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Definition by Example

Everyone knows what a stopping problem is, even if they don’t
know that they know!

How long do you search for an employee, and when do you
simply settle and hire an individual for your open job position?

How long do you keep your house on the market, and when do
you simply accept an offer and sell?

For holders of American options, how long do you keep the
option, and when should you simply sell for the predetermined
price?
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Definition by Definition

Definition (Discrete Time Stopping Problems)

A (discrete time) stopping problem is composed of the following
parts:

A sequence {Xi} of random variables, whose joint distribution
is known.

A sequence {ri} of reward functions, where the function ri
accepts as arguments the observed values of X1 through Xi ,
i.e. ri = ri (x1, . . . , xi ).

Given these parts, the “goal” of a stopping problem is to decide,
after observing the value of the random variable Xi , whether to
accept the reward function ri (to stop) or to observe the value of
the next random variable Xi+1 (to go).
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Remarks

Almost all texts add to the goal that the so called “stopping
rule” maximize the expected reward.

Some texts allow for a payout on 0 observations. This is
equivalent to X0 being a constant random variable.

Some texts allow for unbounded observations, or even infinite
observations. We will mostly ignore these cases.

The stopping rule can depend on anything thus far observed,
any rewards that have been passed up, and can even be a
random variable itself!
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Our Two Problems

Problem (Coin Flipping)

Flip a coin any positive number of times. When you decide to
stop, you earn h

h+t units of money, where h is the number of heads
and t is the number of tails thus far observed. When should you
stop flipping?

Problem (Shepp’s Urn)

An urn is filled with some number p of $1 bills, and some number
m of $1 “anti-bills”. How many times (including 0) should you
draw an object from this urn?
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First Considerations

Let’s begin thinking about our coin flipping problem:

Since we have to flip at least once, what is the first decision in
our stopping rule?

If the first flip is a heads, it is obvious that we should stop, as
we will receive the maximum possible reward.

If the first flip is a tails, it is obvious that we should go, since
stopping would pay 0 units.
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Second Considerations

What should we do when the sequence of flips turns up TH?

If we stop, we will earn 0.5 units – no bad at all. But can we
do better?

By the law of large numbers, we could do better (perhaps only
slightly so) by continuing. But how long would we have to
go? Is it reasonable to assume we have nothing better to do
with our lives than flip coins?
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Medina and Zeilberger

These and other questions related to the coin flipping problem
have been addressed in the paper An Experimental Mathematics
Perspective on the Old, and Still Open, Question of When to Stop?
by Medina and Zeilberger (see reference slide for more details).

Let’s recreate a portion of their arguments here, in preparation for
our second problem of Shepp’s Urn.

Richard Voepel Experimental “Solutions” to Select Stopping Problems 9



Introduction
Coin Flipping
Shepp’s Urn

Medina and Zeilberger

These and other questions related to the coin flipping problem
have been addressed in the paper An Experimental Mathematics
Perspective on the Old, and Still Open, Question of When to Stop?
by Medina and Zeilberger (see reference slide for more details).

Let’s recreate a portion of their arguments here, in preparation for
our second problem of Shepp’s Urn.

Richard Voepel Experimental “Solutions” to Select Stopping Problems 9



Introduction
Coin Flipping
Shepp’s Urn

Is There a “Best” Stopping Rule?

The very first question we should ask is if we can specify a stopping
rule which maximizes the expected reward for this problem.

This is essentially an open question; there are infinitely many cases
that have not been resolved, and some of them sound quite
innocuous.

What we can say for sure is that such a rule exists, and in fact can
be encoded by a “stopping boundary” – a criterion that establishes
threshold values for the number of heads and tails that we must
either stop or go on in order to maximize our expected reward.
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The Stopping Boundary

Theorem (Chow and Robbins)

There exists a sequence of naturals {βn} such that if the number
of observed heads minus the number of observed tails after n coin
tosses is greater than or equal to βn, then you should stop. Else,
you should go.

Proof: See the final remark in the paper On Optimal Stopping
Rules for sn/n by Chow and Robbins.
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The Stopping Boundary

Theorem (Dvoretzky)

The stopping boundary sequence for the coin flipping problem
satisfies βn/

√
n ∈ Θ(1).

Theorem (Shepp)

The stopping boundary sequence for the coin flipping problem
satisfies lim

n→∞
βn/
√
n ≈ 0.83992. In particular, the limit exists.

Proofs: See the respective papers on the reference slide.
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Beyond Asymptotics

These results are nice, and there is some solid mathematics behind
them, but they say nothing about specific cases we want to
consider.

In particular, what is the value of β8? If you have observed the
sequence TTTHHHHH of flips, should you stop or go?

Should we even bother asking this question? Is it worth our time
to compute β8 when we are working in a model that implicitly
assumes we are willing and able to flip coins for eternity?
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A New Model

Rather than assume that we can flip coins as many times as we
desire, let us add the assumption that there is a finite (but
potentially large) number of coin flips available to us, say N.

If you happen to use up all of your flips you must stop, and as a
consolation prize your reward will be max(1/2, h/N), where h is
the number of observed heads in your N flips.

Define fN(h, t) to be the expected reward of the bounded version
of our coin flipping problem. Can we now compute this exactly?
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Backwards Induction

Since our reward is now clearly defined for all h + t = N, we may
use backwards induction to compute fN(h, t) for all h + t ≤ N.

Boundary: fN(h,N − h) = max(1/2, h/N) for 0 ≤ h ≤ N.
Induction:

fN(h, t) = max

(
fN(h + 1, t) + fN(h, t + 1)

2
,

h

h + t

)
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Results

Using this bounded time model, we can begin to say interesting
things about our original problem:

fN(h, t) is increasing in N and bounded, so the limit exists
(and happens to be equal to our expected reward for the
original problem).

We may now classify not only when a particular sequence of
flips is a stop or go, but how many flips you need to take in
order to switch from stop to go.

For instance, F (0, 0) = lim
N→∞

fN(0, 0) ≈ 0.79295, and a

sequence of 7 tails and 10 heads is optimal (you should stop)
unless you are willing to flip your coin at least another 1404
times.
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Further Statistics...

This approach provides a great deal of information about our
stopping problem, but is ultimately limited by the fact that it only
deals in expectations. What can we do if we want to study
variance? Skewness or kurtosis? What if we need a complete
description of the probability distribution?

We simply repeat our backwards induction argument, but use
probability generating functions for our boundary values rather
than expected rewards!
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...And New Stopping Rules

What if we aren’t interested in trying to maximize our expected
reward at all? Perhaps we are more interested in breaking some
threshold reward, at which point we will stop, guaranteeing the
payout.

Before we explore these questions further, let’s switch to studying
our second problem – Shepp’s Urn.

Richard Voepel Experimental “Solutions” to Select Stopping Problems 18
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A Whole New Billgame

Recall the stopping problem of Shepp’s Urn:

Problem (Shepp’s Urn)

An urn is filled with some number p of $1 bills, and some number
m of $1 “anti-bills”. How many times (including 0) should you
draw an object from this urn?

Unlike the coin flipping problem, we are already of bounded length;
we can skip straight to a recursive definition of the expected
reward for any given urn.
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Forwards Recursion

Consider the urn with p bills and 0 anti-bills. Clearly any stopping
rule that maximizes expected reward will draw all p bills from the
urn before stopping, so the expected reward is V (0, p) = p.

Consider the urn with 0 bills and m anti-bills. Clearly any stopping
rule that maximizes expected reward will simply not draw anything
from the urn, so the expected reward is V (m, 0) = 0.
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Forwards Recursion

Consider the urn with p bills and m anti-bills. How can we define
its expected reward under a strategy that maximizes that value?

Boundary: V (m, 0) = 0 for all m ≥ 0.
V (0, p) = p for all p ≥ 0.

Recursion:

E (m, p) =
m

m + p
[V (m − 1, p)− 1] +

p

m + p
[V (m, p − 1) + 1]

V (m, p) = max (0,E (m, p))
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Tabular Data
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Been There...

This is a well studied problem; if there is a question concerning the
expected reward of Shepp’s Urn under the expectation maximizing
strategy, chances are someone has already asked (and answered) it.

However, just like in the coin flipping case, utilizing such a strategy
makes implicit assumptions about what we are willing and able to
do. Do I want to play a given urn with positive expected reward
hundreds or thousands of times in order to leverage that
expectation? Will I even have the opportunity to play that urn
multiple times?
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...Haven’t Done That Yet

Let us try and write down not just the expected reward for the
maximizing strategy, let’s write down the complete probability
distribution, as encoded by a probability generating function.

Recall that a a PGF of some discrete random variable X taking
values in Z is given by G (z) =

∑
x∈R(X ) p(x)zx – we take the

probability of each outcome x and multiply it by a formal object zx .

This results in a formal laurent polynomial, which we can then
manipulate in order to recover information about any moment of
the corresponding random variable!
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...Haven’t Done That Yet

In this new language, what do our boundary cases look like?

An urn with p bills and 0 anti-bills would be emptied by a player
maximizing the expected reward – there is only one outcome for
the random variable corresponding to this urn, which has
probability 1. Thus, G (z) = U(0, p; z) = zp.

An urn with 0 bills and m anti-bills would be immediately passed
over by a player maximizing the expected reward – there is only
one outcome for the random variable corresponding to this urn,
which has probability 1. Thus, G (z) = U(m, 0; z) = z0 = 1.
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Recursion for PGFs

Consider the urn with p bills and m anti-bills. How can we define
its PGF under a strategy that maximizes the expected reward?

Boundary: U(m, 0; z) = 1 for all m ≥ 0.
U(0, p; z) = zp for all p ≥ 0.

Recursion:

W (m, p; z) =
m

m + p

[
U(m − 1, p; z) · z−1

]
+

p

m + p

[
U(m, p − 1; z) · z1

]
U(m, p; z) =

{
W (m, p; z) if ∂

∂zW (m, p; z)
∣∣
z=1

> 0

1 otherwise
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First Results

We saw previously on our table of data that V (6, 4) ≈ .07 > 0.
According to our strategy, we will draw at least once from this urn
– but what is the actual probability of making any money?

U(6, 4; z) ≈ .40000z + .37619 + .11429z−1 + .10952z−2

While we do have a respectable 40% chance of making $1, we also
have a greater than 20% chance of losing at least $1.

Now, $1 doesn’t seem like much, but what if the bills came in
$100 denominations, or $10000? Could you afford the risk of
(potentially) massive debt on the worse-than-coin-flip chance of
making good money?
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A Different Goal

If maximizing our expected reward can sometimes leave us with
moderate probabilities of losing money, how can we go about
constructing a stopping rule that guarantees those probabilities
remain small?

Let’s consider again our recursive definition of U(m, p; z):

W (m, p; z) =
m

m + p

[
U(m − 1, p; z) · z−1

]
+

p

m + p

[
U(m, p − 1; z) · z1

]
U(m, p; z) =

{
W (m, p; z) if ∂

∂zW (m, p; z)
∣∣
z=1

> 0

1 otherwise
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A Different Goal

The piece of this recursive definition that is responsible for
encoding the expected reward is the following boolean functional
on the PGFs W (m, p; z):

∂

∂z
W (m, p; z)

∣∣∣∣
z=1

> 0

If we want a different goal besides maximizing the expected
reward, we need only change this conditional into some other
(arbitrary) boolean functional on PGFs! We now have complete
control over a wide and varied family of stopping rules.
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Risk Aversion

We will focus on the two parameter family of risk averse
functionals given below:

F (W ; d , q) = q −
−d∑

i=−∞
coeff(W , z , i) > 0

This functional reads “the probability of receiving a reward of −d
dollars or less is less than q”.

When d = 1 we have a well defined notion of a stopping boundary,
and so we will primarily focus on this case.
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Stopping Boundaries

For the
expectation
maximizing
strategy, our
stopping
boundary βp
behaves quite
well:

βp ≈ p + α
√

2p

α ≈ 0.83992

Richard Voepel Experimental “Solutions” to Select Stopping Problems 31



Introduction
Coin Flipping
Shepp’s Urn

Stopping Boundaries

For the strategy
which is heavily
risk averse, the
stopping
boundary
exhibits some
strange
phenomena...
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Stopping Boundaries

...which is
readily apparent
if we relax the
risk aversion. By
adding more
bills to the urn,
we suddenly no
longer want to
draw!
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Comparing Strategies

How does risk aversion compare to expectation maximization?

For an urn with 20 bills and 20 anti-bills, Shepp’s strategy has
an expected reward of $2.30. The chance that this strategy
will result in at least $2 is 61%.

The same urn under the strategy given by F (W ; 2, 1/16) > 0
results in an 81% chance of earning at least $2.

For an urn with 50 bills and 50 anti-bills, Shepp’s strategy has
an expected reward of $3.70, with a 60% chance of earning at
least $3.

The same urn under the strategy given by F (W ; 1, 1/8) > 0
results in a 71% chance of earning at least $3.
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I Want to Believe

This direction of study, which is nearly purely experimental in
nature, has nevertheless produced some serious questions that
merit serious answers:

For Shepp’s strategy, now that we have the PGFs of every urn
(in principle, anyway), what kind of random variables are we
looking at? Evidence suggests that the standardized moments
of certain infinite families of urns converge to novel random
variables.

We know that we can increase our chances of making certain
threshold rewards, but how can we best choose the
parameters in our risk averse strategies? Are there other
functionals worth considering?
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I REALLY Want to Believe

And we shouldn’t stop here. The techniques and ideas contained in
Medina and Zeilberger’s paper can basically apply to any discrete
time stopping problem.

How many problems have been declared “solved” once an
expectation maximizing strategy has been found? How many of
those solutions are currently being implemented in the real world?
How much more efficient could we be with a more careful,
experiment oriented analysis?
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