delta_{e}$

$$
\operatorname{det}(P[U, U])=\prod_{v \in U}\left(I-\delta_{v}\right) \circ|P|
$$

- From multiplicative to additive weight:

On the minors ... : Additive weight

- From multiplicative to additive weight:

multiplicative
$\mathrm{wt}(\omega)=a b \cdots c$
matrix: P
matrix: D

On the minors ... : Additive weight

- From multiplicative to additive weight:

matrix: P^{+}

On the minors ... : Additive weight

- From multiplicative to additive weight:

On the minors ... : Additive weight

- $\left[t^{n}\right] \operatorname{det}\left(P^{+}+(x t-1) J\right)=\operatorname{det}(D+x J)=(-1)^{n-1}\left(x+\sum_{e \in E} \frac{e \bar{e}}{e+\bar{e}}\right) \prod_{e \in E}(e+\bar{e})$

On the minors ... : Additive weight

- $\left[t^{n}\right] \operatorname{det}\left(P^{+}+(x t-1) J\right)=\operatorname{det}(D+x J)=(-1)^{n-1}\left(x+\sum_{e \in E} \frac{e \bar{e}}{e+\bar{e}}\right) \prod_{e \in E}(e+\bar{e})$

$$
e=\bar{e}: \text { Bapat, Kirkland, Neumann (05) }
$$

On the minors ... : Additive weight

- $\left[t^{n}\right] \operatorname{det}\left(P^{+}+(x t-1) J\right)=\operatorname{det}(D+x J)=(-1)^{n-1}\left(x+\sum_{e \in E} \frac{e \bar{e}}{e+\bar{e}}\right) \prod_{e \in E}(e+\bar{e})$

$$
e=\bar{e}: \text { Bapat, Kirkland, Neumann (05) }
$$

- $x=0$

On the minors ... : Additive weight

- $\left[t^{n}\right] \operatorname{det}\left(P^{+}+(x t-1) J\right)=\operatorname{det}(D+x J)=(-1)^{n-1}\left(x+\sum_{e \in E} \frac{e \bar{e}}{e+\bar{e}}\right) \prod_{e \in E}(e+\bar{e})$

$$
e=\bar{e}: \text { Bapat, Kirkland, Neumann (05) }
$$

- $x=0$

$$
\begin{array}{r}
\operatorname{det}(D)=(-1)^{n-1}\left(\sum_{e \in E} \frac{e \bar{e}}{e+\bar{e}}\right) \prod_{e \in E}(e+\bar{e}) \\
e=\bar{e}: \text { Bapat, Kirkland, Neumann }
\end{array}
$$

On the minors ... : Additive weight

- $\left[t^{n}\right] \operatorname{det}\left(P^{+}+(x t-1) J\right)=\operatorname{det}(D+x J)=(-1)^{n-1}\left(x+\sum_{e \in E} \frac{e \bar{e}}{e+\bar{e}}\right) \prod_{e \in E}(e+\bar{e})$

$$
e=\bar{e}: \text { Bapat, Kirkland, Neumann (05) }
$$

- $x=0$

$$
\begin{array}{r}
\operatorname{det}(D)=(-1)^{n-1}\left(\sum_{e \in E} \frac{e \bar{e}}{e+\bar{e}}\right) \prod_{e \in E}(e+\bar{e}) \\
e=\bar{e}: \text { Bapat, Kirkland, Neumann }
\end{array}
$$

- $x=0, e=\bar{e}=1$

On the minors ... : Additive weight

- $\left[t^{n}\right] \operatorname{det}\left(P^{+}+(x t-1) J\right)=\operatorname{det}(D+x J)=(-1)^{n-1}\left(x+\sum_{e \in E} \frac{e \bar{e}}{e+\bar{e}}\right) \prod_{e \in E}(e+\bar{e})$

$$
e=\bar{e}: \text { Bapat, Kirkland, Neumann (05) }
$$

- $x=0$

$$
\begin{array}{r}
\operatorname{det}(D)=(-1)^{n-1}\left(\sum_{e \in E} \frac{e \bar{e}}{e+\bar{e}}\right) \prod_{e \in E}(e+\bar{e}) \\
e=\bar{e}: \text { Bapat, Kirkland, Neumann }
\end{array}
$$

- $x=0, e=\bar{e}=1$

$$
\operatorname{det}(D)=(-1)^{n-1}(n-1) 2^{n-2}
$$

Graham, Pollak (7I)

- q-analogue of the distance

$$
\begin{aligned}
\mathrm{wt}(\omega) & =1+q+q^{2}+\cdots+q^{l-1} \\
& =\frac{q^{l}-1}{q-1} \\
& =[l]
\end{aligned}
$$

Matrix: D_{q}

- q-analogue of the distance

- multiplicative weight q on each arrow

$$
\begin{aligned}
\mathrm{wt}(\omega) & =1+q+q^{2}+\cdots+q^{l-1} \\
& =\frac{q^{l}-1}{q-1} \\
& =[l]
\end{aligned}
$$

Matrix: D_{q}
$\operatorname{wt}(\omega)=q^{l}$
Matrix: P

- q-analogue of the distance

- multiplicative weight q on each arrow

$$
\begin{aligned}
\mathrm{wt}(\omega) & =1+q+q^{2}+\cdots+q^{l-1} \\
& =\frac{q^{l}-1}{q-1} \\
& =[l]
\end{aligned}
$$

Matrix: D_{q}
$\operatorname{wt}(\omega)=q^{l}$
Matrix: P

$$
\begin{aligned}
\operatorname{det}\left(\frac{P-J}{q-1}\right) & =\operatorname{det}\left(D_{q}\right) \\
& =(-1)^{n-1}(n-1)(1+q)^{n-2}
\end{aligned}
$$

- Generalization (Yan-Yeh, o6): arrows $a, b, \ldots, \bar{a}, \bar{b}, \ldots$ have (multiplicative) weight

$$
q^{\alpha}, q^{\beta}, \ldots, q^{\bar{\alpha}}, q^{\bar{\beta}}, \ldots
$$

$$
\mathrm{wt}(\omega)=q^{\alpha+\beta+\cdots+\lambda}
$$

Matrix: P

- Generalization (Yan-Yeh, o6): arrows $a, b, \ldots, \bar{a}, \bar{b}, \ldots$ have (multiplicative) weight

$$
q^{\alpha}, q^{\beta}, \ldots, q^{\bar{\alpha}}, q^{\bar{\beta}}, \ldots
$$

$$
\mathrm{wt}(\omega)=q^{\alpha+\beta+\cdots+\lambda}
$$

Matrix: P

$$
\begin{array}{r}
\operatorname{det}\left(\frac{P-J}{q-1}\right)=(-1)^{n-1} \prod_{\epsilon}[\epsilon+\bar{\epsilon}] \sum_{\epsilon} \frac{[\epsilon][\bar{\epsilon}]}{[\epsilon+\bar{\epsilon}]} \\
\text { Yan-Yeh (o6) }
\end{array}
$$

