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Wilf-equivalence

Notation
In general, for any � 2 S

k

we denote by

Av
n

(�)

the set of all permutations (length n) that avoid �.

In this setting

� is called a pattern.

We say two patterns �, ⌧ 2 S

k

are Wilf-equivalent provided

|Av
n

(�)| = |Av
n

(⌧)|

for all n. We write � ⇠ ⌧ .

All patterns ⌧ of length 3 are Wilf-equivalent. Moreover,

|Av
n

(⌧)| = 1

1 + n

✓
2n

n

◆
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Patterns of length 4
We have:

Class|n 5 6 7 8 9 . . .
1 4 2 3 103 512 2740 15485 91245 . . .
1 2 3 4 103 513 2761 15767 94359 . . .
1 3 2 4 103 513 2762 15793 94776 . . .

Classic results

I There are exactly 3 Wilf-classes in S

4

I Stankova (1994) proved that 1 4 2 3 ⇠ 2 4 1 3
I Proof idea: Isomorphic generating trees

New results

I We give (first) bijective proof that 1 4 2 3 ⇠ 2 4 1 3

I Resolve a conjecture of Dokos, et al. (2012)
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Permutation Statistics

Consider the permutation ⇡ = 6 5 1 8 2 7 3 4
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> ⇡
i+1

I RL maxima are positions i such NE of ⇡
i

we have nothing!

I +/� bonds
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Refined Wilf-equivalence
Fix any permutation statistic f .

We say two patterns �, ⌧ are
f-Wilf-equivalent, and write

� ⇠
f

⌧,

provided there is a bijection ⇥ from Av
n

(�) to Av
n

(⌧) that
preserves the f statistic, i.e.,

f = f �⇥,

or, in generating function terms
X

⇡2Av(�)

x

|⇡|
t

f (⇡) =
X

⇡2Av(⌧)

x

|⇡|
t

f (⇡).

Conjecture (Dokos, et al., 2012)

The patterns 1423 and 2413 are Maj-Wilf-equivalent

I Maj(⇡) is sum of descents of ⇡.
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1423 ⇠ 2413 revisited

Theorem (Bloom, 2014)

There is an explicit bijection

⇥ : Av
n

(1423) ! Av
n

(2413)

such that ⇥ preserves set of descents (hence Major index),

RL-maxima, -bonds, and position of n and n � 1. Additionally, if

⇡ 2 Av
n

(1423) \ Av
n

(2413)

then ⇥(⇡) = ⇡.

Note

I ⇥ is not the same as Stankova’s “implied” bijection.

I Stankova’s isomorphism does not preserve these statistics.
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Given ⇡ 2 Av
n

(1423) it decomposes as:
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right-most column

A
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⇡(1) =

⇥(⇡(1)) =

A
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⇥
⇥⇡(2) =

⇥(⇡(2)) =

B

B 0

By induction,
⇥ : Av

n

(1423) ! Av
n

(2413)

exists and preserves statistics

I Including RL maxima!

? Applying ⇥ to each part maintains structure!
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Doing this we obtain our final result:

⇥(⇡) =

⇥

⇥
⇥
⇥

A0

B 0



Part II
(Pattern classes & large Schröder numbers)



Egge’s motivation

Consider the following table

n = 2 3 4 5 6 7 . . .
Av

n

(2143, 3142) 2 6 22 90 395 1823 . . .
nth large Schröder # 2 6 22 90 394 1806 . . .

Question:
Are there any patterns ⌧ 2 S

6

such that the sets

|Av
n

(2143, 3142, ⌧)|

are counted by the large Schröder numbers?
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Egge triples & unbalanced Wilf-equivalences

Conjecture (Egge, AMS Fall Eastern Meeting in 2012)

Fix ⌧ 2 {246135, 254613, 524361, 546132, 263514}. Then

X

n�0

|Av
n

(2143, 3142, ⌧)|xn =
3� x �

p
1� 6x + x

2

2
,

I Av
n

(2143, 3142, ⌧) is counted by the large Schröder numbers

I
These values of ⌧ (and 180� rotations) are only patterns

Proved...
I Burstein and Pantone proved ⌧ = 246135

I simple permutations

I Bloom and Burstein proved the remaining 4 cases
I 263514: simple permutations
I 254613, 524361, 546132: decomposition using LR-maxima
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Unbalanced Wilf-equivalence

It is well known that the separable permutations, i.e.,
Av(2413, 3142) are also counted by large Schröder numbers, so

|Av
n

(2413, 3142)| = |Av
n

(2143, 3142, ⌧)|,

where ⌧ 2 {246135, 263514, 254613, 524361, 546132}.

General phenomenon
Let X and Y be two sets of patterns so that for some k

|X \ S

k

| 6= |Y \ S

k

|.

If
|Av

n

(X )| = |Av
n

(Y )| (for all n),

then, we say X and Y are an unbalanced Wilf-equivalence.

I Examples of unbalanced Wilf-equivalence abound!



Unbalanced Wilf-equivalence

It is well known that the separable permutations, i.e.,
Av(2413, 3142) are also counted by large Schröder numbers, so
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If ⇡ 2 Av
n

(2143, 3142), then it looks like:

⇥

↵1

⇥

↵2

⇥

↵g

. . .

. . .

`1

leading maxima

horizontal gap



Anatomy of (2143, 3142)-avoiders

If ⇡ 2 Av
n

(2143, 3142), then it looks like:

⇥

↵1

⇥

↵2

⇥

↵g

. . .

. . .

`1

leading maxima

horizontal gap



Anatomy of (2143, 3142)-avoiders

If ⇡ 2 Av
n

(2143, 3142), then it looks like:

⇥

↵1

⇥

↵2

⇥

↵g

. . .

. . .

`1

leading maxima

horizontal gap



Anatomy of (2143, 3142)-avoiders

If ⇡ 2 Av
n

(2143, 3142), then it looks like:

⇥

↵1

⇥

↵2

⇥

↵g

. . .

. . .

`1

leading maxima

horizontal gap



Counting ⌧ = 254613

Idea We consider three cases:

I No horizontal gaps

I Exactly 1 horizontal gap

I At least 2 horizontal gaps

Set
A(t, x) =

X

⇡2Av(2143,3142,⌧)

x

|⇡|
t

`(⇡),

where `(⇡) is the number of leading maxima in ⇡.



Counting ⌧ = 254613

Case 1: No Horizontal gap

⇡ 2 Av
n

(2143, 3142, ⌧) has no horizontal gap i↵

⇡ = 1 2 . . . n.

Counted by
1

1� tx
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where
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All Together...

A(t, x) =
1

1� tx

+
txE

1� x

+
⇣
A� 1

1� tx

⌘ 
x(B � 1)

(1� x)(1� tx)

! 
1

1� tx(B�1)

1�tx

!
,

where

E (t, x) =
B � tA

1� t

� 1

1� tx

and B = A(1, x).
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With a bit of algebra (thanks to Mathematica)

✓
Bt

3

x

2 + Bt

2

x

2 � Bt

2

x � Btx

2 + Bx � t

2

x + t � 1

(1� t)(1� x)(1� Btx)

◆
A⇤

=
xt

1� x

✓
Btx � B + 1

(t � 1)(tx � 1)

◆

where A⇤ = A� 1

1� xt

.

Setting the kernel to zero

0 = Bt

3

x

2 + Bt

2

x

2 � Bt

2

x � Btx

2 + Bx � t

2

x + t � 1.

I Directly solving fails
I Let t = t(x) be the desired solution

I The RHS yields: Bxt(x) = B � 1
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Using the fact that Bxt(x) = B � 1, the kernel becomes
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x�B

2+Bx+3B�2 = (xB�1)(B2+(x�3)B+2).

Solving (now) yields

A(1, x) = B =
3� x �

p
1� 6x + x

2

2
= 1 + x + 2x2 + 6x3 + 22x4 + 90x5 + · · ·
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Thank You!


