Games For Arbitrarily Fat Rats

Aviezri S. Fraenkel

Abstract

. In kindergarten we learned about the integers (Peano axioms); in grammar schhol - about pairs of integers (rationals); and then in high school, about the reals (Dedekind cuts). Berlekamp, Conway, Guy discovered and promoted a method (Don Knuth: "Surreal Numbers") of creating all of those and much more - namely games! - in one masterful stroke.

Yet the rationals sometimes present obstinate difficulties often overlooked. Example. Let $1<\alpha_{1}<, \ldots,<\alpha_{m}$ be real numbers, dubbed moduli, $m \geq 3$. An over 40 years old conjecture states that there exist reals γ_{i} such that the system $\left.\left(\left\lfloor n \alpha_{1}+\gamma_{1}\right\rfloor, \ldots,\left\lfloor n \alpha_{m}\right\rfloor+\gamma_{m}\right\rfloor\right)$ constitutes a complementary system of m sequences of integers if and only if $\alpha_{i}=\left\lfloor\left(2^{m}-1\right) / 2^{m-i}+\gamma_{i}\right\rfloor$, $i=1, \ldots, m$. It is known that for integers and irrationls, 2 moduli have to be equal, but the problem is wide open for the rationals.

We have created, for every $m \geq 2$, an invariant game whose P-positions (2nd player win positions) are the conjectured moduli, and gave game rules and an efficient strategy for the next winning move if not in a P-position. Motivation: (1) "Play" with the above conjecture. (2) Find efficient game rules for games defined only by their sets of P-positions. (Rats: rationals.)

Joint with Urban Larsson.

