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Introduction

Motivation: Young tableaux

The term “hook length” is motivated by a problem in the
enumeration of Young tableaux.

In the Young diagram of a partition, the hook of a cell contains the
cell, all cells below it, and all cells to the right; the name comes
from its shape. The hook length hij of cell (i , j) is the number of
cells in the hook, here 4.
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Introduction

Motivation: Young tableaux

A standard Young tableau is a filling of the Young diagram with
the numbers 1, . . . , n so that all rows and columns are increasing.

1 4 5 7

2 6 9

3

8



More Probabilistic Proofs of Hook Length Formulas Involving Trees

Introduction

Motivation: Young tableaux

The classical hook length formula gives the number of standard
Young tableaux of shape λ as

n!
/ ∏

(i ,j)∈λ

hij .

Since the lengths of the hooks appear in the denominator, you
might guess that they can be used in a probabilistic proof of the
formula; this has been done [Greene/Nijhenhuis/Wilf].
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Introduction

Hooks in trees

Definition

The hook of a vertex v in a rooted tree T is the set of all
descendants, including the vertex v itself. The hook length hv is
the number of vertices in the hook.

Here is a tree with its hook lengths.

�
�

�

@
@

@

�
�

�

@
@

@

@
@

@

6

3

1 1

2

1



More Probabilistic Proofs of Hook Length Formulas Involving Trees

Introduction

A hook length formula for trees

Definition

An increasing labeling of a rooted tree is a labeling of the vertices
with the numbers 1, . . . , n in which the label of every vertex is less
than the labels of all its children.

Theorem (Knuth)

For any rooted tree T with n vertices, the number of increasing
labelings is

n!
/∏

v∈T

hv .

This theorem is well known, and it is easy to prove probabilistically
[Sagan/Yeh].



More Probabilistic Proofs of Hook Length Formulas Involving Trees

Introduction

A hook length formula for trees

We present a probabilistic proof of this hook length formula which
motivates our proofs of the main results.

Choose a random labeling of T with labels in a set S as follows:

1 Assign a random label to the root.

2 If the root has children v1, . . . , vk , partition the remaining
labels randomly into subsets Sv1 , . . . ,Svk

of size hv1 , . . . , hvk
.

3 Apply the algorithm recursively to the hook of each child vi

with the subset Svi .
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Introduction

A hook length formula for trees

Here is an example; we happen to hit the 1/(6 · 3 · 2) chance that
we get an increasing labeling of this tree.
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Introduction

A hook length formula for trees

Here is an example; we happen to hit the 1/(6 · 3 · 2) chance that
we get an increasing labeling of this tree.
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Introduction

A hook length formula for trees

Here is an example; we happen to hit the 1/(6 · 3 · 2) chance that
we get an increasing labeling of this tree.
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Introduction

A hook length formula for trees

Here is an example; we happen to hit the 1/(6 · 3 · 2) chance that
we get an increasing labeling of this tree.
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Introduction

A hook length formula for trees

This algorithm gives a uniform distribution on all labelings, since
the root of each hook was assigned a random label from all labels
available for the hook. And for each vertex v , the probability that
it was assigned the lowest entry in its hook is 1/hv , so the
probability that we get an increasing labeling is 1/

∏
v∈T hv , and

the total number of increasing labelings is n! times this probability.
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Introduction

Hook length formulas with exponents

Han proved two hook length formulas for sums over all binary
trees; the hook lengths appear in the denominator in the form
1/hv2hv−1. Yang generalized the first formula to a weighted sum
over all ordered trees, with a factor 1/hvmhv−1. Unlike other hook
length formulas, the hook lengths appear as exponents. Both
formulas suggest that there could be a probabilistic proof.

Sagan (presented at this seminar a year ago) found a probabilistic
proof of Han’s first formula, Yang’s generalization, and a further
generalization, and conjectured that the second formula has a
probabilistic proof as well.
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Introduction

Outline of our work

We use these probabilities directly in an algorithm which gives a
probabilistic proof; that is, for each vertex v , we make one hv -way
choice, followed by hv − 1 2-way or m-way choices to build a
random labeled tree. Sagan’s algorithm builds a tree by assigning
the labels in order; we build the tree recursively by a process
analogous to depth-first search.

We also prove the second formula in two ways, using minor
variations of both our algorithm and Sagan’s.



More Probabilistic Proofs of Hook Length Formulas Involving Trees

Basic definitions and results

m-ary trees

We define a binary (or m-ary) tree to be a tree in which each
vertex has 2 (or m) ordered slots for children, which may be
occupied or vacant. For example, these are the five binary trees on
three vertices: rrr ��
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Basic definitions and results

Han’s first theorem

Theorem (Han)

For all positive integers n,∑
T

∏
v∈T

1

hv2hv−1
=

1

n!
,

where the sum is over all binary trees on n vertices.

Han proved this by induction, and Sagan gave a probabilistic proof.
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Basic definitions and results

Ordered trees

An ordered tree is a rooted tree in which an order is assigned to
the children of each vertex.

For a fixed m, Yang assigns a weight wm(T ) =
∏

v∈T

(m
cv

)
to the

tree T , where vertex v has cv children. If m is an integer, this is
the number of ways to make T into an m-ary tree, preserving the
order of children at each vertex. (Sagan noticed this for m = 2,
but it works for all m.) For example, the following tree has weight
m

(m
2

)
: rr rr @@��
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Basic definitions and results

Yang’s formula

Theorem (Yang)

For all positive integers n and m,∑
T

wm(T )
∏
v∈T

1

hvmhv−1
=

1

n!
,

where the sum is over all ordered trees on n vertices.

Sagan gave a probabilistic proof of the formula in this form.
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Basic definitions and results

Equivalent form of Yang’s formula

Our algorithm works more naturally if we eliminate the weights by
converting the ordered trees to m-ary trees; note that Han’s
theorem is the case m = 2.

Corollary

For all positive integers n and m,∑
T

∏
v∈T

1

hvmhv−1
=

1

n!
,

where the sum is over all m-ary trees on n vertices.
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Our main algorithm

Generating a random labeled tree

Here is our main algorithm, which gives our probabilistic proofs.

Choose a random labeled m-ary tree with labels in a set S as
follows:

1 Assign a random label to the root.

2 Partition the remaining labels randomly into m (possibly
empty) subsets S1, . . . ,Sm.

3 If the set Si is not empty, put a child vi in slot i , and apply
the algorithm recursively to construct subtrees rooted at vi

with vertices labeled by Si .
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Our main algorithm

Example of the algorithm (for binary trees)

3
�

�
�

@
@

@
1,2,6 4,52

�
�

�

@
@

@
1 6

@
@

@

5

4

Choices:

6, 25, 3, 22, 2, 21



More Probabilistic Proofs of Hook Length Formulas Involving Trees

Our main algorithm

Example of the algorithm (for binary trees)
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Our main algorithm

Example of the algorithm (for binary trees)
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Our main algorithm

Example of the algorithm (for binary trees)
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Our main algorithm

Proof of Han’s and Yang’s formula

With starting set of size n, we can get any labeling of any m-ary
tree on n vertices. For each vertex v , we had hv choices for the
label when that vertex was the root, and each of the remaining
hv − 1 labels was randomly assigned to one of the m subtrees.
Thus the probability of getting a tree T and a particular labeling is∏

v∈T

1

hvmhv−1
.

We sum this over all n! labelings of all m-ary trees to get

n!
∑
T

∏
v∈T

1

hvmhv−1
= 1,

which is Yang’s formula multiplied by n!.
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Our main algorithm

A further generalization [Sagan]

We can allow the value of m to vary with the position of v in the
tree. That is, we can take any infinite tree T in which a vertex at
position v has mv > 0 slots for children, and take a sum over all
subtrees: ∑

T⊂T

∏
v∈T

1

hvmhv−1
v

=
1

n!
.

Our algorithm and proof are exactly the same; Han’s and Yang’s
formulas are the cases in which T is an infinite binary or m-ary
tree.
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Our main algorithm

Illustration of Sagan’s generalization

Here is an example of a subtree of an infinite tree (here, mv is 1
more than the depth of v , but the algorithms still work even if mv

varies within a depth); each box contains the factor hvmhv−1
v .

...
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...
...

...
...

1 1

1 3 · 32

5 · 24

6 · 15

���
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���
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Sagan’s algorithm

Sagan’s algorithm

Here is Sagan’s algorithm, for creating a random increasingly
labeled tree. (Sagan used different probabilities for his proof of
Yang’s formula, but his proof of the generalization includes the
m-ary version of Yang’s formula as a special case.)

1 Start with an empty tree, with probability 1 assigned to
adding a root.

2 Choose a vertex slot according to the current probability
distribution, and create a vertex v there with the lowest
remaining label.

3 Replace the assigned probability p(v) for v with a probability
of p(v)/mv for each of the mv slots for children of v .

4 Return to step 2 until all labels are used.
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Sagan’s algorithm

Sagan’s algorithm

The probability p(v) for an individual vertex is∏
w>v

1

mw
,

the reciprocal of the product of the number of potential children of
its ancestors. In other words, it is the probability that a random
path starting from the root will pass through v .

In particular, if mw is a constant m (as in Yang’s formula), then
the probability assigned to a potential vertex at depth dv is 1/mdv .
In our previous example, mw = dw + 1, giving probability 1/dv !
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Sagan’s algorithm

Proof for Sagan’s algorithm

The probability we add v is
∏

w>v 1/mw , and when we add vertex
v , we add 1 to the hook lengths of all its ancestors, so we add a
factor of 1/mw to the product

∏
w∈T 1/mhw−1

w for every w > v .
Thus the probability of choosing a particular increasingly labeled T
with Sagan’s algorithm is∏

v∈T

p(v) =
∏
v∈T

∏
w>v

1

mw
=

∏
w∈T

∏
v<w

1

mw
=

∏
w∈T

1

mhw−1
w

.

and summing over all n!/
∏

v∈T hv increasing labelings of all T
gives Han’s, Yang’s, or Sagan’s formula.
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Sagan’s algorithm

Modifying our algorithm to match Sagan’s distribution

Our algorithm gives an arbitrary labeled tree, not an increasingly
labeled tree. To get an increasingly labeled tree, we could always
assign the lowest outstanding label in each subtree to the root,
rather than choosing a random label. We lose the factor of 1/hv ,
so the probability of choosing a particular increasingly labeled T is∏

v∈T

1

mhv−1
v

,

which we just showed is the distribution from Sagan’s algorithm.
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Sagan’s algorithm

Example of our modified algorithm
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Sagan’s algorithm

Example of our modified algorithm
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Sagan’s algorithm

Example of our modified algorithm
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Sagan’s algorithm

Example of our modified algorithm
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Complete binary trees

Complete trees

Definition

A binary tree T is complete if every non-leaf has two children.

Definition

The completion of the binary tree T is the complete tree T̂
obtained by adding children to all n + 1 empty slots, as shown by
the red edges below.

r r
r
r

@@
��

�� @@

rr r��
@@

Note that completing the tree changes the hook length of v from
hv to 2hv + 1.
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Complete binary trees

Han’s second formula

Theorem (Han)

For every positive integer n, we have∑
T

∏
v∈T

1

(2hv + 1)22hv−1
=

1

(2n + 1)!

where the sum is over binary trees on n vertices.

This is almost the same form as Han’s first formula modified to
use the completed tree, except that the factor is 22hv−1 rather than
22hv . Given the formulation in terms of completed trees, Sagan
conjectured that there should be a probabilistic proof. We will
provide two, using a version of our algorithm and an application of
Sagan’s algorithm.
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Complete binary trees

Algorithm for complete binary trees

Construct a random labeled complete binary tree with labels in a
set S of odd size as follows:

1 Assign a random label to the root.

2 If there is more than one label in S , partition the remaining
labels randomly into two subsets S1 and S2 of odd size.

3 If we have constructed S1 and S2, they are not empty; assign
two children v1 and v2 to the root, and apply the algorithm
recursively to construct subtrees rooted at vi with vertices
labeled by Si .

Recall that Han’s second formula had a factor of 22hv−1 for every
vertex v in T. In the completion T̂ , the hook length becomes
2hv + 1; step 2 gives 22hv−1 rather than 22hv choices because the
two subsets must be odd.
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Complete binary trees

Example of the complete-trees algorithm
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Complete binary trees

Example of the complete-trees algorithm
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Complete binary trees

Example of the complete-trees algorithm
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Complete binary trees

Example of the complete-trees algorithm
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Complete binary trees

Proof for complete binary trees

If T̂ is the completion of T , then we had 2hv + 1 choices for the
label at vertex v , where hv is the hook length in T , and we had
22hv−1 ways to assign the remaining labels to two subsets of odd
size. Therefore, the probability of getting a particular T̂ and a
particular labeling is ∏

v∈T

1

(2hv + 1)22hv−1
.

We sum this over all (2n + 1)! labelings of all complete trees to get

(2n + 1)!
∑
T

∏
v∈T

1

(2hv + 1)22hv−1
= 1,

which is Han’s formula multiplied by (2n + 1)!
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Complete binary trees

Not as nice for m-ary trees

The analogous formula for complete m-ary trees is not as natural.
The probability that a random partition of a set of size 2k into two
parts has both parts odd is always 1/2, but the probability that a
random partition of a set of size mk into m parts has all parts
congruent to 1 mod m depends on the size of the set, so we get an
extra factor corresponding to that probability.
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Complete binary trees

Our extension of Sagan’s algorithm for binary trees

We will use Sagan’s algorithm to construct an increasingly labeled
binary tree T̂ on 2n + 1 vertices, and then see whether it is
complete.

1 Start with an empty tree, with probability 1 assigned to
adding a root.

2 Choose a vertex slot according to the current probability
distribution, and create a vertex v̂ there with the lowest
remaining label.

3 Replace the assigned probability 1/2dv̂ for v̂ at depth dv̂ with
a probability of 1/2dv̂+1 for each of the two slots for children
of v̂ .

4 Return to step 2 until all labels are used.
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Complete binary trees

Is the tree complete?

A binary tree is complete if and only if every hook length is odd;
that is, if every non-leaf vertex has left and right subtrees both of
odd size. In Sagan’s algorithm, given any vertex which is not a
leaf, the probability that its left subtree has an odd number of
vertices is 1/2, since the last leaf added could be added on either
side. To get a complete tree with n internal vertices, we must pass
n such tests, which has probability 1/2n.
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Complete binary trees

The completion of another tree

Our tree T̂ is the completion of a tree T , and if v ∈ T has hook
length hv , then v̂ has hook length 2hv + 1 in T̂ . Thus the
probability of getting a particular labeling of the completion of T is∏

v∈T

1

22hv
,

and summing over all (2n + 1)!/
∏

v∈T (2hv + 1) increasing

labelings of all T̂ gives

(2n + 1)!
∑
T

∏
v∈T

1

(2hv + 1)22hv
=

1

2n
,

as desired.
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