

Unimodal Polynomials and Lattice Walk Enumeration with Experimental Mathematics

\author{

Bryan Ek

 Advisor: Doron Zeilberger
 Committee: Swastik Kopparty
 Michael Saks
 Neil Sloane}

Motivation

Unimodal
Polynomials
Lattice Walk Enumeration

Conclusion

Humans have been counting for millennia:

- How many berry bushes remain to gather from,
- The number of people in their village,
- How long it has been since the water froze.

A single person could simply count the berries or people or days. The important jump for society was to communicate that number: tally marks.

- The abacus arose to do simple calculations roughly 5,000 years ago.
- Gauss found a quick way to sum $1, \ldots, 100$ in the 1700 s.
- Dr. Z. used recurrences inspired by O'Hara to show the q-binomials are unimodal[Zei89].
- Ayyer and Dr. Z. also used generating function relations to prove a result about polymers bounded between plates[AZ07].

Beyond the importance of answering the initial question, the examples all provide methods to solve more than just one problem.

Abstract

- Utilizing experimental mathematics to further our knowledge.
- With the aid of computers, we can create many families of unimodal polynomials automatically.
- Again through the speed of computers, we can succinctly describe lattice walks in very little time.
(1) Unimodal Polynomials
- Background
- Results
(2) Lattice Walk Enumeration
- Background
- Generating Functions
- Applications
- Wrapping Up
(3) Conclusion
"The study of unimodality and log-concavity arise often in combinatorics, economics of uncertainty and information, and algebra, and have been the subject of considerable research." Alvarez et. al.[AAR00]

Definitions

Definition 1 (Unimodal)

A sequence $\mathcal{A}=\left\{a_{0}, \ldots, a_{n}\right\}$ is unimodal if it is weakly-increasing up to a point and then it is decreasing. I.e. there exists an index i such that $a_{0} \leq a_{1} \leq \cdots \leq a_{i} \geq \cdots \geq a_{n}$.

Definition 2 (Symmetric)

A sequence $\mathcal{A}=\left\{a_{0}, \ldots, a_{n}\right\}$ is symmetric if $a_{i}=a_{n-i}$ for every $0 \leq i \leq n$.

A polynomial is said to have the above properties if its sequence of coefficients does.

$$
\begin{aligned}
1+2 q+3 q^{2}+q^{3} & \text { is unimodal } \\
-1+2 q-3 q^{2}+2 q^{3}-q^{4} & \text { is symmetric }
\end{aligned}
$$

Example 3

All of the following functions are not only polynomial for $n \geq 0,0,0,4,4$ respectively, but they are also unimodal.

$$
\begin{aligned}
& P_{1}(n)=\frac{1-q^{n+1}}{1-q} \\
& P_{2}(n)=\frac{1-q^{2 n+1}}{1-q} \\
& P_{3}(n)=\frac{2 q^{3 n+2}-2 q^{3 n+1}+q^{3 n}-q^{2 n+1}-q^{n+1}+q^{2}-2 q+2}{(1-q)^{2}}
\end{aligned}
$$

$$
P_{4}(n)=\left(5 q^{4 n+2}-5 q^{4 n+1}+3 q^{4 n-2}-3 q^{4 n-3}+4 q^{4 n-4}-4 q^{2 n+3}-4 q^{2 n-1}+4 q^{6}-3 q^{5}+3 q^{4}-5 q+5\right) /(1-q)^{2}
$$

$$
P_{5}(n)=\left(2 q^{5 n+3}-4 q^{5 n+2}+7 q^{5 n+1}-5 q^{5 n}+5 q^{5 n-3}-5 q^{5 n-4}+4 q^{5 n-5}-4 q^{5 n-6}+6 q^{5 n-9}-6 q^{5 n-10}+3 q^{5 n-11}\right.
$$

$$
-5 q^{4 n+2}+5 q^{4 n+1}-4 q^{4 n-2}+4 q^{4 n-3}-3 q^{4 n-4}-5 q^{3 n+4}+5 q^{3 n+3}-3 q^{3 n+2}-6 q^{3 n-4}+6 q^{3 n-5}-3 q^{3 n-6}
$$

$$
+3 q^{2 n+9}-6 q^{2 n+8}+6 q^{2 n+7}+3 q^{2 n+1}-5 q^{2 n}+5 q^{2 n-1}+3 q^{n+7}-4 q^{n+6}+4 q^{n+5}-5 q^{n+2}+5 q^{n+1}
$$

$$
\left.-3 q^{14}+6 q^{13}-6 q^{12}+4 q^{9}-4 q^{8}+5 q^{7}-5 q^{6}+5 q^{3}-7 q^{2}+4 q-2\right) /(-1+q)^{3}
$$

Example 4

The following functions are all unimodal for $n \geq 0$.

Unimodal Polynomials Background Results
Lattice Walk Enumeration

Conclusion

$$
\begin{aligned}
& Q_{1}(n)=\frac{4\left(1-q^{n+1}\right)}{1-q} \\
& Q_{2}(n)=5 \frac{8 q^{2 n+4}-2 q^{n+3}-2 q^{n+2}+8 q-3\left[\left(q^{5}+1\right)\left(q^{n}-(-q)^{n}\right)+\left(q^{4}+q\right)\left(q^{n}+(-q)^{n}\right)\right]}{2 q(1-q)\left(1-q^{2}\right)} \\
& Q_{3}(n)=\left(1 6 \left[3-3 q+16 q^{2}-16 q^{n+1}-16 q^{n+3}-16 q^{n+5}+16 q^{2 n+3}\right.\right. \\
& \left.+16 q^{2 n+5}+16 q^{2 n+7}-16 q^{3 n+6}+3 q^{3 n+7}-3 q^{3 n+8}\right] \\
& +\left(1-(-1)^{n}\right)(-q)^{(3 n-9) / 2}\left[8 q^{17}-8 q^{16}+64 q^{15}-9 q^{14}-55 q^{13}-60 q^{11}+57 q^{10}-125 q^{9}\right. \\
& \left.+125 q^{8}-57 q^{7}+60 q^{6}+55 q^{4}+9 q^{3}-64 q^{2}+8 q-8\right] \\
& +\left(1-(-1)^{n}\right) q^{(3 n-9) / 2}\left[8 q^{17}-8 q^{16}+64 q^{15}+9 q^{14}-73 q^{13}-60 q^{11}-65 q^{10}-3 q^{9}\right. \\
& \left.+3 q^{8}+65 q^{7}+60 q^{6}+73 q^{4}-9 q^{3}-64 q^{2}+8 q-8\right] \\
& +\left(1+(-1)^{n}\right)(-q)^{(3 n-6) / 2}\left[12 q^{14}-12 q^{13}+64 q^{12}-75 q^{11}+74 q^{10}-127 q^{9}\right. \\
& \left.+127 q^{5}-74 q^{4}+75 q^{3}-64 q^{2}+12 q-12\right] \\
& +\left(1+(-1)^{n}\right) q^{(3 n-6) / 2}\left[12 q^{14}-12 q^{13}+64 q^{12}-53 q^{11}-74 q^{10}-q^{9}\right. \\
& \left.\left.+q^{5}+74 q^{4}+53 q^{3}-64 q^{2}+12 q-12\right]\right) / 4(1-q)^{2}\left(1-q^{6}\right)
\end{aligned}
$$

Why Unimodal is Useful

- Knowing a sequence is unimodal allows for easy search and guaranteed discovery of the global extremum.
- Identifying a probability distribution as unimodal allows certain approximations for how far a value will be from its
- mode (Gauss' inequality [Gau23]) or
- mean (Vysochanskij-Petunin inequality [DFV80]).

More Definitions

Definition 5 (Real-rootedness)

The generating polynomial, $p_{\mathcal{A}}(x):=a_{0}+a_{1} q+\cdots+a_{n} q^{n}$, is called real-rooted if all its zeros are real. By convention constant polynomials are considered to be real-rooted.

Definition 6 (Log-concavity)

A sequence $\mathcal{A}=\left\{a_{0}, \ldots, a_{n}\right\}$ is log-concave if $a_{i}^{2} \geq a_{i-1} a_{i+1}$ for all $1 \leq i<n$.

Lemma 7 (Brändén [Brä15])

Let $\mathcal{A}=\left\{a_{k}\right\}_{k=0}^{n}$ be a finite sequence of nonnegative numbers.

- If $p_{\mathcal{A}}(x)$ is real-rooted, then \mathcal{A} is log-concave.
- If \mathcal{A} is log-concave and positive, then \mathcal{A} is unimodal.

q-Binomial Polynomials

Definition 8 (q-Binomial Polynomial)

$$
G(n, k)=\left[\begin{array}{c}
n+k \\
k
\end{array}\right]_{q}=\frac{\left(1-q^{n+1}\right) \cdots\left(1-q^{n+k}\right)}{(1-q) \cdots\left(1-q^{k}\right)}
$$

Example 9

$$
\begin{aligned}
& G(2,1)=1+q+q^{2} \\
& G(2,2)=1+q+2 q^{2}+q^{3}+q^{4} \\
& G(5,3)=q^{15}+q^{14}+2 q^{13}+3 q^{12}+4 q^{11}+5 q^{10}+6 q^{9}+6 q^{8} \\
& \\
& \quad+6 q^{7}+6 q^{6}+5 q^{5}+4 q^{4}+3 q^{3}+2 q^{2}+q+1
\end{aligned}
$$

These polynomials fall into the category of unimodal, but (typically) not log-concave.
(1) q-binomial coefficients were assumed to be unimodal as early as the 1850's.
(2) 1878: Sylvester proved this claim using invariant theory.
(3) 1982: Proctor gave an "elementary" proof using linear algebra.
(9) 1989: Kathy O'Hara provided a combinatorial proof of the unimodal nature of the q-binomial coefficients.

Definition 10 (Partition)

A partition of k is a non-increasing sequence of positive integers $\lambda=\left[a_{1}, a_{2}, \ldots, a_{s}\right]$ s.t. $\sum_{i=1}^{s} a_{i}=k$.

Proving $G(n, k)$ has symmetric coefficients is relatively easy.
(1) $G(n, k)=q^{k} G(n-1, k)+G(n, k-1)$.
(2) The $\ell^{\text {th }}$ coefficient of $G(n, k)$ is the number of ways a partition of ℓ could fit inside an $n \times k$ box.
(3) Each partition of ℓ in an $n \times k$ box corresponds to a partition of $n k-\ell$. Look at the empty squares.

Proving unimodal is much harder.
(1) As previously mentioned, we cannot use log-concave.
(2) O'Hara showed unimodality using symmetric chain decomposition.
(3) Dr. Z. translated the argument into an elegant recurrence.

I introduce several perturbations to the recurrence to create a larger family of unimodal polynomials.

Definition 11 (Darga)

The darga of a polynomial $p(q)=a_{i} q^{i}+\cdots+a_{j} q^{j}$, with $a_{i} \neq 0 \neq a_{j}$, is defined to be $i+j$, i.e. the sum of its lowest and highest powers.

Example 12

$\operatorname{darga}\left(q^{2}+3 q^{3}\right)=5$ and $\operatorname{darga}\left(q^{2}\right)=4$.

Propositions

Proposition 13

The sum of two symmetric and unimodal polynomials of darga m is also symmetric and unimodal of darga m.

Proposition 14

The product of two symmetric and unimodal nonnegative polynomials of darga m and m^{\prime} is a symmetric and unimodal polynomial of darga $m+m^{\prime}$.

Proposition 15

If p is symmetric and unimodal of darga m, then $q^{\alpha} p$ is symmetric and unimodal of darga $m+2 \alpha$.

Theorem 16

$$
\begin{align*}
G(n, k)= & \sum_{\left(d_{1}, \ldots, d_{k}\right) ; \sum_{i=1}^{k} i d_{i}=k} q^{k\left(\sum_{i=1}^{k} d_{i}\right)-k-\sum_{1 \leq j<i \leq k}(i-j) d_{i} d_{j}} \\
& \prod_{i=0}^{k-1} G\left((k-i) n-2 i+2 \sum_{j=0}^{i-1}(i-j) d_{k-j}, d_{k-i}\right) \tag{1.1}
\end{align*}
$$

The outside sum is over all partitions of $k . d_{i}=$ the number of parts of size i. Initial conditions:

$$
\begin{gathered}
G(n<0, k)=0, \quad G(n, k<0)=0, \quad G(0, k)=1, \\
G(n, 0)=1, \quad G(n, 1)=\frac{1-q^{n+1}}{1-q} .
\end{gathered}
$$

What is so great about this recurrence?

- For any fixed value of k, it provides a one-line high-school algebra proof that $G(n, k)$ is symmetric and unimodal. [Zei89]
- If you work through some simple algebra, you can prove $G(n, k)$ is symmetric and unimodal for ALL k.
- We can slightly tweak this recurrence and still create a symmetric and unimodal polynomial.

Example 17

To prove the polynomials in Example 3 are actually unimodal, show that

$$
\begin{aligned}
P_{1}(n)= & \sum_{i=0}^{n} q^{i} \\
P_{2}(n)= & P_{1}(2 n) \\
P_{3}(n)= & 2 P_{1}(3 n)+q^{2} P_{1}(2 n-2) P_{1}(n-2) \\
P_{4}(n)= & 5 P_{1}(4 n)+3 q^{4} P_{2}(2 n-4)+4 q^{6} P_{1}(2 n-4) P_{2}(n-4) \\
P_{5}(n)= & 2 P_{1}(5 n)+5 q^{2} P_{1}(4 n-2) P_{1}(n-2)+4 q^{8} P_{2}(2 n-6) P_{1}(n-4) \\
& \quad+5 q^{6} P_{1}(3 n-4) P_{2}(n-4)+3 q^{12} P_{1}(2 n-6) P_{3}(n-6)
\end{aligned}
$$

Tweaked Recurrence Proof

Example 18

To prove the polynomials in Example 4 are actually unimodal, show that

$$
\begin{aligned}
& Q_{1}(n)=4 \sum_{i=0}^{n} q^{i} \\
& Q_{2}(n)=q^{2} Q_{2}(n-2)+5 Q_{1}(2 n) \\
& Q_{3}(n)=q^{6} Q_{3}(n-4)+3 Q_{1}(3 n)+4 q^{2} Q_{1}(2 n-2) Q_{1}(n-2)
\end{aligned}
$$

The previous examples were generated by multiplying each term in the recurrence equation (1.1) by a random constant.

Unimodal Polynomials Background Results

Lattice Walk Enumeration

Conclusion

Lemma 19

If $k=1,2$ or if $k \geq 4$ is even (odd) and $n \geq 2$ ($n \geq 4$), then the maximum depth of recursive calls is

$$
\left\lceil\frac{\lfloor k / 2\rfloor n}{2}\right\rceil-\left\lceil\frac{k}{2}\right\rceil+1 .
$$

For $k=3$, the maximum depth of recursive calls is $\left\lceil\frac{n}{4}\right\rceil$.

The important take away is that the recurrence is still linear in computation depth.

Bounded Partition Parts

Lemma 20

Suppose we restrict partitions to only use integers $\leq p$. If $p<\frac{2 k}{n+2}$, then $G^{\prime}(n, k)=0$.

So restricting the size of parts (at least to constant height) is not very interesting.

Restricted Partition Size

Let G_{s} denote the polynomials obtained from restricting the recurrence to partitions of size $\leq s: \sum_{i=1}^{k} d_{i} \leq s$.

Conjecture 21

$\left(q^{n}-q^{k+s-1}\right) G_{s}(n+1, k+1)=q^{k+1}\left(q^{n}-q^{s-2}\right) G_{s}(n, k+1)+q^{n}\left(1-q^{k+s}\right) G_{s}(n+1, k)$ (1.2)

Eqn. (1.2) was verified for $n, k \leq 20$ and $s \leq 10$. Note that $G_{s}(n, k)=G(n, k)$ for $k \leq s$. If we take $s \rightarrow \infty$, then we obtain the "simple" recurrence given earlier.

Particular Recursive Calls

What does each recursive call look like? Eqn. (1.1) is a summation over partitions so I chose to look at what some special partitions contribute.

If $\lambda=[k]$, then the power of q in front is q^{0} and the product call is to $G(n k, 1)=\frac{1-q^{n k+1}}{1-q}$.
Thus [k] provides the "base" of $G(n, k)$:
$1+q+\cdots+q^{n k}$.
If we restrict to partitions of size 1 , then $G_{1}(n, k)=\frac{1-q^{n k+1}}{1-q}$. We can use this to verify the recurrence relation in Eqn. (1.2) for $s=1$.

Then I considered $\lambda=[k-\ell, \ell]$ for some $1 \leq \ell<\frac{k}{2}$. I found a recursive call of

$$
\begin{aligned}
& q^{2 \ell} G((k-\ell) n-2 \ell, 1) G(\ell n-2 \ell, 1)= \\
& q^{2 \ell} \frac{1-q^{(k-\ell) n-2 \ell+1}}{1-q} \cdot \frac{1-q^{\ell n-2 \ell+1}}{1-q} .
\end{aligned}
$$

For the special case $\lambda=\left[\frac{k}{2}, \frac{k}{2}\right]$ when k is even, the recursive call is

$$
q^{k} G\left(\frac{k}{2} n-k, 2\right)
$$

We now have all of the contributions from partitions of size ≤ 2.

Lemma 22

$$
\begin{aligned}
G_{2}(n, k)= & \frac{1-q^{n k+1}}{1-q} \\
& +q^{2} \frac{\left(1+q^{n k-k+1}\right)\left(1-q^{k-1}\right)}{(1-q)^{2}\left(1-q^{2}\right)} \\
& -q^{n+1} \frac{1-q^{n(k-1)}}{(1-q)^{2}\left(1-q^{n}\right)}
\end{aligned}
$$

We can now verify the recurrence relation in Eqn. (1.2) for $s=2$.

We could explicitly construct $G_{3}(n, k)$ by looking at the contributions of partitions $\lambda=\left[\ell_{1}, \ell_{2}, \ell_{3}\right]$ for the separate cases
(1) $\ell_{1}=\ell_{2}=\ell_{3}$,
(2) $\ell_{1}=\ell_{2} \neq \ell_{3}$,
(3) $\ell_{1} \neq \ell_{2}=\ell_{3}$,
(9) and $\ell_{1} \neq \ell_{2} \neq \ell_{3}$.

Then we could verify the recurrence relation in Eqn. (1.2) for $s=3$.

Lemma 23

Unimodal
Polynomials Background Results

Lattice Walk Enumeration

Conclusion

$$
\begin{aligned}
& G_{3}(n, k)=\left[q^{4 k} \cdot q^{3}\left(1-q^{n}\right)\left(q-q^{n}\right)-q^{3 k} \cdot q(1+q)\left(1-q^{n}\right)\left(q-q^{2}+q^{5}-q^{n}\right)\right. \\
& \quad-q^{2 k}\left(q ^ { n k } \left(q^{2 n}\left(q^{9}-q^{8}-q^{7}+q^{6}+q^{5}-q^{3}+q\right)\right.\right. \\
& \left.\quad-q^{n}\left(q^{10}-q^{8}+q^{6}+q^{5}\right)+q^{10}\right) \\
& \quad-q^{2 n}+q^{n}\left(q^{5}+q^{4}-q^{2}+1\right) \\
& \left.\quad-q^{9}+q^{7}-q^{5}-q^{4}+q^{3}+q^{2}-q\right) \\
& \quad+q^{k} \cdot q^{n k} q^{3}(1+q)\left(1-q^{n}\right)\left(q^{5}-q^{n}+q^{n+3}-q^{n+4}\right) \\
& \left.\quad-q^{n k} q^{6}\left(1-q^{n}\right)\left(q-q^{n}\right)\right] \\
& \quad /(1-q)^{2}\left(1-q^{2}\right)^{2}\left(1-q^{3}\right)\left(1-q^{n-1}\right)\left(1-q^{n}\right) q^{2 k+1}
\end{aligned}
$$

Maximum Size Beyond 3

This would not work for proving true for every s : an infinite number of cases to handle!

Ideally, there is a way to interpret the recurrence combinatorially. Recall

$$
G(n, k)=q^{k} G(n-1, k)+G(n, k-1)
$$

Then, if we are very lucky, it is possible to describe the number of new objects in closed form.

There are many other ways to modify the recurrence and still obtain unimodal polynomials.

- As shown earlier, we can simply multiply the recursive calls by constants.
- We can adjust the initial conditions.
- A more complicated method is to adjust the recursive call.

Adjusted Recursive Call

Unimodal
Polynomials Background Results

Lattice Walk Enumeration

$$
G\left((k-i) n-2 i+2 \sum_{j=0}^{i-1}(i-j) d_{k-j}-2 a(k-i)-2 b, d_{k-i}-2 c\right)
$$

Proposition 24

(1) $G(n, k ; a, b)$ will have smallest degree $k a+b$.
(2) If $a+b>\frac{n}{2}$, then $G(n, k ; a, b)=0$.
(3) If $a+b=\frac{n}{2}$, then $G(n, k ; a, b)=q^{k a+b} \frac{1-q^{n k+1-2(k a+b)}}{1-q}$.

- Building an interesting combinatorial object from scratch can be difficult.
- Taking one and tweaking its construction is much easier.
- Computers are very helpful.
- There is still more to analyze about this recurrence.
- Ultimate goal: Find restrictions on the partitions/other parameters that yield closed-form solutions in 2 (or more!) variables.
- Arbitrarily combine polynomials of known darga to create another polynomial with known darga. Do this recursively in a similar manner.
- Instead of looking at partitions, look at something else?
- Is factoring a symmetric/unimodal polynomial any easier than generic?
- Use any of these polynomials as a probability distribution.

Abstract

We employ a generating function relation technique used by Ayyer and Zeilberger to analyze lattice walks with a general step set in bounded, semi-bounded, and unbounded planes.
The method in which we do this is formulated to be highly algorithmic so that a computer can automate most, if not all, of the work.

Introduction

We consider walks in the two-dimensional square lattice with an "arbitrary" set of integral steps (x, y) subject to $x \geq 0$.

We want to count all possible walks of a certain length. Rather than a brute-force search of the entire space, looking for 1 value, we will use generating function relations. As a bonus, we obtain not only the initial generating function of desire, but also many related ones of interest.

Motivation

Unimodal Polynomials

Lattice Walk Enumeration
Background Generating Functions
Bounded Walks Semi-Bounded Walks
Unbounded Walks
Applications Wrapping Up

Conclusion

An earlier motivation for bounded walks came from Physics: analyzing polymers constrained between plates [BORW05]. Zeilberger gave one solution in an earlier paper [AZO7] that provided the main motivation for this research.

The kernel method has received attention lately for analyzing specific cases of walks. Compared to the kernel method, we believe our method is a lot easier to understand combinatorially, is more insightful, faster, and easier to produce.

Trying to picture an entire walk at once can be difficult. This is where the awesome powers of dynamical programming come into play.

Definitions

I will generically use the term walk to indicate any sequence of points $\left\{\left(x_{0}, y_{0}\right), \ldots,\left(x_{s}, y_{s}\right)\right\}$ in the $x y$-plane. The steps of the walk are then

$$
\left\{\left(x_{1}-x_{0}, y_{1}-y_{0}\right), \ldots,\left(x_{s}-x_{s-1}, y_{s}-y_{s-1}\right)\right\} .
$$

Definition 25 (Walks)

A bridge is an unbounded walk that begins at the origin and ends on the x-axis. I say bounded bridge for a bounded walk that begins at the origin and ends on the x-axis.
An excursion is a semi-bounded walk that begins at the origin and ends on the x-axis.
A free walk can end anywhere. A meander is a semi-bounded free walk.
The length of a walk is $n=\sum_{i=0}^{s} x_{i}$. The size of a walk is s.

Figure: Walk Examples

Unimodal

Polynomials
Lattice Walk Enumeration
Background
Generating
Functions
Bounded Walks
Semi-Bounded Walks
Unbounded Walks
Applications Wrapping Up

Conclusion

$$
\mathcal{S}=\{[0,-1],[1,0],[1,1],[1,2],[2,-1]\} .
$$

Irreducible Walks

Unimodal Polynomials

Lattice Walk Enumeration

I will refer to the y-value as the altitude of the walk.

Definition 26

The interior of a walk consists of every point other than the endpoints: $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{s-1}, y_{s-1}\right)\right\}$.
An irreducible walk is one in which the interior has a strictly higher altitude than the lower endpoint:
$\min \left\{y_{1}, \ldots, y_{s-1}\right\}>\min \left\{y_{0}, y_{s}\right\}$.

Irreducible is also sometimes used to refer to walks that do not hit the final altitude until the final step.

Unimodal

Polynomials
Lattice Walk Enumeration

Background

Generating
Functions
Bounded Walks
Semi-Bounded
Walks
Unbounded
Walks
Applications Wrapping Up

Conclusion

The goal is to find the g.f., denoted $f_{a, b}$, for walks with step set \mathcal{S}, starting at $(0,0)$, and bounded above and below by $a \geq 0$ and $b \leq 0$ respectively.

First assume that the walk is free. Then

$$
f_{a, b}=1+\sum_{(x, y) \in \mathcal{S}} t^{x} f_{a-y, b-y}
$$

So we can describe $f_{a, b} \ldots$ using other $f_{a^{\prime}, b^{\prime}}$.

Bounded Walks

Unimodal

Polynomials
Lattice Walk Enumeration

Background

Generating
Functions
Bounded Walks
Semi-Bounded
Walks
Unbounded
Walks
Applications
Wrapping Up
Conclusion

$$
\begin{aligned}
& f_{0, b-a}=1+\sum_{(x, y) \in \mathcal{S}} t^{x} f_{0-y, b-a-y} \\
& f_{1, b-a+1}=1+\sum_{(x, y) \in \mathcal{S}} t^{x} f_{1-y, b-a+1-y} \\
& \vdots \\
& f_{a-b, 0}=1+\sum_{(x, y) \in \mathcal{S}} t^{x} f_{a-b-y, 0-y}
\end{aligned}
$$

This is a (linear!) system of $a-b$ equations with $a-b$ variables.

Unimodal
Polynomials
Lattice Walk Enumeration
Background Generating Functions
Bounded Walks Semi-Bounded Walks
Unbounded Walks
Applications Wrapping Up Conclusion

Example 27 (Close (American) Football Games)

$$
\begin{aligned}
\mathcal{S}=\{ & {[1,2],[1,3],[1,6],[1,7],[1,8],[1,5],[1,4], } \\
& {[1,-2],[1,-3],[1,-6],[1,-7],[1,-8],[1,-5],[1,-4]\} . }
\end{aligned}
$$

Bound by $y=8,-8$. Then the g.f. is explicitly

$$
\frac{1+10 t+13 t^{2}-37 t^{3}-40 t^{4}+28 t^{5}+26 t^{6}-2 t^{7}}{1-4 t-59 t^{2}-77 t^{3}+170 t^{4}+234 t^{5}-92 t^{6}-142 t^{7}-4 t^{8}+6 t^{9}} .
$$

This sequence is new in the OEIS: A301379[OEIa].

Speed Enumeration

Unimodal Polynomials

Lattice Walk Enumeration

Background

 Generating FunctionsBounded Walks Semi-Bounded Walks
Unbounded Walks
Applications Wrapping Up Conclusion

Table: Bounded Walk Enumeration 1000 terms

Method	Memory	CPU Time	Real Time
Brute-Force Recursion	60.23 MiB	309.53 ms	308.90 ms
G.F. Construction	3.27 MiB	30.17 ms	33.50 ms
Taylor Enumeration	4.86 MiB	4.93 ms	5.07 ms
Total	$8 . \overline{3} \overline{\mathrm{MiB}} \overline{\overline{\mathrm{B}}}$	$\mathbf{3 5 . 1 0} \overline{\mathrm{ms}}$	$38 . \overline{5} \overline{\mathrm{~ms}}$

Using the g.f. method of enumeration is about 8 times as fast and uses a much smaller amount of memory: ($1 / 8$ th).

We have solved for walks that end ANYWHERE. Let $f_{a, b}$ now denote the g.f. for walks that begin at $(0,0)$ and end on the x-axis.
Let $e_{a, b, c}$ denote the g.f. for paths that start at $(0, c)$, end on the x-axis and never touch the x-axis beforehand.

$$
f_{a, b}=1+\left(\sum_{(x, 0) \in \mathcal{S}} t^{x}\right) f_{a, b}+\left(\sum_{(x, y) \in \mathcal{S} ; y \neq 0} t^{x} e_{a, b, y}\right) f_{a, b} \text { (2.1) }
$$

We now need the equations for $e_{a, b, c}$ for $a \geq c \geq b$.

$$
e_{a, b, c}=\sum_{(x,-c) \in \mathcal{S}} t^{x}+\sum_{(x, y) \in \mathcal{S} ; y \neq-c} t^{x} e_{a, b, c+y}
$$

Unimodal
Polynomials
Lattice Walk Enumeration
Background Generating Functions
Bounded Walks Semi-Bounded Walks
Unbounded Walks
Applications Wrapping Up Conclusion

Example 28 (Tied (American) Football Games)

$$
\begin{aligned}
& \mathcal{S}=\{[1,2],[1,3],[1,6],[1,7],[1,8],[1,5],[1,4], \\
& {[1,-2],[1,-3],[1,-6],[1,-7],[1,-8],[1,-5],[1,-4]\} . }
\end{aligned}
$$

Bound by $y=8,-8$. Then the g.f. is explicitly

$$
\frac{1-4 t-45 t^{2}-43 t^{3}+98 t^{4}+108 t^{5}-24 t^{6}-30 t^{7}}{1-4 t-59 t^{2}-77 t^{3}+170 t^{4}+234 t^{5}-92 t^{6}-142 t^{7}-4 t^{8}+6 t^{9}} .
$$

This sequence is new in the OEIS: A301380[OEIb].

Speed Enumeration

Lattice Walk Enumeration
Background Generating Functions
Bounded Walks Semi-Bounded Walks

Table: Bounded Bridge Enumeration

Method	Memory	CPU Time	Real Time
Brute-Force Recursion	55.98 MiB	278.93 ms	279.03 ms
G.F. Construction	10.13 MiB	102.43 ms	103.20 ms
Taylor Enumeration	4.85 MiB	5.20 ms	5.10 ms
Total	$\overline{1} \overline{4} . \overline{9} \overline{\mathrm{MiB}} \overline{\overline{\mathrm{B}}}$	$10 \overline{7} \overline{\overline{6}} 3 \mathrm{~ms}$	$\overline{108} \overline{10} \overline{\mathrm{~ms}}$

Again, the g.f. method is faster; this time, about 2.5 times as fast and $1 / 4$ th the memory.

Unimodal
Polynomials
Lattice Walk Enumeration
Background
Generating
Functions
Bounded Walks
Semi-Bounded Walks
Unbounded Walks
Applications
Wrapping Up
Conclusion

Let f now denote the g.f. for nonnegative excursions. Then we can try:

$$
f=1+\left(\sum_{(x, 0) \in \mathcal{S}} t^{x}\right) f+\left(\sum_{(x, y) \in \mathcal{S} ; y \neq 0} t^{x} e_{y}\right) f
$$

Unimodal
Polynomials
Lattice Walk Enumeration

Background

Generating
Functions
Bounded Walks
Semi-Bounded Walks
Unbounded Walks
Applications Wrapping Up

Conclusion

Let $g_{a, b}$ denote the g.f. for irreducible walks from $(0, a)$ to (n, b). Now we have

$$
\begin{equation*}
f_{0,0}=1+\left(g_{0,0}+\sum_{(x, 0) \in \mathcal{S}} t^{x}\right) f_{0,0} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{0,0}=\sum_{\left(x_{1}, y_{1}\right) \in \mathcal{S} ; y_{1}>0} \sum_{\left(x_{2}, y_{2}\right) \in \mathcal{S} ; y_{2}<0} t^{x_{1}} f_{y_{1}-1,-y_{2}-1} t^{x_{2}} . \tag{2.3}
\end{equation*}
$$

Better Excursion Method

$$
\begin{array}{ll}
a>b & f_{a, b}=\sum_{i=0}^{b} g_{a-i, 0} f_{0, b-i}, \\
a=b & f_{a, a}=\sum_{i=0}^{b-1} g_{a-i, 0} f_{0, b-i}+f_{0,0}, \\
a<b \quad f_{a, b}=\sum_{i=0}^{a-1} g_{a-i, 0} f_{0, b-i}+f_{0,0} g_{0, b-a \cdot} \\
g_{a, 0}=\sum_{(x, y) \in \mathcal{S} ; y<0} f_{a-1,-y-1} t^{x}, \\
g_{0, a} & =\sum_{(x, y) \in \mathcal{S} ; y>0} t^{x} f_{y-1, a-1} . \tag{2.8}
\end{array}
$$

$$
f_{0,0}=1+\left(t^{2}+g_{0,0}\right) f_{0,0}
$$

Unimodal
Polynomials
Lattice Walk
Enumeration
Background
Generating
Functions
Bounded Walks
Semi-Bounded
Walks
Unbounded Walks
Applications
Wrapping Up
Conclusion

$$
\begin{gathered}
f_{0,0}=1+\left(t^{2}+g_{0,0}\right) f_{0,0} \\
g_{0,0}=t^{3} f_{2,1}+t f_{0,1}
\end{gathered}
$$

$$
\begin{gathered}
f_{0,0}=1+\left(t^{2}+g_{0,0}\right) f_{0,0} \\
g_{0,0}=t^{3} f_{2,1}+t f_{0,1} \\
f_{0,1}=f_{0,0} g_{0,1}
\end{gathered}
$$

Unimodal
Polynomials
Lattice Walk
Enumeration
Background
Generating
Functions
Bounded Walks
Semi-Bounded Walks
Unbounded Walks
Applications
Wrapping Up
Conclusion

$$
\begin{gathered}
f_{0,0}=1+\left(t^{2}+g_{0,0}\right) f_{0,0} \\
g_{0,0}=t^{3} f_{2,1}+t f_{0,1} \\
f_{0,1}=f_{0,0} g_{0,1} \\
g_{0,1}=t^{3} f_{2,0}+t f_{0,0}
\end{gathered}
$$

$$
\begin{gathered}
f_{0,0}=1+\left(t^{2}+g_{0,0}\right) f_{0,0} \\
g_{0,0}=t^{3} f_{2,1}+t f_{0,1} \\
f_{0,1}=f_{0,0} g_{0,1} \\
g_{0,1}=t^{3} f_{2,0}+t f_{0,0} \\
f_{2,0}=g_{2,0} f_{0,0}
\end{gathered}
$$

Example $\mathcal{S}=\{[0,-2],[2,0],[1,1],[3,3]\}$

$$
\begin{gathered}
f_{0,0}=1+\left(t^{2}+g_{0,0}\right) f_{0,0} \\
g_{0,0}=t^{3} f_{2,1}+t f_{0,1} \\
f_{0,1}=f_{0,0} g_{0,1} \\
g_{0,1}=t^{3} f_{2,0}+t f_{0,0} \\
f_{2,0}=g_{2,0} f_{0,0} \\
g_{2,0}=f_{1,1}
\end{gathered}
$$

$$
\begin{aligned}
& f_{0,0}=1+\left(t^{2}+g_{0,0}\right) f_{0,0} \\
& g_{0,0}=t^{3} f_{2,1}+t f_{0,1} \\
& f_{0,1}=f_{0,0} g_{0,1} \\
& g_{0,1}=t^{3} f_{2,0}+t f_{0,0} \\
& f_{2,0}=g_{2,0} f_{0,0} \\
& g_{2,0}=f_{1,1} \\
& f_{1,1}=g_{1,0} f_{0,1}+f_{0,0}
\end{aligned}
$$

$$
\begin{gathered}
f_{0,0}=1+\left(t^{2}+g_{0,0}\right) f_{0,0} \\
g_{0,0}=t^{3} f_{2,1}+t f_{0,1} \\
f_{0,1}=f_{0,0} g_{0,1} \\
g_{0,1}=t^{3} f_{2,0}+t f_{0,0} \\
f_{2,0}=g_{2,0} f_{0,0} \\
g_{2,0}=f_{1,1} \\
f_{1,1}=g_{1,0} f_{0,1}+f_{0,0} \\
g_{1,0}=f_{0,1}
\end{gathered}
$$

$$
\begin{gathered}
f_{0,0}=1+\left(t^{2}+g_{0,0}\right) f_{0,0} \\
g_{0,0}=t^{3} f_{2,1}+t f_{0,1} \\
f_{0,1}=f_{0,0} g_{0,1} \\
g_{0,1}=t^{3} f_{2,0}+t f_{0,0} \\
f_{2,0}=g_{2,0} f_{0,0} \\
g_{2,0}=f_{1,1} \\
f_{1,1}=g_{1,0} f_{0,1}+f_{0,0} \\
g_{1,0}=f_{0,1} \\
f_{2,1}=g_{1,0} f_{0,0}+g_{2,0} f_{0,1}
\end{gathered}
$$

Minimal Polynomial

Unimodal
Polynomials
Lattice Walk Enumeration
Background Generating Functions
Bounded Walks
Semi-Bounded Walks
Unbounded
Walks
Applications Wrapping Up Conclusion

Definition 29 (Minimal Polynomial)

the (minimal) algebraic equation satisfied by the generating function: p such that $p(f)=0$ in terms of formal power series. We refer to p as the minimal polynomial.

So for the previous step set,

$$
\begin{aligned}
0=1 & +\left(t^{2}-1\right) f+t^{2} f_{0,0}{ }^{3}+t^{4} f_{0,0}{ }^{4}+2 t^{4} f_{0,0}{ }^{5} \\
& +t^{6}\left(t^{2}-1\right) f_{0,0}{ }^{6}+t^{6}\left(t^{2}-1\right)^{2} f_{0,0}{ }^{7}+t^{10} f_{0,0}{ }^{9}+t^{12} f_{0,0}{ }^{10}
\end{aligned}
$$

Unimodal
Polynomials
Lattice Walk Enumeration Background Generating Functions
Bounded Walks Semi-Bounded Walks
Unbounded Walks
Applications Wrapping Up Conclusion

We want to obtain the number of nonnegative excursions with step set $\mathcal{S}=\{[1,-2],[1,-1],[1,0],[1,1],[1,2]\}$. Let F denote the corresponding g.f.; then

$$
\begin{equation*}
t^{4} F^{4}-t^{2}(t+1) F^{3}+t(t+2) F^{2}-(t+1) F+1=0 \tag{2.9}
\end{equation*}
$$

A truncated solution in formal power series, and the one that makes sense in terms of our problem, is
$F=1+t+3 t^{2}+9 t^{3}+32 t^{4}+120 t^{5}+473 t^{6}+1925 t^{7}+8034 t^{8}+\cdots$

Speed Excursion Enumeration

Table: 500 term Excursion Enumeration

Unimodal Polynomials

Lattice Walk Enumeration
Background Generating
Functions
Bounded Walks
Semi-Bounded Walks
Unbounded
Walks
Applications Wrapping Up

Conclusion

Method	Memory	CPU Time	Real Time
Vector Set-Up	16.58 KiB	$300 \mu \mathrm{~s}$	$766 \mu \mathrm{~s}$
Iterating	100.04 GiB	4.45 m	4.09 m
Total	$1{ }^{1} 00.0 \overline{4} \overline{\mathrm{G}} \mathrm{B} \overline{\mathrm{B}}$	4.45 m	$\overline{4.0} 9 \mathrm{~m}^{-}$
Polynomial	2.63 MiB	19.23 ms	18.63 ms
Iterating	23.61 GiB	64.52 s	58.56 s
Total	$2 \overline{3} . \overline{6} \overline{\mathrm{G}} \overline{\mathrm{G}} \overline{\mathrm{B}}$	$64.5 \overline{4}$ s	58.58 s
Polynomial	2.63 MiB	19.23 ms	18.63 ms
taylor	328.97 MiB	3.20s	3.18s
Tōtal	$\overline{3} 3 \overline{1} . \overline{6} \bar{O} \overline{\mathrm{M}} \overline{\mathrm{B}}^{-}$	$\overline{3} . \overline{2} 2 \mathrm{~s}$	$\overline{3.20} \mathrm{~s}^{-}$
Brute-Force Recursion	186.60 MiB	1.569 s	1.472 s

Meanders

Unimodal
Polynomials
Lattice Walk Enumeration

Background

Generating
Functions
Bounded Walks
Semi-Bounded
Walks
Unbounded Walks
Applications Wrapping Up

Conclusion

What if we don't care where the walk ends, as long as it stays above $y=-c$?
Let k_{a} denote the g.f. for meanders that begin at $(0, a)$, restricted to step set \mathcal{S}. Then

$$
k_{0}=1+\left(g_{0,0}+\sum_{(x, 0) \in \mathcal{S}} t^{x}\right) k_{0}+\sum_{(x, y) \in \mathcal{S} ; y>0} t^{x} k_{y-1}
$$

We need only describe the new k_{i}.

$$
k_{a}=\sum_{i=0}^{a-1} g_{a, i} k_{0}+k_{0}=\left(\sum_{i=1}^{a} g_{i, 0}+1\right) k_{0} .
$$

Meander Example

Unimodal

Polynomials
Lattice Walk Enumeration
Background
Generating
Functions
Bounded Walks
Semi-Bounded Walks
Unbounded
Walks
Applications
Wrapping Up
Conclusion

Let's use $\mathcal{S}=\{[1,-2],[1,-1],[1,0],[1,1],[1,2]\}$. The g.f., K, for the number of nonnegative meanders satisfies

$$
t^{2}(5 t-1)^{2} K^{4}+t(5 t-1)^{2} K^{3}+3 t(5 t-1) K^{2}+(5 t-1) K+1=0 .
$$

and has truncated solution
$K=1+3 t+12 t^{2}+51 t^{3}+226 t^{4}+1025 t^{5}+4724 t^{6}+22022 t^{7}$
Enumerating was roughly equivalent.

Guessing

Unimodal
Polynomials
Lattice Walk Enumeration

Background

Generating
Functions
Bounded Walks
Semi-Bounded Walks
Unbounded
Walks
Applications Wrapping Up Conclusion

Since we know we will obtain a minimal polynomial, why not just guess?

Table: Finding Excursion Minimal Polynomial $\mathcal{S}=\{[1,-2],[1,-1],[1,0],[1,1],[1,2]\}$

Method	Memory Used	CPU Time	Real Time
New Method	2.63 MiB	19.23 ms	18.63 ms
Empir	91.61 MiB	734 ms	735 ms
EmpirF	4.33 MiB	33.87 ms	35.90 ms

Better Recursion

Unimodal
Polynomials
Lattice Walk Enumeration

Background

Generating
Functions
Bounded Walks
Semi-Bounded Walks
Unbounded Walks
Applications Wrapping Up

Conclusion

There is a classical method for deducing from the algebraic function satisfying the g.f. a linear recurrence with polynomial coefficients satisfied by the coefficients of the g.f. in question.[KP11].

Interestingly, sometimes a larger (non-minimal) polynomial produces a better (lower-order) recurrence.

Better Recursion Example

Let $\mathcal{S}=\{[1,-2],[1,-1],[1,0],[1,1],[1,2]\}$. Let F denote the g.f. for nonnegative excursions. Then its coefficients satisfy

Lattice Walk Enumeration
Background Generating
Functions
Bounded Walks
Semi-Bounded Walks
Unbounded
Walks
Applications Wrapping Up Conclusion

$$
\begin{aligned}
0 & =3125(n+1)(n+2)(n+3)(n+4) B(n) \\
& -250(n+4)(n+3)(n+2)(27 n+122) B(n+1) \\
& +25(n+4)(n+3)\left(107 n^{2}+1457 n+4316\right) B(n+2) \\
& +10(n+4)\left(304 n^{3}+3233 n^{2}+9864 n+6513\right) B(n+3)
\end{aligned}
$$

$$
-\left(2821 n^{4}+56794 n^{3}+425771 n^{2}+1407974 n-1731540\right) B(n+4)
$$

$$
+2(n+7)\left(413 n^{3}+6986 n^{2}+39356 n+73830\right) B(n+5)
$$

$$
-(n+8)(n+7)\left(99 n^{2}+1241 n+3900\right) B(n+6)
$$

$$
\begin{equation*}
+2(2 n+15)(n+9)(n+8)(n+7) B(n+7) \tag{2.10}
\end{equation*}
$$

Enumeration Speed

Unimodal
Polynomials
Lattice Walk Enumeration

Background

 Generating FunctionsBounded Walks Semi-Bounded Walks
Unbounded Walks
Applications Wrapping Up Conclusion

Method	Memory Used	CPU Time	Real Time
Polynomial	2.63 MiB	19.23 ms	18.63 ms
algtorec	35.84 MiB	267.93 ms	262.40 ms
SeqFromRec	123.05 MiB	375.27 ms	375.37 ms
Total	$\overline{1} \overline{6} \overline{-} \overline{5} \overline{\mathrm{MiB}} \overline{\overline{\mathrm{M}}} \overline{6} \overline{2} .43 \mathrm{~ms}$	$\overline{6} 56.4 \overline{\mathrm{~ms}}$	

This was for 1000 terms. Brute-force took 1.5 seconds for only 500 terms.

Guessing Again

Unimodal
Polynomials
Lattice Walk Enumeration

Background

Generating
Functions
Bounded Walks
Semi-Bounded Walks
Unbounded Walks
Applications Wrapping Up

Conclusion

Again, since we know we can find a linear recurrence, why don't we just guess?

There are cases $(\mathcal{S}=\{[1,2],[1,-3]\})$ where guessing is significantly faster, but there are also cases $(\mathcal{S}=\{[1,-1],[3,-1],[1,0],[3,0],[2,1],[1,2],[2,2]\})$ when converting is much faster.

The key for deciding is the degree of the minimal polynomial, $|\mathcal{S}|$, and the size of the largest step.

Lattice Walk
Enumeration
Background
Generating
Functions
Bounded Walks
Semi-Bounded
Walks
Unbounded

This is not very interesting. For a step set \mathcal{S}, the g.f. is explicitly

$$
\frac{1}{1-\sum_{(x, y) \in \mathcal{S}} t^{x}}
$$

The actual altitude doesn't matter.

Bridges

A lot of the work we have done in the semi-bounded case will prove useful here. We cannot use the exact same method as for excursions.

Suppose we tried describing a walk with a negative change in altitude. The first and last steps could both be positive. Then we would need to describe a walk that has a larger negative change in altitude. And so on.

Bridges

Unimodal

Polynomials
Lattice Walk Enumeration
Background
Generating
Functions
Bounded Walks
Semi-Bounded Walks
Unbounded Walks
Applications Wrapping Up

Conclusion

Let G denote the g.f. of bridges with a step set \mathcal{S}.

$$
G=1+\left(h_{0}+\sum_{(x, 0) \in \mathcal{S}} t^{x}\right) G .
$$

We now have a new type of "irreducible" g.f.

$$
h_{0}=2 g_{0,0}+\sum_{(x, y) \in \mathcal{S} ; y \leq-2} \sum_{i=1}^{-y-1} g_{0, i} t^{x} h_{i+y}+\sum_{(x, y) \in \mathcal{S} ; y \geq 2} \sum_{i=1}^{y-1} g_{y-i, 0} t^{x} h_{i}
$$

Irreducible Unbounded Walks

Note that walks below the x-axis are in bijection with walks above the x-axis by reversing the order of steps. We can then use $g_{0,-a}=g_{a, 0}$ and $f_{-a,-b}=f_{b, a}$.

$$
\begin{array}{ll}
j>0 & h_{j}=g_{j, 0}+\sum_{(x, y) \in \mathcal{S} ; y \leq-2} \sum_{i=1}^{-y-1} f_{j-1, i-1} t^{x} h_{i+y}, \\
j<0 & h_{j}=g_{0,-j}+\sum_{(x, y) \in \mathcal{S} ; y \geq 2} \sum_{i=1}^{y-1} f_{y-i-1,-j-1} t^{x} h_{i} .
\end{array}
$$

Unimodal

Polynomials
Lattice Walk Enumeration
Background
Generating
Functions
Bounded Walks
Semi-Bounded
Walks
Unbounded Walks
Applications Wrapping Up Conclusion

Let $\mathcal{S}^{\prime}=\{[2,-2],[1,-1],[1,1],[2,2]\}$ and G denote the g.f. of bridges. Then G satisfies

$$
\begin{gathered}
0=1+2\left(4 t^{2}-3\right)\left(4 t^{4}-8 t^{2}+1\right) G^{2} \\
\left(8 t^{2}+5\right)\left(4 t^{4}-8 t^{2}+1\right)^{2} G^{4}
\end{gathered}
$$

and has truncated solution

$$
G=1+2 t^{2}+14 t^{4}+84 t^{6}+556 t^{8}+3736 t^{10}
$$

Combining Solutions

Sports statistics are an integral part of many a fan base. So a question of interest beyond the number of ways to be tied, may be the number of ways to win by at least X. How do we describe this walk?

Suppose we want to win by ≥ 2 and never trail by more than 3 . Well $f_{3,5}$ will count walks that don't drop by more than 3 , and we will have at least a 2 point lead at the end. So does $f_{3,5} \cdot k_{0}$ count what we want? Not necessarily. $f_{3,5}$ ensures that at some point we are exactly 2 points ahead of where we began. But depending on the step set, a win may skip over this lead and never actually hit the altitude 2 steps higher than our beginning. And $f_{3,5} \cdot k_{0}$ double counts some walks and misses others.

Unimodal
Polynomials
Lattice Walk Enumeration

Background

Generating
Functions
Bounded Walks
Semi-Bounded Walks
Unbounded Walks
Applications Wrapping Up

Let L denote the g.f. of interest. Then $L=k_{3}-f_{3,0}-f_{3,1}-f_{3,2}-f_{3,3}-f_{3,4}$. Let $\mathcal{S}=\{[0,-1],[1,0],[1,1],[1,2]\}$. Then L has a minimal polynomial of degree 3 and has truncated expansion.

$$
\begin{aligned}
L=t & +21 t^{2}+305 t^{3}+4064 t^{4}+52431 t^{5}+666657 t^{6} \\
& +8420130 t^{7}+106070229 t^{8}+1335635352 t^{9}
\end{aligned}
$$

Unimodal
Polynomials
Lattice Walk Enumeration

Background

Generating
Functions
Bounded Walks
Semi-Bounded
Walks
Unbounded Walks
Applications Wrapping Up

Conclusion

We can introduce a weight to each step

$$
f_{a, b}=1+\sum_{(x, y, w) \in \mathcal{S}} w \cdot t^{x} f_{a-y, b-y} .
$$

We can use weights as probabilities and find the probability that a random walk is a bridge or excursion or meander.

Asymptotics

Unimodal
Polynomials
Lattice Walk Enumeration

Background

 Generating FunctionsBounded Walks
Semi-Bounded
Walks
Unbounded Walks
Applications Wrapping Up

Since we can find linear recurrences for the sequences, we can find asymptotic relatively easily. Let $\mathcal{S}=\{[1,-1],[1,0],[1,2]\}$. Then,

$$
\begin{aligned}
0 & =1+(t-1) F+t^{3} F^{3}, \\
0 & =31(n+1)(n+2) B(n)-6(2 n+5)(n+2) B(n+1) \\
& +2\left(6 n^{2}+36 n+53\right) B(n+2)-2(2 n+9)(n+3) B(n+3), \\
B(n) & \sim 0.800119 \cdot \frac{2.88988^{n}}{n^{3 / 2}} \cdot\left(1-\frac{1.74757}{n}\right),
\end{aligned}
$$

Unimodal
Polynomials
Lattice Walk Enumeration

Background

Generating
Functions
Bounded Walks
Semi-Bounded
Walks
Unbounded Walks
Applications Wrapping Up Conclusion

$$
\begin{aligned}
0 & =1-3(t-1) G+\left(31 t^{3}-12 t^{2}+12 t-4\right) G^{3}, \\
0 & =31(n+1)(n+2) C(n)-6(n+2)(2 n+3) C(n+1) \\
& +2\left(6 n^{2}+24 n+23\right) C(n+2)-2(n+3)(2 n+3) C(n+3), \\
C(n) & \sim 0.3488332 \cdot \frac{2.88988^{n}}{\sqrt{n}} \cdot\left(1-\frac{0.247572}{n}\right) .
\end{aligned}
$$

The proportion of excursions to bridges is

$$
\frac{B(n)}{C(n)} \sim \frac{2.293700526}{n}:
$$

Unimodal
Polynomials
Lattice Walk Enumeration
Background
Generating
Functions
Bounded Walks
Semi-Bounded
Walks
Unbounded Walks
Applications Wrapping Up Conclusion

Let $\mathcal{S}=\{[1,-1],[1,0],[1,1],[2,2]\}$. Then

$$
\begin{aligned}
0=1 & +\left(3 t^{2}+3 t-1\right) K+t(3 t+1)\left(t^{2}+3 t-1\right) K^{2} \\
& +t^{2}\left(t^{2}+3 t-1\right)^{2} K^{3}, \\
D(n) \sim & \frac{136}{443}\left(\frac{3+\sqrt{13}}{2}\right)^{n} \approx 0.307 \cdot 3.303^{n}
\end{aligned}
$$

Conclusion

Unimodal

Polynomials

Lattice Walk Enumeration
Background
Generating
Functions
Bounded Walks
Semi-Bounded Walks
Unbounded Walks

We analyzed walks by looking at certain steps along its route.

- The first step for bounded walks.
- The last step for semi-bounded walks.
- A middle step for unbounded walks.

We always created a CLOSED system of relations!

One avenue that I am pursuing is counting the area under each walk. This involves adding a catalytic variable z that counts that area at each step.

The result is no longer "solvable". But we can iterate for a solution.

Conclusion

Unimodal
Polynomials
Lattice Walk Enumeration

Conclusion

Computers were instrumental in my being able to research. I never would have seen the depth formula or conjectured recurrence for unimodal polynomials. And producing lattice walk g.f.s would have been extremely tedious. Once I had the algorithm down, a computer could easily show me that these methods are accurate.

I revised results of mathematicians before me to work in more ways than originally intended. In the process I created programs for others to work further.

Acknowledgments

Thank you to my wife Kaitlin for supporting me. Thank you to my committee for serving as such. Thank you to Dr. Z. for providing these fun research projects.

This research was funded by a SMART Scholarship: USD/R\&E (The Under Secretary of Defense-Research and Engineering), National Defense Education Program (NDEP) / BA-1, Basic Research.

Unimodal
Polynomials
Lattice Walk
Enumeration
Conclusion

Questions?

References I

Unimodal
Polynomials
Lattice Walk Enumeration

Conclusion

固 Jenny Alvarez, Miguel Amadis, and Leobardo Rosales, Unimodality and log-concavity of polynomials, Tech. report, Technical report, The Summer Institute in Mathematics for Undergraduates (SIMU). (Cited on page 161.), 2000.

Arvind Ayyer and Doron Zeilberger, The number of [old-time] basketball games with final score n:n where the home team was never losing but also never ahead by more than w points, The Electronic Journal of Combinatorics 14 (2007).

References II

R. Brak, A.L. Owczarek, A. Rechnitzer, and S.G. Whittington, A directed walk model of a long chain polymer in a slit with attractive walls, J. Phys. A 38 (2005), 4309-4325.

Petter Brändén, Unimodality, log-concavity, real-rootedness and beyond, Handbook of Enumerative Combinatorics 87 (2015), 437.

嗇 Y. I. Petunin D. F. Vysochanskij, Justification of the 3σ rule for unimodal distributions, Theory of Probability and Mathematical Statistics 21 (1980), 25-36.

References III

Carl Friedrich Gauss, Theoria combinationis observationum erroribus minimis obnoxiae, pars prior, Commentationes Societatis Regiae Scientiarum Gottingensis Recentiores 5 (1823).
(1) Manuel Kauers and Peter Paule, The concrete tetrahedron, Springer, 2011.
(10) OEIS Foundation Inc. (2018), The On-Line Encyclopedia of Integer Sequences, http://oeis.org/A301379.

R OEIS Foundation Inc. (2018), The On-Line Encyclopedia of Integer Sequences, http://oeis.org/A301380.

Doron Zeilberger, A one-line high school algebra proof of the unimodality of the gaussian polynomials [kn] for $k<20$, pp. 67-72, Springer US, New York, NY, 1989.

