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det(P ) = (1− aā)(1− bb̄) · · · (1− cc̄)

P =





1 ab̄ a ac acd
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āb 1 b bc bcd
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āc̄d̄ b̄c̄d̄ c̄d̄ d̄ 1





6/39



1

2

3

4

5

a

b

c

d

a

a

• More generally, what can we say about the minors of P?

• For instance, P is invertible (formal serie).  When a = ā = b = ... = q, 

Bapat, Lal, Sukanta Pati (06) have a formula for P-1 

On the minors ... : Introduction

1

2

3

4

5

a

b

c

d

P =





1 ab̄ a ac acd
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āc̄ b̄c̄ c̄ 1 d
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ā b̄ 1 c cd
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āc̄d̄ b̄c̄d̄ c̄d̄ d̄ 1





8/39



1

2

3

4

5

a

b

c

d

a

a

• For instance:

                                             

On the minors ... : Introduction

1

2

3

4

5

a

b

c

d

P =





1 ab̄ a ac acd
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= b (1− aā)(1− cc̄)

1

2

3

4

5

a

b

c

d

a

a

• For instance:

                                             

On the minors ... : Introduction

1

2

3

4

5

a

b

c

d

P =





1 ab̄ a ac acd
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det(P (S, T )) =
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sgn(Ω) wt(Ω)

• Partial solution:

The exchange works if there is a common arrow, 
the configurations cancel out

         

• Thm: 

the sum being restricted to configurations ΩΩ with no double arrows.

• The arrows in the surviving configurations are either single
or come in pairs of opposite.
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• Remarks: 

• Single arrows are the same for all configurations (?)

• Pairs of opposites may vary 
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• The single arrows are determined by S and T
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We have: 
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• Necessary conditions for  det(P[S,T]) ≠ 0:

• There must exist at least one minimal 
configuration. 

• The minimal configuration must be unique

• Sufficient conditions

We have: 

• Remark: If no two paths of a minimal 
configuration have a common vertex, the 
minimal configuration is unique
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det(P [S, T ]) != 0

Unique minimal configuration
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Minimal configurations not unique
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appear with their opposite (                             ).
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Many configurations are possible.
Some with opposite signs.  Cancellations?
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• Let S, T be such that the minimal configuration 
ΩΩ0 is unique

• Single arrows will be part of any configuration

• Choose some set F of (other) arrows that will 
appear with their opposite (                             ).

• How many configurations have this weight? 
Many configurations are possible.
Some with opposite signs.  Cancellations?

•  Wanted: 
• A sign-reversing involution s.t.

       all survivors have the same sign
•  A bijection on survivors allowing

      their enumeration
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• A connection survives if the single 
incoming arrow is connected to the 
chosen pair 

• The exchange does not produce 
an allowed path

• Do it anyway! But create a new 
source-target vertex for the illegal 
path

• This change the associated 
permutation by a 3-cycle.  
No sign change

• This is the bijection

On the minors ... : Enumeration

+ -

v

v’

σ

from si

from si

from sj

from sj

σ°(i, j, v’)
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• This defines two opposite 
arrows

• Cancellations/bijection

• One last cut

• Record the edge that was 
connected to edge leading to 
the root
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sign
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• What is the sign? 
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#transposition = #F = 5

#sign change = 1
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On the minors ... : Enumeration
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• Main theorem:   Let dF(v) be the degree of v in F.  Then:
 

On the minors ... : Enumeration

for all vertex not on the 
minimal configuration

record the choices 
and change sign
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• If S = T = V.
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(−1)|F |wt(F )wt(F̄ )
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v∈V−V (Ω0)

(1− dF (v))

det(P ) =
∑

F⊆E+

(−1)|F |wt(F )wt(F̄ )

=
∏

e∈E+

(1− eē) (Yan-Yeh 06)
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• Cofactors: Let  S = V - { j }, T = V - { i }.

On the minors ... : Consequences

det(P [S, T ]) = (−1)Ω0 wt(Ω0) ×
∑

F⊆E+−E(Ω0)

(−1)|F |wt(F )wt(F̄ )
∏

v∈V−V (Ω0)

(1− dF (v))

(all e =q: Bapat, Lal, Sukanta Pati  06)

(−1)i+j det(P [S, T ]) =






0 if i "= j and (i, j) is not form an edge,
− e

1−eē |P | if (i, j) is the arrow e,(
1 +

∑
e∈t−1(i)

eē
1−eē

)
|P | if i = j.
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1−eē |P | if (i, j) is the arrow e,(
1 +

∑
e∈t−1(i)

eē
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• Let J be the all 1’s matrix and c the number of trees in the forest.  Then

Bapat, Kirkland, Neumann (05): D instead of P.

On the minors ... : Consequences

det(P [S, T ]) = (−1)Ω0 wt(Ω0) ×
∑

F⊆E+−E(Ω0)

(−1)|F |wt(F )wt(F̄ )
∏

v∈V−V (Ω0)

(1− dF (v))

det(P + xJ) = |P | + x (sum of the cofactors of P )

= (1 + cx) |P | + x

(
∑

e∈E

(1− e)(1− ē)
1− eē

)
|P |
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• When S = T ...

On the minors ... : Consequences
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v∈V−V (Ω0)

(1− dF (v))

det(P [U, U ]) =
∑
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(−1)|F |wt(F )wt(F̄ )
∏

v∈V−U

(1− dF (v))
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• When S = T ...

• For                          ,  let 

On the minors ... : Consequences
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e ∈ E+ ∪ E− = e
∂

∂e
δe(monomial) =

{
0 if e !∈ monomial,
monomial if e ∈ monomial.
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(I − δv) ◦ |P |
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• From multiplicative to additive weight:
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b
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• From multiplicative to additive weight:

On the minors ... : Additive weight

ω
a

b
c

additive

wt(ω) = a + b + · · · + c

Dmatrix:

multiplicative 

wt(ω) = ab · · · c

matrix: P
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wt(ω) = (1 + at)(1 + bt) · · · (1 + ct) = 1 + (a + b + · · · + c)t + O(t2)
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wt(ω) = (1 + at)(1 + bt) · · · (1 + ct) = 1 + (a + b + · · · + c)t + O(t2)

• From multiplicative to additive weight:

On the minors ... : Additive weight

ω
a

b
c

additive

wt(ω) = a + b + · · · + c

Dmatrix:

P+ = J + Dt + O(t2)

[tn] det(P+ − J) = det(D)

matrix: P+

multiplicative 

wt(ω) = ab · · · c

matrix: P
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•  

On the minors ... : Additive weight

[tn] det(P+ + (xt− 1)J) = det(D + xJ) = (−1)n−1

(
x +

∑

e∈E

eē

e + ē

)
∏

e∈E

(e + ē)
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)
∏

e∈E

(e + ē)
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: Bapat, Kirkland, Neumann (05)e = ē

•  

• x = 0 
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: Bapat, Kirkland, Neumann (05)e = ē

•  

• x = 0 

On the minors ... : Additive weight
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: Bapat, Kirkland, Neumann e = ē

det(D) = (−1)n−1

(
∑

e∈E

eē

e + ē

)
∏

e∈E

(e + ē)

e = ē = 1 det(D) = (−1)n−1(n− 1) 2n−2

Graham, Pollak (71)

[tn] det(P+ + (xt− 1)J) = det(D + xJ) = (−1)n−1

(
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)
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• q-analogue of the distance

On the minors ... : q-analogues

ω
1

q q2
q l-1

wt(ω) = 1 + q + q2 + · · · + ql−1

=
ql − 1
q − 1

= [l]

Matrix: Dq
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• q-analogue of the distance

• multiplicative weight q on each arrow

On the minors ... : q-analogues
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q q2
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qq
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Matrix: Dq

wt(ω) = ql

Matrix: P
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• q-analogue of the distance

• multiplicative weight q on each arrow

•  

On the minors ... : q-analogues

ω
1

q q2
q l-1

ω

q q
qq

wt(ω) = 1 + q + q2 + · · · + ql−1

=
ql − 1
q − 1

= [l]

Matrix: Dq

wt(ω) = ql

Matrix: P

det
(

P − J

q − 1

)
= det(Dq)

= (−1)n−1(n− 1)(1 + q)n−2
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On the minors ... : q-analogues
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• Generalization (Yan-Yeh, 06): arrows                                      have (multiplicative) weight 
                                                              
                            

On the minors ... : q-analogues

ω

q q
qq α

β γ

λ

Matrix: P

wt(ω) = qα+β+···+λ

a, b, . . . , ā, b̄, . . .

qα, qβ , . . . , qᾱ, qβ̄ , . . .
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• Generalization (Yan-Yeh, 06): arrows                                      have (multiplicative) weight 
                                                              
                            

On the minors ... : q-analogues

ω

q q
qq α

β γ

λ

Matrix: P

wt(ω) = qα+β+···+λ

a, b, . . . , ā, b̄, . . .

qα, qβ , . . . , qᾱ, qβ̄ , . . .

det
(

P − J

q − 1

)
= (−1)n−1

∏

ε

[ε + ε̄]
∑

ε

[ε] [ε̄]
[ε + ε̄]

Yan-Yeh (06)

38/39End


