Polynomial Approximation of Computationally-Hard Sequences

Aviezri S. Fraenkel^{*} Computer Science and Applied Mathematics Weizmann Institute of Science Rehovot, Israel aviezri.fraenkel@weizmann.ac.il

November 14, 2007

Abstract

The question whether an *m*-tuple $(x_1, \ldots, x_m) \in \mathbb{Z}_{>0}^m$ is in (a^1, \ldots, a^m) , where the a^i are given integer sequences, can sometimes be decided *efficiently* (in polynomial time). More often, the answer is unknown, the best known algorithms being exponential. We present a polynomial approximate algorithm for deciding this question for some sequences a_i . Specifi-n}, $b_n = a_n + |n/k|$ (sequences A102528/9 in Sloane's encyclopedia for k = 2). Using Fekete's Lemma we show that the polynomially computable sequences $s_n = \lfloor n\alpha \rfloor$, $t_n = \lfloor n\beta \rfloor$ where $\alpha = (\sqrt{17} + 3)/4$, $\beta = \alpha + 1/2$ are very good approximations, namely, $s_{n-1} \leq a_n \leq s_n$, $t_{n-1} \leq b_n \leq t_n$ for all $n \ge 1$ (k = 2). We conjecture that the percentage of n for which $a_n = s_n - 1$ is about 73%, $a_n = s_n$, 19%, $a_n = s_n - 2$, 8%. Similar results for b_n , t_n . Analogous results for every fixed k > 1. Existence of a limiting distribution, with one of the percentages dominant, would lead to first probabilistic algorithms for determining the winning positions of certain impartial games, where the (a^1, \ldots, a^m) are the second player winning positions.

Joint work with Udi Hadad.

^{*}Currently Gorenstein Visiting Professor at Queens College, Queens, NY.