Proofs of Ramanujan series by the WZ-method

Jesús Guillera
Zaragoza (Spain)

Rutgers Experimental Mathematics Seminar
September 18, 2014 / Rutgers University

Introduction

In this talk we will use the Wilf-Zeilberger (WZ)-method to prove in an elementary way formulas like

$$
\sum_{n=0}^{\infty}\left(\frac{-1}{16}\right)^{n} \frac{\left(\frac{1}{2}\right)_{n}\left(\frac{1}{3}\right)_{n}\left(\frac{2}{3}\right)_{n}}{(1)_{n}^{3}}(51 n+7)=\frac{12 \sqrt{3}}{\pi}
$$

or

$$
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}^{3}\left(\frac{1}{3}\right)_{n}\left(\frac{2}{3}\right)_{n}}{(1)_{n}^{5}}\left(\frac{3}{4}\right)^{3 n}\left(74 n^{2}+27 n+3\right)=\frac{48}{\pi^{2}}
$$

where $(a)_{n}=a(a+1)(a+2) \cdots(a+n-1)$.
The first one is a Ramanujan-type series due to Chan, Liaw and Tan (2003), who proved it using elliptic modular functions.

All the known proofs of the second formula are based on WZ-pairs.

The rising or sifting factorial (Pochhammer symbol) is defined by

$$
(a)_{x}=\frac{\Gamma(a+x)}{\Gamma(a)}, \quad(0)_{0}=1
$$

If x is a positive integer, it reduces to

$$
(a)_{n}=a(a+1)(a+2) \cdots(a+n-1),
$$

For $a=1$, we have

$$
(1)_{n}=n!,
$$

and we see that the rising factorial generalize the ordinary factorial.

Ramanujan-type series for $1 / \pi$

The series for $1 / \pi$ of the form

$$
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}(s)_{n}(1-s)_{n}}{(1)_{n}^{3}} z^{n}(a+b n)=\frac{1}{\pi}
$$

where $s=1 / 2,1 / 4,1 / 3$, or $1 / 6$ and z, a, b are algebraic numbers, were discovered by S. Ramanujan, who gave 17 examples in 1914.

One of them is

$$
\sum_{n=0}^{\infty} \frac{1}{2^{6 n}} \frac{\left(\frac{1}{2}\right)_{n}^{3}}{(1)_{n}^{3}}(42 n+5)=\frac{16}{\pi}
$$

It gives approximately $\log 64 \simeq 1.8$ digits of π per term.

Other series by Ramanujan

The most impressive series discovered by Ramanujan are:

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{(-1)^{n}}{882^{2 n}} \frac{\left(\frac{1}{2}\right)_{n}\left(\frac{1}{4}\right)_{n}\left(\frac{3}{4}\right)_{n}}{(1)_{n}^{3}}(21460 n+1123)=\frac{3528}{\pi} \\
& \sum_{n=0}^{\infty} \frac{1}{99^{4 n}} \frac{\left(\frac{1}{2}\right)_{n}\left(\frac{1}{4}\right)_{n}\left(\frac{3}{4}\right)_{n}}{(1)_{n}^{3}}(26390 n+1103)=\frac{9801 \sqrt{2}}{4 \pi}
\end{aligned}
$$

which give almost 6 and 8 digits per term respectively.
J. and P. Borwein were the first to prove the 17 Ramanujan series by using the theory of elliptic modular functions and equations.

Rational and irrational Ramanujan series

Ramanujan only gives the following example of irrational series:

$$
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}^{3}}{(1)_{n}^{3}} \frac{1}{2^{6 n}}\left(\frac{\sqrt{5}-1}{2}\right)^{8 n}[(42 \sqrt{5}+30) n+(5 \sqrt{5}-1)]=\frac{32}{\pi}
$$

The brothers D. and G. Chudnovsky proved the formula

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{53360^{3 n}} \frac{\left(\frac{1}{2}\right)_{n}\left(\frac{1}{6}\right)_{n}\left(\frac{5}{6}\right)_{n}}{(1)_{n}^{3}} \frac{545140134 n+13591409}{426880}=\frac{\sqrt{10005}}{\pi}
$$

which has the property of being the fastest possible rational series. This is so because for this series we have

$$
b^{2}=163(1-z)
$$

the greatest number for which $\mathbb{Q}(\sqrt{-r})$ has unique factorization.

Ramanujan-like series for $1 / \pi^{2}$

Let $s_{0}=1 / 2, s_{3}=1-s_{1}, s_{4}=1-s_{2}$ and

$$
\begin{aligned}
\left(s_{1}, s_{2}\right)= & (1 / 2,1 / 2),(1 / 2,1 / 3),(1 / 2,1 / 4),(1 / 2,1 / 6),(1 / 3,1 / 3), \\
& (1 / 3,1 / 4),(1 / 3,1 / 6),(1 / 4,1 / 4),(1 / 4,1 / 6),(1 / 6,1 / 6), \\
& (1 / 5,2 / 5),(1 / 8,3 / 8),(1 / 10,3 / 10),(1 / 12,5 / 12) .
\end{aligned}
$$

We will call Ramanujan-like series for $1 / \pi^{2}$ to the series which are of the form

$$
\sum_{n=0}^{\infty} z^{n}\left[\prod_{i=0}^{4} \frac{\left(s_{i}\right)_{n}}{(1)_{n}}\right]\left(a+b n+c n^{2}\right)=\frac{1}{\pi^{2}}
$$

where z, a, b and c are algebraic numbers. Observe that now we have five rising factorials in the numerator instead of three.

The PSLQ algorithm

Let $\left(x_{1}, \ldots x_{n}\right)$ be a vector of real numbers and write all the numbers the x_{j} with a precision of d decimal digits.

The PSLQ algorithm finds a vector $\left(a_{1}, \ldots, a_{n}\right)$ of integers (with $a_{j} \neq 0$ for some j), such that:

$$
a_{1} x_{1}+\cdots+a_{n} x_{n}=0, \quad(\text { with a precision of } d \text { digits) }
$$

and which has the smallest possible norm.
The PSLQ algorithm discovers identities but do not prove them.
Example: Let

$$
f(j)=\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}^{5}}{(1)_{n}^{5}} \frac{(-1)^{n}}{2^{k n}} n^{j}, \quad k=1,2,3, \ldots
$$

and look for integer relations among $f(0), f(1), f(2)$ and $1 / \pi^{2}$.

With PSLQ we discovered the formulas

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}^{5}}{(1)_{n}^{5}} \frac{(-1)^{n}}{2^{2 n}}\left(20 n^{2}+8 n+1\right) & =\frac{8}{\pi^{2}}, \\
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}^{3}\left(\frac{1}{4}\right)_{n}\left(\frac{3}{4}\right)_{n}}{(1)_{n}^{5}} \frac{1}{2^{4 n}}\left(120 n^{2}+34 n+3\right) & =\frac{32}{\pi^{2}}, \\
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}^{5}(-1)^{n}}{(1)_{n}^{5}} \frac{2^{10 n}}{2^{10}}\left(820 n^{2}+180 n+13\right) & =\frac{128}{\pi^{2}}, \\
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}^{3}\left(\frac{1}{3}\right)_{n}\left(\frac{2}{3}\right)_{n}}{(1)_{n}^{5}}\left(\frac{3}{4}\right)^{3 n}\left(74 n^{2}+27 n+3\right) & =\frac{48}{\pi^{2}} .
\end{aligned}
$$

I proved the three first formulas by the WZ-method in 2002 and 2003 and the last one in 2010.

Conjectured formulas

By the PSLQ algorithm we discovered the formulas

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}\left(\frac{1}{3}\right)_{n}\left(\frac{2}{3}\right)_{n}\left(\frac{1}{4}\right)_{n}\left(\frac{3}{4}\right)_{n}}{(1)_{n}^{5}} \frac{(-1)^{n}}{48^{n}}\left(252 n^{2}+63 n+5\right) & =\frac{48}{\pi^{2}}, \\
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}\left(\frac{1}{8}\right)_{n}\left(\frac{3}{8}\right)_{n}\left(\frac{5}{8}\right)_{n}\left(\frac{7}{8}\right)_{n}}{(1)_{n}^{5}} \frac{1}{7^{4 n}}\left(1920 n^{2}+304 n+15\right) & =\frac{56 \sqrt{7}}{\pi^{2}}, \\
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}\left(\frac{1}{4}\right)_{n}\left(\frac{3}{4}\right)_{n}\left(\frac{1}{6}\right)_{n}\left(\frac{5}{6}\right)_{n}}{(1)_{n}^{5}} \frac{(-1)^{n}}{2^{10 n}}\left(1640 n^{2}+278 n+15\right) & =\frac{256 \sqrt{3}}{\pi^{2}}, \\
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}\left(\frac{1}{3}\right)_{n}\left(\frac{2}{3}\right)_{n}\left(\frac{1}{6}\right)_{n}\left(\frac{5}{6}\right)_{n}}{(1)_{n}^{5}} \frac{(-1)^{n}}{80^{3 n}}\left(5418 n^{2}+693 n+29\right) & =\frac{128 \sqrt{5}}{\pi^{2}} .
\end{aligned}
$$

They remain unproved.

In 2010 we discovered three more series

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}\left(\frac{1}{3}\right)_{n}\left(\frac{2}{3}\right)_{n}\left(\frac{1}{6}\right)_{n}\left(\frac{5}{6}\right)_{n}}{(1)_{n}^{5}}(-1)^{n}\left(\frac{3}{4}\right)^{6 n}\left(1936 n^{2}+549 n+45\right)=\frac{384}{\pi^{2}} \\
& \sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}\left(\frac{1}{3}\right)_{n}\left(\frac{2}{3}\right)_{n}\left(\frac{1}{6}\right)_{n}\left(\frac{5}{6}\right)_{n}}{(1)_{n}^{5}}\left(\frac{3}{5}\right)^{6 n}\left(532 n^{2}+126 n+9\right)=\frac{375}{\pi^{2}}, \\
& \sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}^{3}\left(\frac{1}{3}\right)_{n}\left(\frac{2}{3}\right)_{n}}{(1)_{n}^{5}}\left(\frac{3}{\phi}\right)^{3 n}\left[\left(32-\frac{216}{\phi}\right) n^{2}+\left(18-\frac{162}{\phi}\right) n+\left(3-\frac{30}{\phi}\right)\right]=\frac{3}{\pi^{2}},
\end{aligned}
$$

where ϕ is the fifth power of the golden ratio. This formula is the unique irrational example that I have found for $1 / \pi^{2}$.

The second formula is joint with G. Almkvist.
B. Gourevitch (2002) found with PSLQ the formula

$$
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}^{7}}{(1)_{n}^{7}} \frac{1}{2^{6 n}}\left(168 n^{3}+76 n^{2}+14 n+1\right)=\frac{32}{\pi^{3}}
$$

and Jim Cullen (2010) found with PSLQ the formula

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}^{7}\left(\frac{1}{4}\right)_{n}\left(\frac{3}{4}\right)_{n}}{(1)_{n}^{9}} \frac{1}{2^{12 n}} \times \\
\quad\left(43680 n^{4}+20632 n^{3}+4340 n^{2}+466 n+21\right)=\frac{2^{12}}{\pi^{4}}
\end{aligned}
$$

Are they provable by the WZ-method?.

Let $G(n, k)$ be hypergeometric in its two symbols. The proof of

$$
\sum_{n=0}^{\infty} G(n, k)=\text { Constant }
$$

can be automatically (EKHAD) carried over by a computer.
H. Wilf and D. Zeilberger have discovered an algorithm that finds a rational function $C(n, k)$ called certificate, such that

$$
\begin{aligned}
F(n, k) & =C(n, k) G(n, k), \quad F(0, k)=0, \\
G(n, k+1)-G(n, k) & =F(n+1, k)-F(n, k) \quad(\text { WZ-pair })
\end{aligned}
$$

Observe that if we sum for $n \geq 0$ the right side telescopes. Then apply Carlson's theorem.

Chains of WZ pairs

Let $F(n, k)$ and $G(n, k)$ be the two hypergeometric functions of a WZ-pair, and suppose that in addition $F(0, k)=0$. If we define

$$
F_{s, t}(n, k)=F(s n, k+t n), \quad s \in \mathbb{Z}-\{0\}, \quad t \in \mathbb{Z}
$$

then $F_{s, t}(n, k)$ and $G_{s, t}(n, k)$ are also the functions of WZ-pairs satisfying $F_{s, t}(0, k)=0$ and in addition, we have

$$
\sum_{n=0}^{\infty} G_{s, t}(n, k)=\sum_{n=0}^{\infty} G(n, k)=\text { Constant }
$$

So we have a chain of formulas with the same sum.

Bauer's series

In 1859 Bauer proved the formula

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{\left(\frac{1}{2}\right)_{n}^{3}}{(1)_{n}^{3}}(4 n+1)=\frac{2}{\pi}
$$

Generalization and Zeilberger's proof of Bauer's series:

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{\left(\frac{1}{2}\right)_{n}^{2}\left(\frac{1}{2}-k\right)_{n}}{(1+k)_{n}(1)_{n}^{2}}(4 n+1)=\frac{2}{\pi} \frac{(1)_{k}}{\left(\frac{1}{2}\right)_{k}}
$$

Proof: The companion is

$$
F(n, k)=(-1)^{n} \frac{\left(\frac{1}{2}\right)_{n}^{2}\left(\frac{1}{2}-k\right)_{n}}{(1+k)_{n}(1)_{n}^{2}} \frac{\left(\frac{1}{2}\right)_{k}}{(1)_{k}} \frac{n^{2}}{2 n-2 k-1},
$$

and we deduce the constant taking $k=1 / 2$.

Write with(SumTools[Hypergeometric]) ; in a Maple session, and let

$$
H(n, k)=(-1)^{n} \frac{\left(\frac{1}{2}\right)_{n}^{2}\left(\frac{1}{2}-k\right)_{n}}{(1+k)_{n}(1)_{n}^{2}} . \quad \text { Then, writing }
$$

degree (Zeilberger ($\mathrm{H}(\mathrm{n}, \mathrm{k}$) , $\mathrm{k}, \mathrm{n}, \mathrm{K})[1], \mathrm{K})$;
we see that the degree is $2<3$ (candidate). Then, if we write coK2: =coeff (Zeilberger ($\mathrm{H}(\mathrm{n}, \mathrm{k}) *(\mathrm{n}+\mathrm{b} * \mathrm{k}+\mathrm{c}), \mathrm{k}, \mathrm{n}, \mathrm{K})[1], \mathrm{K}, 2)$; coes:=coeffs(coK2,k); solve(\{coes\},\{b,c\});
we get the solution $b=0, c=1 / 4$. Then, writing

$$
\text { Zeilberger }(H(n, k) *(4 * n+1), k, n, K)[1] \text {; }
$$

we get the output $(1+2 k) K-(2+2 k)$.

By the WZ-method, we get the identities:

$$
\sum_{n=0}^{\infty} \frac{1}{3^{2 n}} \frac{\left(\frac{1}{2}+k\right)_{n}\left(\frac{1}{4}-\frac{k}{2}\right)_{n}\left(\frac{3}{4}-\frac{k}{2}\right)_{n}}{(1)_{n}^{2}(1+k)_{n}}(8 n+2 k+1)=\frac{2 \sqrt{3}}{\pi}\left(\frac{4}{3}\right)^{k} \frac{(1)_{k}}{\left(\frac{1}{2}\right)_{k}}
$$

$F(n, k) \rightarrow F(n, k+n)$, leads to

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{4 n} 3^{n}} \frac{\left(\frac{1}{2}-k\right)_{n}\left(\frac{1}{4}+\frac{k}{2}\right)_{n}\left(\frac{3}{4}+\frac{k}{2}\right)_{n}\left(\frac{1}{2}+k\right)_{n}}{(1)_{n}^{2}\left(1+\frac{k}{2}\right)_{n}\left(\frac{1}{2}+\frac{k}{2}\right)_{n}} \\
& \times \frac{(28 n+3)(2 n+1)+4 k(9 n+k+2)}{2 n+k+1}=\frac{16 \sqrt{3}}{3 \pi} \cdot\left(\frac{4}{3}\right)^{k} \frac{(1)_{k}}{\left(\frac{1}{2}\right)_{k}} .
\end{aligned}
$$

We have determined the values of the constants by taking $k=1 / 2$.
$F(n, k) \rightarrow F(n, k+2 n)$ leads to
$\sum_{n=0}^{\infty} \frac{1}{2^{4 n}} \frac{\left(\frac{1}{2}\right)_{n}\left(\frac{1}{4}\right)_{n}\left(\frac{3}{4}\right)_{n}\left(\frac{1}{6}\right)_{n}\left(\frac{5}{6}\right)_{n}}{(1)_{n}^{3}\left(\frac{1}{3}\right)_{n}\left(\frac{2}{3}\right)_{n}} \frac{720 n^{3}+804 n^{2}+236 n+15}{\left(n+\frac{1}{3}\right)\left(n+\frac{2}{3}\right)}=\frac{128 \sqrt{3}}{\pi}$.
$F(n, k) \rightarrow F(2 n, k-3 n)$ leads to
$\sum_{n=0}^{\infty} \frac{5^{5 n}}{2^{6 n 35 n}} \frac{\left(\frac{1}{10}\right)_{n}\left(\frac{3}{10}\right)_{n}\left(\frac{7}{10}\right)_{n}\left(\frac{9}{10}\right)_{n}}{(1)_{n}^{3}\left(\frac{1}{2}\right)_{n}} \frac{2924 n^{2}+1668 n+105}{n+\frac{1}{2}}=\frac{432 \sqrt{3}}{\pi}$.

By the WZ-method, we get the identities:

$$
\sum_{n=0}^{\infty}\left(\frac{-1}{8}\right)^{n} \frac{\left(\frac{1}{2}+2 k\right)_{n}\left(\frac{1}{2}\right)_{n}^{2}}{(1+k)_{n}^{2}(1)_{n}}(6 n+4 k+1)=\frac{2 \sqrt{2}}{\pi} \cdot \frac{(1)_{k}^{2}}{\left(\frac{1}{4}\right)_{k}\left(\frac{3}{4}\right)_{k}}
$$

With the transformation $F(n, k) \rightarrow F(n, k+n)$, we get

$$
\begin{aligned}
& \sum_{n=0}^{\infty}\left(\frac{-27}{512}\right)^{n} \frac{\left(\frac{1}{2}+2 k\right)_{n}\left(\frac{1}{2}\right)_{n}\left(\frac{1}{6}\right)_{n}\left(\frac{5}{6}\right)_{n}}{\left(\frac{1}{2}+\frac{k}{2}\right)_{n}\left(1+\frac{k}{2}\right)_{n}(1+k)_{n}(1)_{n}} \\
\times & \frac{(154 n+15)(2 n+1)+4 k(66 n+16 k+19)}{2 n+k+1}=\frac{32 \sqrt{2}}{\pi} \cdot \frac{(1)_{k}^{2}}{\left(\frac{1}{4}\right)_{k}\left(\frac{3}{4}\right)_{k}} .
\end{aligned}
$$

Here, we have determined the constants taking $k \rightarrow+\infty$. Observe that $(k)_{n} \sim k^{n}$.

By the WZ-method, we get the identities:

$$
\begin{aligned}
& \sum_{n=0}^{\infty}\left(\frac{-1}{16}\right)^{n} \frac{\left(\frac{1}{2}\right)_{n}\left(\frac{1}{2}+2 k\right)_{n}\left(\frac{1}{3}+k\right)_{n}\left(\frac{2}{3}+k\right)_{n}}{\left(\frac{1}{2}+\frac{k}{2}\right)_{n}\left(1+\frac{k}{2}\right)_{n}(1+k)_{n}(1)_{n}} \\
\times & \frac{(51 n+7)(2 n+1)+k(114 n+36 k+37)}{2 n+k+1}=\frac{12 \sqrt{3}}{\pi} \cdot \frac{(1)_{k}^{2}}{\left(\frac{1}{4}\right)_{k}\left(\frac{3}{4}\right)_{k}} . \\
& \sum_{n=0}^{\infty}\left(\frac{-9}{16}\right)^{n} \frac{\left(\frac{1}{2}-k\right)_{n}\left(\frac{1}{2}+3 k\right)_{n}\left(\frac{1}{3}+k\right)_{n}\left(\frac{2}{3}+k\right)_{n}}{\left(\frac{1}{2}\right)_{n}(1)_{n}(1+k)_{n}(1+3 k)_{n}} \\
\times & \frac{(5 n+1)(2 n+1)+k(16 n+6 k+7)}{2 n+1}=\frac{4 \sqrt{3}}{3 \pi} \cdot 4^{k} \cdot \frac{(1)_{k}^{2}}{\left(\frac{1}{6}\right)_{k}\left(\frac{5}{6}\right)_{k}} .
\end{aligned}
$$

We consider the following expression:

$$
H(n, k)=\left(\frac{-1}{16}\right)^{n} \frac{\left(\frac{1}{2}+j_{1} k\right)_{n}\left(\frac{1}{2}+j_{2} k\right)_{n}\left(\frac{1}{3}+j_{3} k\right)_{n}\left(\frac{2}{3}+j_{3} k\right)_{n}}{\left(1+j_{4} \frac{k}{2}\right)_{n}\left(\frac{1}{2}+j_{4} \frac{k}{2}\right)_{n}\left(1+j_{5} k\right)_{n}(1)_{n}},
$$

For most of the values of $j_{1}, j_{2}, j_{3}, j_{4}$ and j_{5}, we see (Maple):

$$
\begin{aligned}
& \text { with(SumTools [Hypergeometric]) ; } \\
& \text { degree(Zeilberger }(\mathrm{H}(\mathrm{n}, \mathrm{k}), \mathrm{k}, \mathrm{n}, \mathrm{~K})[1], \mathrm{K}) \text {; }
\end{aligned}
$$

is equal to 4 , but for $j_{1}=0, j_{2}=2, j_{3}=j_{4}=j_{5}=1$, we see that

$$
\text { degree(Zeilberger }(H(n, k), k, n, K)[1], K) \text {; }
$$

is equal to 3 . Hence, this is candidate.

With the candidate

$$
H(n, k)=\left(\frac{-1}{16}\right)^{n} \frac{\left(\frac{1}{2}\right)_{n}\left(\frac{1}{2}+2 k\right)_{n}\left(\frac{1}{3}+k\right)_{n}\left(\frac{2}{3}+k\right)_{n}}{\left(\frac{1}{2}+\frac{k}{2}\right)_{n}\left(1+\frac{k}{2}\right)_{n}(1+k)_{n}(1)_{n}},
$$

we calculate the numerical values of

$$
\begin{aligned}
A_{k} & =\sum_{n=0}^{\infty} H(n, k) \frac{(51 n+7)(2 n+1)}{2 n+k+1} \\
B_{k} & =k \sum_{n=0}^{\infty} H(n, k) \frac{n}{2 n+k+1} \\
C_{k} & =k \sum_{n=0}^{\infty} H(n, k) \frac{1}{2 n+k+1}
\end{aligned}
$$

and of $D=12 \sqrt{3} / \pi$.

We see that we have to find the constants a_{1}, a_{2} and a_{3}, such that

$$
A_{k}+a_{1} B_{k}+\left(a_{2} k+a_{3}\right) C_{k}+b D f(k)=0
$$

We find them using PSLQ to look for integer relations among

$$
A_{k}, \quad B_{k}, \quad C_{k}, \quad D .
$$

We get

$$
\begin{array}{r}
3 A_{1}+342 B_{1}+219 C_{1}-16 D f(1)=0, \\
105 A_{2}+11970 B_{2}+11445 C_{2}-1024 D f(2)=0, \\
1155 A_{3}+131670 B_{3}+167475 C_{3}-16384 D f(3)=0 .
\end{array}
$$

The solution is $a_{1}=114, a_{2}=36$ and $a_{3}=37$.

Cont. The WZ-pair

The combinatorial part of the WZ-pair is

$$
\begin{aligned}
B(n, k) & =\frac{\left(\frac{1}{2}\right)_{n}\left(\frac{1}{2}+2 k\right)_{n}\left(\frac{1}{3}+k\right)_{n}\left(\frac{2}{3}+k\right)_{n}}{\left(\frac{1}{2}+\frac{k}{2}\right)_{n}\left(1+\frac{k}{2}\right)_{n}(1+k)_{n}(1)_{n}} \cdot \frac{\left(\frac{1}{4}\right)_{k}\left(\frac{3}{4}\right)_{k}}{(1)_{k}^{2}}, \\
& =\frac{\left(\frac{1}{3}+n\right)_{k}\left(\frac{2}{3}+n\right)_{k}\left(\frac{1}{4}+\frac{n}{2}\right)_{k}\left(\frac{3}{4}+\frac{n}{2}\right)_{k}}{\left(\frac{1}{3}\right)_{k}\left(\frac{2}{3}\right)_{k}(1+n)_{k}(1+2 n)_{k}} \cdot \frac{\left(\frac{1}{2}\right)_{n}\left(\frac{1}{3}\right)_{n}\left(\frac{2}{3}\right)_{n}}{(1)_{n}^{3}} .
\end{aligned}
$$

And the WZ-pair is

$$
\begin{aligned}
& G(n, k)=B(n, k)\left(-\frac{1}{16}\right)^{n} \frac{(51 n+7)(2 n+1)+k(114 n+36 k+37)}{2 n+k+1} \\
& F(n, k)=B(n, k)\left(-\frac{1}{16}\right)^{n} \frac{9 n\left(-6 n^{2}-30 n k-13 n+7 k+3\right)}{(3 k+1)(3 k+2)}
\end{aligned}
$$

Observe how we guess the denominators of the rational parts.

Another example

We have

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left(-\frac{1}{4}\right)^{n} & \frac{\left(\frac{1}{2}\right)_{n}\left(\frac{1}{4}\right)_{n}\left(\frac{3}{4}+k\right)_{n}\left(\frac{1}{4}-k\right)_{n}}{(1)_{n}^{2}(1+k)_{n}\left(\frac{1}{4}+k\right)_{n}} \\
& \quad \times \frac{(3+20 n)(4 n+1)+4 k(12 n+1)}{4 n+4 k+1}=\frac{8}{\pi} \frac{\left(\frac{1}{4}\right)_{k}(1)_{k}}{\left(\frac{3}{4}\right)_{k}\left(\frac{1}{2}\right)_{k}} .
\end{aligned}
$$

And

$$
\begin{array}{r}
F(n, k)=\left(-\frac{1}{4}\right)^{n} \frac{\left(\frac{1}{4}\right)_{k}\left(\frac{1}{2}\right)_{k}\left(\frac{3}{4}+n\right)_{k}}{(1+n)_{k}\left(\frac{3}{4}-n\right)_{k}\left(\frac{1}{4}+n\right)_{k}} \cdot \frac{\left(\frac{1}{2}\right)_{n}\left(\frac{1}{4}\right)_{n}\left(\frac{3}{4}\right)_{n}}{(1)_{n}^{3}} \\
\times \frac{64 n^{2}(4 n-1)}{(4 n-4 k-3)(4 n+4 k+1)}
\end{array}
$$

Observe how we guess the denominators of the rational parts.

We have not found a WZ-pair to prove the formula

$$
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}\left(\frac{1}{4}\right)_{n}\left(\frac{3}{4}\right)_{n}}{(1)_{n}^{3}}(-1)^{n}\left(\frac{16}{63}\right)^{2 n}(65 n+8)=\frac{9 \sqrt{7}}{\pi}
$$

but we can relate it to a formula proved by the WZ-method. Let

$$
\begin{aligned}
& A(n, k)=3\left(\frac{64}{63}\right)^{k} \frac{(-k)_{n}\left(\frac{1}{2}\right)_{n}^{2}}{\left(\frac{1}{2}-k\right)_{n}^{2}(1)_{n}}\left(\frac{1}{64}\right)^{n}(42 n+5) \\
& B(n, k)=\frac{(-k)_{n}\left(\frac{-k}{2}\right)_{n}\left(\frac{1}{2}-\frac{k}{2}\right)_{n}}{\left(\frac{1}{2}-k\right)_{n}^{2}(1)_{n}}(-1)^{n}\left(\frac{16}{63}\right)^{2 n}(130 n-2 k+15) .
\end{aligned}
$$

From a Whipple's formula we can deduce that

$$
\sum_{n=0}^{\infty} A(n, k)=\sum_{n=0}^{\infty} B(n, k) \quad \forall k \in \mathbb{C} .
$$

Automatic proof

Let $\quad a(k)=\sum_{n=0}^{\infty} A(n, k), \quad b(k)=\sum_{n=0}^{\infty} B(n, k)$.
We can prove that $a(k)=b(k)$ automatically using Zeilberger:

$$
\begin{aligned}
& \text { with(SumTools [Hypergeometric]); } \\
& \text { Zeilberger }(A(n, k), k, n, K)[1] ; \\
& \text { Zeilberger }(B(n, k), k, n, K)[1] ;
\end{aligned}
$$

We see that $a(k)$ and $b(k)$ satisfy the same third order recurrent equation, and due to $(-k)_{n}$, we can directly check that

$$
a(0)=b(0), \quad a(1)=b(1), \quad a(2)=b(2) .
$$

Hence $a(k)=b(k)$ for all integers, which imply (Carlson's Thm.) that $a(k)=b(k) \quad \forall k \in \mathbb{C}$. Replacing $k=-1 / 2$ we are done.

From $s=1 / 2$ to $s=1 / 6$
Prove that:

$$
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}\left(\frac{1}{6}\right)_{n}\left(\frac{5}{6}\right)_{n}}{(1)_{n}^{3}}\left(\frac{2}{11}\right)^{3 n}(126 n+10)=\frac{11 \sqrt{33}}{2 \pi}
$$

With

$$
\text { Zeilberger (f }(\mathrm{n}, \mathrm{k}), \mathrm{k}, \mathrm{n}, \mathrm{~K})[1] \text {; }
$$

we can automatically prove that

$$
\begin{aligned}
11 & \left(\frac{32}{33}\right)^{3 k} \sum_{n=0}^{\infty} \frac{(-3 k)_{n}\left(\frac{1}{3}-k\right)_{n}\left(\frac{1}{6}-2 k\right)_{n}}{\left(\frac{2}{3}-2 k\right)_{n}\left(\frac{1}{3}-4 k\right)_{n}(1)_{n}}\left(\frac{-1}{8}\right)^{n}(6 n+1) \\
& =\sum_{n=0}^{\infty} \frac{(-k)_{n}\left(\frac{1}{3}-k\right)_{n}\left(\frac{2}{3}-k\right)_{n}}{\left(\frac{5}{6}-k\right)_{n}\left(\frac{2}{3}-2 k\right)_{n}(1)_{n}}\left(\frac{2}{11}\right)^{3 n}(126 n+6 k+11) .
\end{aligned}
$$

Here take $k=-1 / 6$ and we are done.

Complementary formulas. Part 1

D. Zeilberger wrote the Maple package twoFone, which found automatically many nice formulas, like for example
$\sum_{n=0}^{\infty} \frac{\left(\frac{1}{4}-k\right)_{n}\left(\frac{1}{4}-3 k\right)_{n}}{(1+2 k)_{n}(1)_{n}}(9-4 \sqrt{5})^{n}=C_{1} \frac{2^{8 k}}{5^{2 k}(5+2 \sqrt{5})^{k}} \frac{(1)_{k}\left(\frac{1}{2}\right)_{k}}{\left(\frac{11}{20}\right)_{k}\left(\frac{19}{20}\right)_{k}}$.
Multiplying (inside the series) for $n+b k+c$, we determine b and c forcing the coefficient of K^{2} to be 0 . That is, writing

```
coK2:=coeff(Zeilberger(k,n,K)[1],K,2);
coes:=coeffs(coK2,k);
solve({coes},{b,c});
```

and we obtain the complementary formula

Complentary formulas. Part 2

$$
\begin{gathered}
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{4}-k\right)_{n}\left(\frac{1}{4}-3 k\right)_{n}}{(1+2 k)_{n}(1)_{n}}(9-4 \sqrt{5})^{n}[40 n+20(\sqrt{5}-1) k+5-\sqrt{5}] \\
\quad=C_{2} \frac{2^{8 k}}{5^{2 k}(5+2 \sqrt{5})^{k}} \frac{(1)_{k}\left(\frac{1}{2}\right)_{k}}{\left(\frac{3}{20}\right)_{k}\left(\frac{7}{20}\right)_{k}}, \quad C_{1} C_{2}=\frac{2 \sqrt{10+5 \sqrt{5}}}{\pi} .
\end{gathered}
$$

Substituting $k=0$, and multiplying both series, we obtain

$$
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{4}\right)_{n}^{2}}{(1)_{n}^{2}}(9-4 \sqrt{5})^{n} \sum_{n=0}^{\infty} \frac{\left(\frac{1}{4}\right)_{n}^{2}}{(1)_{n}^{2}}(9-4 \sqrt{5})^{n}(40 n+5-\sqrt{5})=C_{1} C_{2} .
$$

Finally, using Clausen formula, the product transforms into

$$
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}^{3}}{(1)_{n}^{3}}(9-4 \sqrt{5})^{n}(20 n+5-\sqrt{5})=\frac{2 \sqrt{10+5 \sqrt{5}}}{\pi} .
$$

WZ-proofs of Ramanujan-like series for $1 / \pi^{2}(1)$

$\sum_{n=0}^{\infty} \frac{1}{2^{4 n}} \frac{\left(\frac{1}{2}\right)_{n}^{3}\left(\frac{1}{4}-\frac{k}{2}\right)_{n}\left(\frac{3}{4}-\frac{k}{2}\right)_{n}}{(1)_{n}^{3}(1+k)_{n}^{2}}\left(120 n^{2}+84 k n+34 n+10 k+3\right)=\frac{32}{\pi^{2}} \frac{(1)_{k}^{2}}{\left(\frac{1}{2}\right)_{k}^{2}}$.
For $k=0$ we have

$$
\sum_{n=0}^{\infty} \frac{1}{2^{4 n}} \frac{\left(\frac{1}{2}\right)_{n}^{3}\left(\frac{1}{4}\right)_{n}\left(\frac{3}{4}\right)_{n}}{(1)_{n}^{5}}\left(120 n^{2}+34 n+3\right)=\frac{32}{\pi^{2}},
$$

and if we let $k \rightarrow \infty$, we recover the Ramanujan series

$$
\sum_{n=0}^{\infty} \frac{1}{2^{6 n}} \frac{\left(\frac{1}{2}\right)_{n}^{3}}{(1)_{n}^{3}}(42 n+5)=\frac{16}{\pi}
$$

Observe that $(k)_{n} \sim k^{n}$.

WZ-proofs of Ramanujan-like series for $1 / \pi^{2}(2)$

$\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{2 n}} \frac{\left(\frac{1}{2}\right)_{n}^{5}}{(1)_{n}(1+k)_{n}^{4}}\left(20 n^{2}+8 n+1+24 k n+8 k^{2}+4 k\right)=\frac{8}{\pi^{2}} \frac{(1)_{k}^{4}}{\left(\frac{1}{2}\right)_{k}^{4}}$.
For $k=0$, we have

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{2 n}} \frac{\left(\frac{1}{2}\right)^{5}}{(1)_{n}^{5}}\left(20 n^{2}+8 n+1\right)=\frac{8}{\pi^{2}} .
$$

With the transformation $F(n, k) \rightarrow F(n, k+n)$, we get

$$
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}^{5}(-1)^{n}}{(1)_{n}^{5}} 2^{10 n}\left(820 n^{2}+180 n+13\right)=\frac{128}{\pi^{2}},
$$

which gives 3 digits per term.

WZ-proofs of Ramanujan-like series for $1 / \pi^{2}(3)$

We have

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}^{3}\left(\frac{1}{3}+\frac{k}{3}\right)_{n}\left(\frac{2}{3}+\frac{k}{3}\right)_{n}\left(1+\frac{k}{3}\right)_{n}}{(1)_{n}^{3}(1+k)_{n}^{3}}\left(\frac{3}{4}\right)^{3 n} \\
& \quad \times \frac{\left(74 n^{2}+27 n+3\right) n+k\left(108 n^{2}+42 k n+24 n+5 k+1\right)}{n+\frac{k}{3}}
\end{aligned}
$$

$=\frac{48}{\pi^{2}} \frac{(1)_{k}^{2}}{\left(\frac{1}{2}\right)_{k}^{2}}, \quad$ (we get the constant taking the limit as $\left.k \rightarrow \infty\right)$.
Then, taking $k=0$, we get

$$
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}^{3}\left(\frac{1}{3}\right)_{n}\left(\frac{2}{3}\right)_{n}}{(1)_{n}^{5}}\left(\frac{3}{4}\right)^{3 n}\left(74 n^{2}+27 n+3\right)=\frac{48}{\pi^{2}}
$$

I proved this formula in (2010).

WZ-proof of another formula by Ramanujan

In his first letter to Hardy, Ramanujan sent the following formula:

$$
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}^{5}}{(1)_{n}^{5}}(-1)^{n}(4 n+1)=\frac{2}{\Gamma^{4}\left(\frac{3}{4}\right)}
$$

For $B(n, k)=\frac{\left(\frac{1}{2}\right)_{n}^{2}\left(\frac{1}{2}+k\right)_{n}^{2}\left(\frac{1}{2}-k\right)_{n}}{(1)_{n}^{2}(1+k)_{n}^{2}(1+2 k)_{n}}(-1)^{n}$, we get that
degree (Zeilberger ($B(n, k$) , k, n, K [1] , K)
is equal to 4 , so this binomial part is a candidate. We find:
$\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}^{2}\left(\frac{1}{2}+k\right)_{n}^{2}\left(\frac{1}{2}-k\right)_{n}}{(1)_{n}^{2}(1+k)_{n}^{2}(1+2 k)_{n}}(-1)^{n}(4 n+2 k+1)=\frac{2}{\Gamma^{4}\left(\frac{3}{4}\right)} \frac{(1)_{k}^{3}}{\left(\frac{1}{2}\right)_{k}\left(\frac{3}{4}\right)_{k}^{2}}$,
which proves the Ramanujan series.

A complementary formula

We have found the following related series

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{\left(\frac{1}{2}\right)_{n}^{5}}{(1)_{n}^{5}}(4 n+1)\left(8 n^{2}+4 n+1\right)=\frac{8 \Gamma^{4}\left(\frac{3}{4}\right)}{\pi^{4}},
$$

and the WZ-proof:

$$
\begin{aligned}
& \sum_{n=0}^{\infty}(-1)^{n} \frac{\left(\frac{1}{2}\right)_{n}^{2}\left(\frac{1}{2}+k\right)_{n}^{2}\left(\frac{1}{2}-k\right)_{n}}{(1)_{n}^{2}(1+k)_{n}^{2}(1+2 k)_{n}}\left[(4 n+1)\left(8 n^{2}+4 n+1\right)\right. \\
&\left.+k\left(24 n^{2}+8 k n+8 n+1\right)\right]=\frac{8 \Gamma^{4}\left(\frac{3}{4}\right)}{\pi^{4}} \frac{(1)_{k}^{3}}{\left(\frac{1}{2}\right)_{k}\left(\frac{1}{4}\right)_{k}^{2}}
\end{aligned}
$$

Hence, we have
$\sum_{n=0}^{\infty}(-1)^{n} \frac{\left(\frac{1}{2}\right)_{n}^{5}}{(1)_{n}^{5}}(4 n+1) \cdot \sum_{n=0}^{\infty}(-1)^{n} \frac{\left(\frac{1}{2}\right)_{n}^{5}}{(1)_{n}^{5}}(4 n+1)\left(8 n^{2}+4 n+1\right)=\frac{16}{\pi^{4}}$.
W. Zudilin used the WZ-method to prove p-adic analogues for some Ramanujan-type series for $1 / \pi$ and $1 / \pi^{2}$. For example:

$$
\begin{aligned}
& \sum_{n=0}^{p-1} \frac{\left(\frac{1}{2}\right)_{n}\left(\frac{1}{4}\right)_{n}\left(\frac{3}{4}\right)_{n}}{(1)_{n}^{3}}(20 n+3) \frac{(-1)^{n}}{2^{2 n}} \equiv 3(-1)^{\frac{p-1}{2}} p\left(\bmod p^{3}\right) \\
& \sum_{n=0}^{p-1} \frac{\left(\frac{1}{2}\right)_{n}^{3}\left(\frac{1}{4}\right)_{n}\left(\frac{3}{4}\right)_{n}}{(1)_{n}^{3}}\left(120 n^{2}+34 n+3\right) \frac{1}{2^{4 n}} \equiv 3 p^{2}\left(\bmod p^{5}\right)
\end{aligned}
$$

where p is an odd prime. I have observed that there are also p-adic analogues for the product of complementary series:

$$
\begin{gathered}
\sum_{n=0}^{p-1}(-1)^{n} \frac{\left(\frac{1}{2}\right)_{n}^{5}}{(1)_{n}^{5}}(4 n+1) \cdot \sum_{n=0}^{p-1}(-1)^{n} \frac{\left(\frac{1}{2}\right)_{n}^{5}}{(1)_{n}^{5}}(4 n+1)\left(8 n^{2}+4 n+1\right) \\
\equiv p^{4}\left(\bmod p^{6}\right), \quad \text { where } \mathrm{p} \text { is an odd prime. }
\end{gathered}
$$

Curious repetitions of special values of z. Part 1

Observe that these three series have the same value of z :

$$
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}\left(\frac{1}{4}\right)_{n}\left(\frac{3}{4}\right)_{n}}{(1)_{n}^{3}} \frac{1}{7^{4 n}}(40 n+3)=\frac{49 \sqrt{3}}{9 \pi}
$$

proved with modular equations.

$$
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{8}\right)_{n}\left(\frac{3}{8}\right)_{n}\left(\frac{5}{8}\right)_{n}\left(\frac{7}{8}\right)_{n}}{\left(\frac{1}{2}\right)_{n}(1)_{n}^{3}} \frac{1}{7^{4 n}} \frac{1920 n^{2}+1072 n+55}{2 n+1}=\frac{196 \sqrt{7}}{3 \pi}
$$

and

$$
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}\left(\frac{1}{8}\right)_{n}\left(\frac{3}{8}\right)_{n}\left(\frac{5}{8}\right)_{n}\left(\frac{7}{8}\right)_{n}}{(1)_{n}^{5}} \frac{1}{7^{4 n}}\left(1920 n^{2}+304 n+15\right)=\frac{56 \sqrt{7}}{\pi^{2}}
$$

unproved.

Curious repetitions of special values of z. Part 2

Observe that these two unproved series have the same value of z :

$$
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}\left(\frac{1}{3}\right)_{n}\left(\frac{2}{3}\right)_{n}\left(\frac{1}{6}\right)_{n}\left(\frac{5}{6}\right)_{n}}{(1)_{n}^{5}}\left(\frac{3}{5}\right)^{6 n}\left(532 n^{2}+126 n+9\right)=\frac{375}{\pi^{2}}
$$

(joint with G. Almkvist), and

$$
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{3}\right)_{n}\left(\frac{2}{3}\right)_{n}\left(\frac{1}{6}\right)_{n}\left(\frac{5}{6}\right)_{n}}{\left(\frac{1}{2}\right)_{n}(1)_{n}^{3}}\left(\frac{3}{5}\right)^{6 n} \frac{133 n^{2}+79 n+6}{2 n+1}=\frac{625}{32 \pi}
$$

which I found recently by using the PSLQ algorithm.

Curious repetitions of special values of z. Part 3

Observe that these two series have the same value of z :

$$
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}\left(\frac{1}{4}\right)_{n}\left(\frac{3}{4}\right)_{n}}{(1)_{n}^{3}} \frac{(-1)^{n}}{48^{n}}(28 n+3)=\frac{16 \sqrt{3}}{3 \pi}
$$

proved by the modular theory and also by the WZ-method, and

$$
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}\left(\frac{1}{3}\right)_{n}\left(\frac{2}{3}\right)_{n}\left(\frac{1}{4}\right)_{n}\left(\frac{3}{4}\right)_{n}}{(1)_{n}^{5}} \frac{(-1)^{n}}{48^{n}}\left(252 n^{2}+63 n+5\right)=\frac{48}{\pi^{2}}
$$

unproved.

Curious repetitions of special values of z. Part 4

Observe that these two series have the same value of z :

$$
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}\left(\frac{1}{6}\right)_{n}\left(\frac{5}{6}\right)_{n}}{(1)_{n}^{3}} \frac{(-1)^{n}}{80^{3 n}}(5418 n+263)=\frac{640 \sqrt{15}}{3 \pi}
$$

proved by the modular theory, and
$\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}\left(\frac{1}{3}\right)_{n}\left(\frac{2}{3}\right)_{n}\left(\frac{1}{6}\right)_{n}\left(\frac{5}{6}\right)_{n}}{(1)_{n}^{5}} \frac{(-1)^{n}}{80^{3 n}}\left(5418 n^{2}+693 n+29\right)=\frac{128 \sqrt{5}}{\pi^{2}}$,
unproved.

Possible explanations

(1) Similar WZ-pairs.
(2) Cases $k=0$ and limit as $k \rightarrow+\infty$ of the same formula.
(3) Identities with a free parameter k.
(4) Unknown transformations.

Thank you

