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James Joseph Sylvester Matrices

define the Sylvester matrices inductively

H1 =
(

1
)
,H2 =

(
1 1
1 −

)
H2n+1 =

(
H2n H2n

H2n −H2n

)
H2n have the properties:

H2n is a symmetric matrix.
1) H2nH

T
2n = HT

2nH2n = 2nI2n .
2) every two distict rows or distinct columns have half of their
digits identical and half opposite to the other.
3) det H2n = 2n2n−1

is the biggest possible value of
determinants (volume of a complex parallelepiped) of the same
dimension matrices with |ai,j | ≤ 1.



the Walsh matrices

define the Walsh matrices Fn×2n(Z2) = Fn inductively

F1 =
(

0 1
)
,F2 =

(
0 0 1 1
0 1 0 1

)
Fn+1 =

(
01×2n 11×2n

Fn Fn

)
the kth column of Fn, 1 ≤ k ≤ 2n is the diadic expansion of
k − 1.

two non identical rows of Fn agree in 2n−1 position and differ
in 2n−1 position.

FT
n Fn is a square 2n × 2n matrix. Applying componentwise

i → 1− 2i on FT
n Fn gives the Sylvester matrix.

H4 = FT
2 F2 =(

0 0
0 1
1 0
1 1

)(
0 0 1 1
0 1 0 1

)
=

(
0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0

)
→
(

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

)
(1)



Hadamard linear error correcting codes

Any vector of n bits is a message. A message is a row of FT
n .

Two different messages are different rows of FT
n .

encipher each message m as the product of m with the
”generating” matrix Fn. Any two distinct messages give two
distinct rows in H2n , and have 2n−1 different digits.

Any mistake in the enciphering and transmitting of messages
by less then 2n−1 can be recoverd

The Sylvester-Walsh-Hadamard linear error correcting code of
type [2n, n, 2n−1]2 is a linear map encipher: (Z2)n → (Z2)2

n
so

that the Hamming distance between any two messages is
2n−1.

The punctured Hadamard code is of type [2n−1, n, 2n−2]2 and
has as a generating matrix the right half of the matrix Fn.



The work of Jacques Hadamard

Hadamard asked, given a dimension n which square n × n
matrices with |ai ,j | ≤ 1 will have the biggest possible
determinant.

He was able to prove that any such H will satisfy that
HHT = HTH = nIn, will have det(H) = n

n
2 . He proved that

except for the Sylvester matrices of dimensions 1 and 2, any
such other Hn must satisfy that n%4 = 0.

he made the famous conjecture that H4k exist for all natural
k. This conjecture is still open.

A solution for the previous smallest unknown case of n=428
was announced by Kharaghani and Tayfeh-Rezaie in June
2004. the smallest order for which the existence of an
Hadamard matrix is in doubt is currently 668.

Hadamard also found H12 and H20.



Applications of Hadamard matrices

The probe Mariner 9 was sent by NASA to Mars, and sent
home to earth on May 1971 photograph pictures taken for
Mars. Transmission took a long time and was susceptible to
errors and NASA chose to encipher the messages using the
punctured Hadamard code.

Any Hadamard (not necessarily Sylvester type) matrix can be
used for error correcting (not linear) code. Take Hn and the
adjunct matrix [H,−H]. Any (not necessarily linear) map
from the set of cardinality 2n to the different rows of H and
of −H is a code.

The difference between two messages is at least n
2 . so that if

there is less then n
4 corrupted bits the original message can be

recovered.

The Walsh code is a particular linear case where H = FT
n Fn.



(Quantum) Random Access Codes

Source
n bits
ai

m bits
(qubits)

Output
n bits
ci

m ≥ (1− H(p))n
H(p) = −p log2(p)− (1− p) log2(1− p)

e.g. 2 bits → 1 qubit → 2 bits
p = cos2(π/8) ≈ 0.85

∀i Prob(ci = ai ) ≥ p > 0.5



QRAC and MUB’s

in QRAC one can work with qdits (=bases in Cd).

Two bases {ei}, {fj}, 1 ≤ i , j ≤ d of Cd are mutually
unbiased(MUB) if ∀i , j | < ei , fj > |2 = 1

d .

In QRAC, one wants to work with MUB’s.

If {ei} is chosen to be the standard basis, {fj} must be chosen
to be the rows of a normalized complex Hadamard matrix.

Hadamard’s proof that for Hn to exist it must hold that
n%4 = 0 is only valid for real Hadamard matrices.

For all n there exists a (complex) Hn called the Fourier matrix.



Construction of Payley’s matrices

Suppose that p is a prime , and that q is a power of p.
Denote GF (q) the field with q elements. For a ∈ GF (q)
define the Legendre symbol by(

a

q

)
=


0 a = 0
1 a 6= 0 ∃b, b2 = a
−1 a 6= 0 @b, b2 = a

Define the set GF+ = GF (q) ∪ {∞} and a square matrix
Cq+1 by

Ci ,j =



(
i − j

q

)
i , j ∈ GF (q)

0 i = j =∞
1 i =∞ j 6=∞(
−1

q

)
j =∞ i 6=∞



Payley’s Hadamard matrices

C satisfies that CCT = CTC = qIq+1.

the diagonal terms in C equal 0, the off diagonal terms are
±1.

A matrix Dn with terms in {±1, 0} such that
DDT = DTD = (n − 1)In is called a conference matrix.

for q%4 = 1 C is symmetric and for q%4 = 3 C is
antisymmetric.

For q%4 = 3 the matrix C + I is a Payley’s Hadamard matrix.

For q%4 = 1 the block matrix(
C + I C − I
C − I −C − I

)
2q+2

is the Payley’s Hadamard matrix.



weighing matrices

Denote µ∗2 = {0,±1}. W ∈Mn(µ∗2) is called a weighing
matrix W (n,w) if it satisfies WW T = W TW = wIn. n is
called the order and w the weight of W .
Thus Hadamard matrices are W (n, n) matrices and conference
matrices are W (n, n − 1) matrices. We saw above that
Payley’s construction is to form W (n, n) from W (k , k − 1).
The following are W (2,w), 1 ≤ w ≤ 2(

I2
1 1
1 −

)
The following are W (3,w), 1 ≤ w ≤ 3(

I3 None None
)

The following are W (4,w), 1 ≤ w ≤ 4(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1 1 0 0
1 − 0 0
0 0 1 1
0 0 1 −

0 1 1 1
1 0 1 −
1 − 0 1
− − 1 0

1 1 1 1
1 − 1 −
1 1 − −
1 − − 1

)



more open problems in weighing matrices

The existence of W (4k, 4k) is the Hadamard conjecture but
also for w < n the existence of W (n,w) is open in general.

Until 1998 the smallest order weighing matrix that was not
known to exist was W (17, 9). In [OM] some of those matrices
were found.

The next weighing matrix whose existance was open after
their work was W (23, 16), which was found by our group.

Other problems in this subject are to find an (anti)symmetric
W (n,w). These are considered different problems. Our group
found a symmetric W (23, 16).



The work of Koukouvinos and Seberry [KS] on weighing
matrices and their application

A Chemical balance is a two pan balance with no bias.
Suppose given n object with true weights tj , 1 ≤ j ≤ n.
Suppose using the pan m times, each time putting few objects
on the left hand and few on the right, and measuring the
balanced results bi , 1 ≤ i ≤ m. Let Wm×n be the matrix
(weighing design) that describes the experiment where
wi ,j = 1 if in the i th experiment the j th object was placed on
the left hand, wi ,j = −1 if the j th object was placed on the
right hand and wi ,j = 0 if the j th object did not participate.

One would expect the equality b = Wt. Assume also that
there are errors caused in the measurements expressed in an
error vector e = em which is a random variable with mean
value 0 and covariance σ2Im, then the true equality becomes
b = Wt + e.



The work of Koukouvinos and Seberry [KS] continued

In Theorem 6 they prove that for n ≤ m, chosing the matrix
W to consist of n columns of a Hadamard matrix of order m
would give an optimal design for the chemical weighing
experiment, meabing that the error e will be minimal.

In the case that there is a restriction on the weighing pan, and
it is not possible to weigh more than w objects simultanously,
then it follows that the optimal weighing design becomes a
weighing matrix as defined above W (m,w)

Another usage of weighing matrices is for optical multiplexing,
which essentially is the previous setup, except that tj
measures intensity of light from the j th source of light, and
wi .j = 1, 0,−1 if in the i th experiment called mask, the j th

source is transmitting absorbing or reflecting light.

They also found some new weighing matrices.



The work of Harada and Munemassa [HM] on weighing
matrices and their application

Given a weighing matrix W (n,w) and an integer m dividing
w , interpret any element as an elements of Zm, then each row
of W defines and element in Zn

m, and all of W defines the
span of all rows, which is a submodule of Zn

m. All rows are
still pairwise perpendicular and non zero. Using the definition
WW t = wI = 0 it follows that for every prime p which divides
m rank (W ⊗ Zp) ≤ n/2; so that the rows of W span a true
submodule of Zn

m.
Any submodule of Zn

m is called a code. The code generated
by W is self orthogonal because every word is prpendicular to
any other. It can serve as a generating matrix for a linear
process encoding messages of length rank(W ) over Zm to
messages of length n.
Known classifications of orthogonal codes are used in this
paper to find some new weighing matrices.



Hadamard equivalence

A monomial matrix (signed permutation) is a permutation
matrix whose non zero elements are ±1. The set of all
monomial matrices is denoted Mon(n, n).

An Hadamard operation on a matrix A, is applying signed
paermutations, one on the rows and one on the columns.

Two matrices are Hadamard equivalent if one is obtained from
the other by an Hadamard operation.

An open problem is to find if two W (n,w) are Hadamard
equivalent or to classify all the possible classses for W (n,w).

All Hadamard matrices of order n with n ≤ 12 have one
Hadamard equivalence class. There are 5 Hadamard
equivalence classess of Hadamard matrices of order 16, 3 for
n=20 and 60 for n=24



Results of Eliyahu and Kervaire and of Craigen

Shalom Eliyahu and Michel Kervaire solved Hadamard
conjecture modulo 32 [EK].

They proved that for every n ∈ N there is a ±1 matrix H4n so
that HHT = 4nI4n%32.

Craigen [C] solved Hadamard conjecture for 2tp given a prime
p, for sufficiently large t.

For every prime p, there is a number t such that there is a
Hadamard matrix of order 2tp, where t ≤ 2N where N is the
number of 1 digits in the binary expansion of p, and
t ≤ 4d16 log2(p−1

2 )e+ 2.



Extension of Payley’s construction to weighing matrices

Given a set of n × n matrices Gi , 1 ≤ i ≤ m, the set is called
amicable [W] if ∀i , j , 1 ≤ i , j ≤ m it holds that GiG

T
j = GjG

T
i

or equivalently GiG
T
J is symmetric.

The set will be called antiamicable if ∀i , j , 1 ≤ i , j ≤ m it holds
that GiG

T
j = −GjG

T
i or equivalently GiG

T
J is antisymmetric.

A set of µ∗2 matrices will be called disjoint if
∀i , j , 1 ≤ i 6= j ≤ m, the Hadamard (componentwise) product
of Gi and Gj is the zero matrix and

∑m
i=1 Gi is a ±1 matrix.

Loosely speaking being disjoint means that the supports of
those matrices form a decomposition of all the entries of the
square matrix of length m.



Extension of Payley’s construction to weighing
matrices-contined

Payley construction for the case q = 1%4 can be extended to
the construction of weighing matrices as follows. Given
disjoint matrices A ∈W (n,w1) and B ∈W (n,w2), if A and
B are amicable, then the matrix(

A + B A− B
A− B −A− B

)
2n

is in W (2n, 2(w1 + w2)),

If A and B are antiamicable, the matrix A + B is in
W (n,w1 + w2).

These two constructions become the Payley Hadamard
matrices, because in the q = 1%4 case it holds that I
commutes with C defined above, and for q = 3%4 I still
commutes with C which is antisymmetric and thus the pair is
also antiamicable.



More relationship between Hadamard and weighing
matrices

Four square n × n ±1 matrices A,B,C and D are called of
Williamson type if they satisfy the equation
AAT + BBT + CCT + DDT = 4tIt and are amicable.

[Xi] found more relationship between Hadamard and weighing
matrices. He considered four n × n matrices of Williamson
type which satisfy some additional commutativity conditions.

Then there exist two disjoint W (2n, n) matrices and 4 disjoint
W (4n, n) matrices.

There is a family of natural numbers N defined so that there
exist two disjoint W (2N,N) matrices and 4 disjoint
W (4N,N) matrices.

There is a number m defined so that there is an Hadamard
4nm matrix.



Williamson construction

The usage of Payley’s construction yielded Hadamard
matrices up to order 88.

The Payley Hadamard matrices is the densest known family of
Hadamard matrices.

In 1962 a Hadamard matrix of order 92 was found by
Baumert, Golomb, and Hall using the Williamson
construction.

The construction in [BH] is now called Baumert Hall
construction of Williamson type Hadamard matrices.



Baumert Hall construction of Williamson type Hadamard
matrices

Define the quaternionic group consisting of G = ±{1, i , j , k}
with the product of the quaternions.

There is a presentation of G into GL(R, 4) given by mapping
1, i , j and k to the matrices,

(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)(
0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

)(
0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

)(
0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

)
respectively.

Given A,B,C and D of Williamson type the matrix

H =


A −B C D
B A −D C
−C D A −B
−D −C B A

 can be presented using the

kronecker tensor product H = 1⊗A+ i ⊗B + j ⊗C + k ⊗D. .



Baumert Hall construction of Williamson type Hadamard
matrices-continued

Then H is an Hadamard matrix of order n = 4t.

There is a prentation of S0 ↪→ GL(R, 2) by

1 =

(
1 0
0 1

)
−1 =

(
0 1
1 0

)
.

Using the above define the following square 2t matrices
α = 1⊗A+−1⊗B, β = 1⊗A−−1⊗B, γ = 1⊗C +−1⊗D,
δ = 1⊗ C −−1⊗ D.

Applying the above construction with α, β, γ, δ replacing
A,B,C ,D respectively, gives an Hadamard matrix of order 2n.

Repeating this process gives a family of Hadamard matrices of
orders 2kn.



(back) circulant matrices

Define a permutation on Zn by σ : x → x + 1%n. Let P be
the permutation matrix acting on the set {1, · · · n} by σ.

A matrix A is called circulant if it satisfies that PAPT = A.
This means that the terms of A are fixed on the diagonals %n
that are parallel to the main diagonal.

A is called back circulant if it satisfies that PAP = A,
meaning that the terms are fixed on the backdiagonals %n.

Let R is the permutation matrix with 1 digits on the back
diagonal and 0 digits elsewhere, or equivalently constructed
like P above from the permutation
i → (n + 1)− i , ∀i , 1 ≤ i ≤ n.

If A is circulant then AR and RA are back circulant and if A is
back circulant then AR and RA are circulant.



Goethals and Seidel construction of Williamson type
Hadamard matrices

Given 4 circulant square ±1 n × n matrices A,B,C and D
such that AAT + BBT + CCT + DDT = 4nIn then the
following matrix is an Hadamard matrix.

A BR CR DR
−BR A −DTR −CTR
−CR DTR A −BTR
−DR −CTR BTR A


Similarly to the Payley construction, the constructions in [BH]
and in [GS] can be extended to weighing matrices.



Classifying Hadamard equivalence classes of some weighing
matrices

Chan Rodger Sebery classification. [CRS] classified (up to
Hadamard equivalence) all weighing matrices of weight w ≤ 5
and all weighing matrices of order n ≤ 11. They used what is
called in Assaf’s paper [G] the support geometry.
Harada Munemasa classification [HM] they classify all
weighing matrices of order n ≤ 15, n = 17 and all
W (16,w),w = 6, 9, 12 and W (18, 9). For example they
found 11891 classes of W (18, 9)
In [S] Strassler found all equivalence classes of circulant
weighing matrices of weight 9. This appeared later in
[AAMS]. It turns out that the order must be a multiple of
either 13 or 24.
In [AES] all Circulant Weighing Matrices of Weight 16 and
Odd Order are classified. It turns out that the order must be
an odd multiple of either 21 or 31.



online sites of open and solved problem

There are on line sites with tables of open or of recently found
results. The book Handbook of Combinatorial Designs edited by
Chales J Colbourn and by Jefferry H. Dinitz has 89 sections in its
second edition. [SD].
The site of Akihiro Munemassa [SM] has a link to new unpublished
weighing matrices



A page from [SD]

Figure: Table of (un)known weighing matrices



our contribution to the subject

In the last 3 years our group was able to solve 6 weighing
matrices stated as open in the handbook. 5 of those are
publishable.

These are the W (23, 16) and symmetric W (14, 9) which were
solved by the mathod we called the shadow geometry,

Symmetric W (23, 16) which was solved by the method we
called code invariant,

W (25, 18),W (27, 16) and W (29, 16) which were solved by a
method we called tiling design.



Weight 16 is fully resolved

We remark that after we solved the symmetic W (14, 9) we
found out that it was actually solved long ago in the paper by
Chan Rodger and Seberry [CRS] and we wrote to the
handbook asking to remove this result.

Also we remark that in the method of tiling design we found a
W (23, 16) that is not Hadamard equivalent to the W (23, 16)
found by the geometry method.

For a given weight w = k2, it is known that W (n,w) exists
for sufficiently large n. Therefore, there can be only finitely
many open cases. In the table (Figure 1), all open cases are
surrounded in parentheses. Looking at the table, we see that
today the case of weight 16 is fully resolved.



The shadow geometry method

Today we would like to discuss the shadow geometry method,
and will deonstrate it using an example.

The following W (7, 4) (from Wikipedia) was found long ago:

1 1 1 1 0 0 0
1 −1 0 0 1 1 0
1 0 −1 0 −1 0 1
1 0 0 −1 0 −1 −1
0 1 −1 0 0 1 −1
0 1 0 −1 1 0 1
0 0 1 −1 −1 1 0





W (7, 4) as an An example

Let us take the absolute value componentwise and get the
matrix we call the support geometry PG defined by
∀1 ≤ i , j ≤ n,PGi ,j = w2

i ,j .

We define the shadow geometry by
∀1 ≤ i , j ≤ n,DGi ,j = 1− PGi ,j .

DG = J − PG =



0 0 0 0 1 1 1
0 0 1 1 0 0 1
0 1 0 1 0 1 0
0 1 1 0 1 0 0
1 0 0 1 1 0 0
1 0 1 0 0 1 0
1 1 0 0 0 0 1





Support and Shaddow geometries

The reason for the name geometry is that for DG this is an
incidence matrix between a geometry with 7 points and 7 lines
(The Fano Plane).

There are also the dual geometries, induced by the transpoe
matrices.

We also remark thet generally, there might be several different
rows having the 1 digits in the same columns, so that the
collection of lines is in fact a multisetL.

We call DG the Shaddow Geometry and PG the supposrt
Geometry.



philology of the word geometry

As in the PG every line is determined by its points, the same
holds for DG. In this case, DG is the incidence matrix of the
well known Fano plane (Figure 2)

Take a prime p and q = pn and F = GF (qn). Denote FP The
projective plane of F .

FP has q3−1
q−1 = q2 + q + 1 lines and points. Any line has

q + 1 points, and every point is included in q + 1 lines. Every
two lines intersect at a single point, and every two points lie
in a single line.

There is a weighing matrix W (q2 + q + 1, q2). The DG of
this weighing matrix is the incidence matrix of FP.

For p = n = 2 the DG obtained is the Fano plane mentioned
above. This is the reason Assaf [G] chose the name
’geometry’ for |W |



The Fano Plane

Figure: Fano’s plane



Local support and shaddow geometries

PG was used in [CRS], to classify all weighing matrices with
weight not exceeding 5 and also all weighing matrices with
order not exceeding 11, and DG was defined in [G].

The idea is that for W (23, 16) it is easier to deal with
arrangements of n − w = 7 digits, rather than with w = 16
digits.

Given the incidence matrix of any geometry, one may choose
any line, called base line, and consider only the columns
(points) in the support of this line and restrict to them,
obtaining the so called the associated local geometry.

For PG one obtains an w × n incidence submatrix of the Local
Support geometry LPG

For DG one obtains the (n − w)× n incidence matrix of the
Local Shadow Geometry LDG.



Local support and shaddow geometries

For example, using the first line of the shadow geometry
above the following incidence matrix for the above shadow
geometry is obtained

LDG (top − line) =



1 1 1
0 0 1
0 1 0
1 0 0
1 0 0
0 1 0
0 0 1


We define the type of the local geometry. Suppose that we
have a local geometry matrix of order m× n. Then the type is
a list of indices zi , 0 ≤ i ≤ m presenting the number of lines
intersecting the baseline with i intersection points.



The type of the LG

Claerly it must hold that
∑m

i=1 zi = n − 1. For example the
above local geometry has 6 lines intersecting the baseline with
1 point.

It should be emphasized that the type is a weaker invariant
than the local geometry, for example the following local
geometry matrix is different than the previous one but has the
same type

LDG2(top − line) =



1 1 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1





The list of types

The zi are natural numbers that satisfy the equations∑m
i=1 zi = n − 1 and

∑m
i=1 izi = (n − w)(n − w − 1).

It follows that a finite list of all possible types can be found.

This constitutes the stage where the necessary conditions for
the existence of W may become sufficient conditions that can
be used to build W .

It may be inferred from the above equations that in the
W (23, 16) shadow geometry, every line has at least 10 lines
intersecting it at exactly one point. This seemed at first too
big to fit into a space of 23 points. Therefore we conjectured
at first that W (23, 16) does not exist.
.



A Schematic Diagram

Weighing Matrix
W (n, k)

PG (Chen,Rogers,Seberry)
Coloring

DG (Goldberger)

LPG

LPG

LPG

LDG

LDG

LDG

Type

Type

Type

Type



Ruling out some types

There were 14 different types for LDG (23, 16) some of them
could immidiatly be ruled out.

For example the type z7 = 3, z3 = 1, z1 = 18 satisfies the true
necessary equations, but fails to satisfy another condition for
LDG (23, 16) that every pair of points have an odd number of
lines on which they all lie.

The three lines intersecting the base line with 7 points,
together with the top line itself, give the following submatrix:

LDG (23, 16) =



(base − line) 1 1 1 1 1 1 1
(z7 = 1) 1 1 1 1 1 1 1
(z7 = 2) 1 1 1 1 1 1 1
(z7 = 3) 1 1 1 1 1 1 1
· · ·
· · ·


in which every pair of points lies on 4 lines.



Chosing the type

Thus the bottom part of LDG (23, 16) which is yet to be
determined, must satisfy the parity condition. z1 = 18 gives
18 lines that do not contribute to the pairs of points in the
same line.

Since one can not spread out a triple of points, so that any of
the

(7
2

)
possible pairs of points will lie on an odd number of

lines, this type can not support a local geometry.

Eventually after a lot of trials, the type z7 = 2, z3 = 4, z1 = 16
was chosen with a local geometry it supports. The same local
geometry was set for the dual geometry. It filled the DG
matrix except for a 16× 16 core to give the picture:

DG(23, 16) =

 7 × 7 − intersection dual − lg dual − lg
lg 16 × 16 − core 16 × 16 − core
lg 16 × 16 − core 16 × 16 − core





Chosing the type

reish =

1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0





filling the core

It so happens that the 16× 16 core must be a tiling design of
4× 4 tiles each of which is 4× 4 digits.

Each row or column in each tile may have 3 or 1 digits, so any
tile may have 4, 6, 8, 10 or 12 digits.

The 4 and 12 tiles can be paired as disjoint matrices. There
are 24 paired disjoint T4,T12.

Similarly there are more than 24 pairs of T6−T10. There are
two different hadamard equivalence classes of T6, and of T10,
so that one can not permute one type of T6 to the other.

All T8 are paired with themselves. Assaf chose a canonical
representative of each tile, denoted CTi for i = 4, 6, 8, 10, 12.

Eventually two full non isomorphic shadow geometries based
on the type z7 = 2, z3 = 4, z1 = 16 both for the usual and
dual geometries were discovered



the two cores

The tiling of the first core

1core − DG (23, 16) =


CT12 CT4 CT4 CT4
CT4 T12 T4 T4
CT4 T4 T12 T4
CT4 T4 T4 T12


the tiling of the second core

2core − DG (23, 16) =


CT12 CT4 CT4 CT4
CT4 T8 T8 T4
CT4 T8 T4 T8
CT4 T4 T8 T8





A doubly indexed family of geometries

consequently we were able to extend the first geometry to an
infinite family of geometries.

Let k be a natural number, m = 2k , w = m2,
n = w + m + 1 + i(m − 2), 0 ≤ i ≤ m. For every k and i so
that 0 ≤ i ≤ m = 2k , there is a shadow geometry for
W (n,w).

The core consists of a design with
√
w ×

√
w tiles, each tile

with dimension
√
w ×

√
w , and of two kinds T (

√
w) and

T (w −
√
w).

For the particular case that
k=2,m=4,w=16,i=1,n=16+4+1+1 ·2 = 23, the core has
4× 4 tiles of dimension 4× 4 and each one is either T4 or
T (16− 4), yielding the firsly found geometry.



coloring

The geometry that corresponds to i = 0 is the honest to god
geometry of a projective plane formed from the Galois field of
2k elements. The case of k = 2 and i = 1 is the geometry (of
only T(4) and T(12)) that was found for W (23, 16).

The shadow geometry determines a support geometry. We
call the process of passing from the support geometry to the
full W ’coloring’. The only W we were able to color (which is
truely unknown) was W (23, 16), using the geometry with only
T4 and T12.



coloring

The stages of the coloring were the following. The top three
rows had 16 1 digit in the same location. We colored them as
the top three rows of a standard H16 matrix.

This means that the top row is colored to be all +1. The
second row is colored so that the first 8 digits are +1 and the
last 8 digits are colored with −1. The third row is colored
with 4 blocks of 4 digits, the first 4-tupple is colored with +1,
the second with −1 and then +1 and then −1.

This coloring is the one used in the standard proof that if an
Hadamard matrix Hn exists, and 2 < n, then n is divisible by
4.



Our specific W in W (23, 16)


0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 − − − − − − − −
0 0 0 0 0 0 0 1 1 1 1 − − − − 1 1 1 1 − − − −
0 0 0 1 1 1 1 0 0 0 0 − 1 1 − − 1 − 1 − 1 1 −
0 0 0 − − 1 1 1 − − 1 0 0 0 0 − 1 − 1 1 − − 1
0 0 0 1 − 1 − 1 − 1 − − 1 − 1 0 0 0 0 − 1 − 1
0 0 0 − 1 1 − − 1 1 − 1 − − 1 − 1 − 1 0 0 0 0
1 1 1 0 1 − − 1 0 0 0 0 1 − − 0 − − 1 0 − 1 1
1 1 1 0 − 1 1 0 1 0 0 − 0 − 1 1 0 − − 1 0 1 −
1 1 1 0 − − 1 0 0 1 0 1 − 0 − − 1 0 − − 1 0 1
1 1 1 0 1 1 − 0 0 0 1 − − 1 0 − − 1 0 1 1 − 0
1 1 − 1 0 − 1 0 − 1 − 0 0 0 1 − 0 1 1 1 − 0 −
1 1 − − 0 1 − 1 0 − − 0 0 1 0 0 1 1 − − − 1 0
1 1 − − 0 − − − − 0 1 0 1 0 0 1 1 − 0 0 1 − −
1 1 − 1 0 1 1 − 1 − 0 1 0 0 0 1 − 0 1 − 0 − 1
1 − − − 1 0 1 0 1 1 − − 1 0 − 0 0 0 − 1 0 − 1
1 − − 1 − 0 − − 0 1 1 − − 1 0 0 0 − 0 0 − 1 1
1 − − − 1 0 1 1 − 0 1 0 − − 1 0 − 0 0 − 1 1 0
1 − − 1 − 0 − 1 1 − 0 1 0 − − − 0 0 0 1 1 0 −
1 − 1 − − 1 0 0 − 1 − 1 0 1 − 1 − 0 1 0 0 0 −
1 − 1 1 1 − 0 1 0 − − 0 − 1 1 1 1 − 0 0 0 − 0
1 − 1 1 1 1 0 − − 0 1 1 1 − 0 0 1 1 − 0 − 0 0
1 − 1 − − − 0 − 1 − 0 − 1 0 1 − 0 1 1 − 0 0 0


http://www.emba.uvm.edu/ jdinitz/hcd/W2316.txt



coloring

There is the submatrix of the support geometry in rows 4
throu 7 and columns 4-7 . This submatrix has no 0 digits.
Then it was conjectured that this is a subHadamard H4

matrix.

Thus, all the rest of the one digits of rows 4-7 are in columns
8-23, and the submatrix of W which consists of rows 1-7 and
columns 8-21 must stisfy that non identical rows are
perpendicular. Rows 1-3 were already colored to be
perendicular to one another.

Thus we can enumerate on the 12 digits of each row 4-7. The
first digit can be colored to be +1, and the fact that this row
has to be perpendicular to rows 1-3, leaves about 10
candidates for each row 4-7. From this it is easy to determine
all possible simultaneous colorings for rows 4-7.



coloring

For any such colored 7 top rows of the geometry, one can find
all possible colorings of each row 8-23.

On the average there are 200 solutions for each such row.

We define a graph of about 3200 vertices. Each vertex
presents a colored row of rows 8-23 which is perpendicular to
rows 1-7. Join two rows if they present different rows and are
colored to be perpendicular to one another.

One only needs to find a clique of 16 vertices to complete the
coloring and this was found after 11 atempts.
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Appendix to Applications to quantum random access codes

In quantum mechanics a Physical state is presented by a
normalized L2 function ψ : X → C.

An observable on the space of states is a Hermitian operator
M on L2(X ,C). A measurment is a physical operation applied
to M that assigns to M an eigenvector vi and its eigenvalue
λi of M.

The probability to measure (vi , λi ) is given by | < ψ|vi > |2.

The expected value of the measurment is
E (M) = ψ →

∫
X ψMψ∗dx =< ψ,M, ψ >.



Applications to quantum random access codes

M has an orthonormal eigenbasis presentation
M =

∑
λi |vi >< vi with real eigenvalues λi . The

Copenhagen interpretation is that the measurement cause ψ
to collapse to one eigenvector.

If M1 and M2 commute then there is a common eigenbasis so
that each one has a presentation with respect to this common
basis. If M1 and M2 do not commute, one can not measure
both measurements simultaneously, we get Heisenberg
uncertainty principle.

If H1 and H2 do not commute, there is still a favorable
relationship beteen them which called Mutually unbiased
bases (of the correspondive Hermitian operators).

In this case the second measurement is independant of the
first one in the sense that knowing the value of the first gives
no knoledge of the second measurement.


