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1. Introduction

While I am broadly interested in all kinds of mathematics, my graduate study and research

focus is in combinatorics. In particular, I study patterns in permutations and words, and more

recently, integer partitions. Side note: my favorite area of math in high school is geometry (I

studied in China before college) and my undergraduate favorite area is abstract algebra. But at

this moment, it is experimental math and combinatorics! I find it a lot of fun to discover patterns

using computers and then try to prove them by various means (or leave them as conjectures).

Below I will summarize the main projects that I have worked on during my graduate school years

and possibilities for future work. Many of them are accessible to undergraduate students. The

first three projects (2.1.-2.3.) are especially of current interest.

2. Projects

2.1. Systematic counting of restricted partitions. [This is joint work with Doron Zeil-

berger]

Project link: http://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/rpr.html

One of the cornerstones of enumerative combinatorics (and number theory!) are integer parti-

tions. Recall that a partition of a non-negative integer n is a list of integers (λ1, . . . , λk) such

that λ1 ≥ · · · ≥ λk ≥ 1 and λ1 + · · ·+ λk = n.

Already Euler considered the enumeration of sets of partitions obeying some restrictions. For

example the number of partitions into distinct parts, let’s call it d(n), is given by the generating

function ([An], p. 5)
∞∑
n=0

d(n)qn =
∞∏
i=1

(1 + qi) =
∞∏
i=0

1

1− q2i+1
.

More recently, Rogers and Ramanujan (with the help of MacMahon, see [1] and [25]) considered

the problem of enumerating partitions with the property that the difference between consecutive

parts is at least 2, i.e. for which

λi − λi+1 ≥ 2 .

The First Rogers-Ramanujan identity states that these numbers, let’s call them d2(n), also have

a nice product generating function
∞∑
n=0

d2(n)q
n =

∞∏
i=0

1

(1− q5i+1)(1− q5i+4)
.
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We can say that distinct partitions avoid the “pattern” [a, a] and Rogers-Ramanujan partitions

avoid both the pattern [a, a] and the pattern [a, a− 1].

This naturally leads to the question of enumerating partitions avoiding an arbitrary (finite) set

of patterns, but first let’s formally define the notion of a “pattern” in the context of partitions.

Note that, for simplicity, definition for “pattern” is slightly different from above.

Definition 2.1. A partition-pattern (pattern for short) is a list a = [a1, . . . , ar] of length r ≥ 1

of non-negative integers. A partition λ = (λ1, . . . , λk) contains the pattern a = [a1, . . . , ar] if

there exists 1 ≤ i ≤ k − r such that

λi − λi+1 = a1 , λi+1 − λi+2 = a2 , . . . λi+r−1 − λi+r = ar .

Our goal is to devise an efficient algorithm, that inputs an arbitrary set of patterns, P , and an

arbitrary positive integer N , and outputs the first N terms of the sequence enumerating parti-

tions of n avoiding the set of patterns P .

A natural approach is to adapt the celebrated Goulden-Jackson [13] method to this new context.

The Goulden-Jackson method is lucidly explained (and significantly extended) in the article [22].

I was able to implement this approach in Maple. However, as it turned out, while this approach

is of considerable theoretical interest, it is less efficient than a more straightforward approach,

and a sketch of the ideas for this approach is given below (Zeilberger, 2019; for details please

refer to the paper):

Let’s say we are partition the integer n, whose largest part is m. For any given set of patterns

A, the computer automatically sets-up a scheme, introducing more general quantities, parame-

terized, in addition to the set of global conditions A, by a set of local conditions that should be

avoided at the very beginning. Then, for each such set of beginning restrictions, A′, depending

on m′ (the second largest part of the partition), either we are back to only the global conditions,

A, i.e. the new A′ is the empty set, or if m −m′ happens to be one of the starting entries of

A or A′, the chopped partition, of n − m, in addition to obeying the global restrictions of A,

must obey a brand-new kind of restrictions A′′. So each ‘state’ (m,m′, A′) gives rise to a state

(m′,m′′, A′′) for some (possibly empty) set A′′. Finding these “children” state is automatically

done by the computer, setting up a quadratic-time scheme. At the end of the day, we are only

interested in the case where A′ = ∅, but we are forced to consider these auxiliary quantitities.

Since there are only finitely many of them, and there are still only two arguments (namely n

and m, where 1 ≤ m ≤ n), the algorithm remains quadratic time and quadratic memory, which

is much faster than the brute force approach.
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2.2. Searching for partition identities. [Joint work with Matthew Russell]

Even though the previous project will enable us to enumerate partitions avoiding an arbitrary

(finite) set of patterns, many partition theoretic sum sides of partition identities requires more

specific restrictions. Recall Schur’s celebrated 1926 theorem: the number of partitions of m into

parts with minimal difference 3 and with no consecutive multiples of 3 is equal to the number

of partitions of m into distinct parts ≡ 1, 2 (mod 3). We are interested in the “sum-side” of this

identity, that is, the number of partitions of m into parts with minimal difference 3 and with no

consecutive multiples of 3.

Another example involves more complicated restrictions featured in the intruiging Kanade-

Russell conjectures, for example, the sum-side in 3.1.1. of [18]:

(a) No consecutive parts allowed.

(b) Odd parts do not repeat.

(c) Even parts appear at most twice.

(d) If a part 2j appears twice then 2j ± 3, 2j ± 2 are forbidden to appear at all.

(e) 2+2 is not allowed as a sub-partition.

In order to generalize the approach described at the end of 2.1., which is very efficient, we intro-

duce some new notions and formulate these sum-sides in a different way, which turns out to be

very flexible and also easy to feed to a computer. Here are the three major parameters that we use:

A: the set of patterns to avoid “globally” (same as before)

Mod: the list of patterns to avoid according to congruence conditions of the largest part of a

sub-partition. If Mod = [A0, A1, ..., Ak−1] (each Ai is a set of patterns), then we are considering

modulo k and avoiding the sub-partitions {a0, kj}, {a1, kj + 1},..., {ak, kj + (k − 1)} where ai
can be any pattern in Ai and j can be any positive integer. (Note we are using the notation

{v, k} to denote the partition that starts with k and has underlying pattern v).

IC: the list of sub-partitions to avoid (we call this “initial conditions”)

In light of these notations we have–Schur: parts with minimal difference 3 translates to A =

{[0], [1], [2]}. No consecutive multiples of 3 translates to Mod = [{[3]}, {}, {}].
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3.1.1. in [18]: No consecutive parts allowed translates to the global condition: A = {[1]}.
Odd parts do not repeat, even parts appear at most twice, along with part (d) translate to

Mod = [{[0, 0], [0, 3], [0, 2], [2, 0]}, {[0], [3, 0]}]. Part (e), that is, 2+2 is not allowed as a sub-

partition translates to IC=[[2,2]].

Using these new notations I came up with an algorithm (for details, please see http://sites.

math.rutgers.edu/~my237/Pos_Ext) that enables very efficient computation. LetGP (m,n,A,Mod,B, IC)

be the number of partitions of n, with largest part m, and the restrictions A, Mod, IC described

above, and B and B′′ are beginning restrictions. At the core of the algorithm is the recurrence

relation:

GP (m,n,A,Mod,B, IC) =
∑

1≤m′≤m
[m−m′] 6∈A∪B′∪Mod[i+1]

GP (m′, n−m,A,Mod,B′′, IC) .

With this algorithm and the help of Frank Garvan’s q-series Maple package (in particular, the

prodmake procedure that converts a q-series f into an infinite product that agrees with f to a

some power of q), we are currently conducting the search over various parameter restrictions,

with the help of Amarel cluster computing https://oarc.rutgers.edu/amarel/. We have al-

ready found many seemingly new Rogers-Ramanujan type identities, and has generalized one of

them to an infinite family.

Future work:

1. Put more variations on the parameters to enlarge our search space.

2. Currently our approach only deal with conditions on contiguous sub-partitions. It will be nice

to develop a general frame work/an efficient way to search for identities that avoid sub-partitions

that are not necessarily contiguous.

3. During my talk at 2019 AMS Fall Southeastern Sectional Meeting, Drew Sills (see http://

home.dimacs.rutgers.edu/~asills/) and Ali Uncu (see https://risc.jku.at/m/ali-uncu/)

offered some great suggestions to make our algorithm more flexible, including allowing the ini-

tial conditions to contradict the global conditions and allowing Nandi-type conditions. We are

currently working on implementing these.

2.3. Relaxed Partitions.

Project link: http://sites.math.rutgers.edu/~my237/RP

http://sites.math.rutgers.edu/~my237/Pos_Ext
http://sites.math.rutgers.edu/~my237/Pos_Ext
https://oarc.rutgers.edu/amarel/
http://home.dimacs.rutgers.edu/~asills/
http://home.dimacs.rutgers.edu/~asills/
https://risc.jku.at/m/ali-uncu/
http://sites.math.rutgers.edu/~my237/RP
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In this project, we took a road less traveled and studied an object which we call “relaxed parti-

tions”, or more specifically, r-partitions with r to be specified. Unlike the traditional partitions

where we require λi−λi+1 ≥ 0, for r-partitions we require λi−λi+1 ≥ r where r can be negative.

For example, (2, 3, 1, 1) is a (−1)-partition of 7.

Just as with traditional partitions, there are many questions one could ask about r-partitions.

Perhaps one of the first questions to ask is: “for a fixed r, how many r-partitions of the integer

n do we have?” Using an easy recurrence relation, I programmed NPr(n, r), which answers this

question for specific n and r. But can we find a generating function for a given r? The answer

turned out to be yes! And there is a nice closed form for it. By typing in a sequence of entries

produced by NPr(n,−1) into the OEIS, we found that it is the reciprocal of∑∞
k=0(−1)kqk

2∏k
i=1 (1− qi)

.

Recognizing this is the generating function for the “weighted” (with weight (−1)k) number of

partitions (traditional) of integer n into parts with difference at least 2, Doron Zeilberger (2018)

provided a short and elegant bijective proof for it. I generalized this to general r:

Theorem 2.2. (Yang, 2018) The generating function for the number of r-partitions of n is the

reciprocal of ∑∞
k=0(−1)kqk(2+(1−r)(k−1))/2∏k

i=1 (1− qi)
,

which is the “weighted” number of partitions of integer n into parts with difference at least (−r+1).

Since this question was answered, we turned our focus to restricted r-partitions such that the

first part and the number of the parts are fixed. Let ar(M,N, n) be the number of r partitions

with the first part equal to M and exactly N parts. To go with the notation in our Maple

package rPar, let Ftr(M,N, r, q) be the generating function for ar(M,N, n). Using a simple

recurrence relation Ftr(M,N, r, q) satisfies, I was able to program it in Maple and happily used

Maple to conjecture (and prove!) the closed form for the case q = 1 (i.e., the total number of

r partitions with the first part equal to M and exactly N parts). It is:

Theorem 2.3. (Yang, 2018)

Ftr(M,N, r, 1) =
(M − r)(M + (1− r)N − 2)!

(N − 1)!(M − rN)!
.

=

(
M + (1− r)N − 2

N − 1

)
+ r

(
M + (1− r)N − 2

N − 2

)

Although I was not yet able to find a closed form formula for the generating function Ftr(M,N, r, q),

I found out (using Maple) some initial terms (according to N) of it. Below are the first five terms
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produced by our Maple program, which can be proven easily using a recurrence relation. Note

even though they look like rational functions, they are in fact polynomials.

qGuessPol([seq(F(M1,1,−1,q),M1 = 1..20)],M,q,1); yields

qM

qGuessPol([seq(F(M1,2,−1,q),M1 = 1..20)],M,q,1); yields

qM+1(qM+1 − 1)

(q − 1)

qGuessPol([seq(F(M1,3,−1,q),M1 = 1..20)],M,q,1); yields

qM+2(qM+3 + q2 − q − 1)(qM+1 − 1)

(q − 1)2(q + 1)

qGuessPol([seq(F(M1,4,−1,q),M1 = 1..20)],M,q,1); yields

qM+3(q2M+8 + qM+7 − qM+5 − qM+4 − qM+3 + q6 − 2q4 − q3 + 2q + 1)(qM+1 − 1)

(q − 1)3(q + 1)(q2 + q + 1)

qGuessPol([seq(F(M1,5,−1,q),M1 = 1..20)],M,q,1); yields

qM+4(qM+5 + q4 − q − 1)(q2M+10 − qM+4 − qM+3 + q8 − q5 − 2q4 + 2q + 1)(qM+1 − 1)

(q − 1)4(q + 1)2(q2 + 1)(q2 + q + 1))

Drew Sills (see http://home.dimacs.rutgers.edu/~asills/), during his short visit to Rutgers

and our brief meeting, observed that F (M,N,−1, q) has denominator (q; q)N and a numerator

of degree N(M + N − 1). He pointed out that it is plausible the numerator is a (possibly

alternating) sum of polynomials that are a power of q times a Gaussian polynomial of the form

G(M,N) := GP (2N +M − 1, N) where

GP (m, r) :=
(qm−r+1, q)r

(q, q)r
.

So far we have not made much progress in this, but this led me to discover an interesting pattern:{
G(2, 1) = q2 + q + 1

F (2, 2,−1, q) = q5 + q4 + q3

{
G(2, 2) = q6 + q5 + 2q4 + 2q3 + 2q2 + q + 1

F (2, 3,−1, q) = q9 + q8 + 2q7 + 2q6 + 2q5 + q4


G(2, 3) = q12 + q11 + 2q10 + 3q9 + 4q8 + 4q7 + 5q6 + 4q5 + 4q4

+3q3 + 2q2 + q + 1

F (2, 4,−1, q) = q14 + q13 + 2q12 + 3q11 + 4q10 + 4q9 + 5q8

+4q7 + 3q6 + q5

Notice for each pair, the underlined parts have the same coefficients. This pattern continues in-

definitely for bigger M and N . This is an ongoing project to explore why this intriguing pattern

http://home.dimacs.rutgers.edu/~asills/
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exists and if it can point us to discover a closed form for F (M,N,−1, q), or even F (M,N, r, q).

Connection to other combinatorial objects:

With the help of OEIS, I found a direct connection between F (M,N,−1, 1) and Catalan’s tri-

angle. Since F (M,N,−1, 1) = (M−r)(M+(1−r)N−2)!
(N−1)!(M−rN)! , it is clear that F (M,N,−1, 1) = C(M +

N − 1, N − 1). And there turned out to be a nice a geometric interpretation.

There also seems to be a bit of connection between the standard Young Tableau and F (M,N,−1, 1).
For example, typing the sequence [seq(F (5, N,−1, 1), N = 1..20] into OEIS, we will find it can

also represent the number of standard Young Tableau of shape (N + 3, N − 2). (A003517) If

we change the value of M, then we can find correspondence with other standard Young Tableau.

I conjecture that F (M,N,−1, 1) is equal to the number of standard Young Tableau of shape

(N + dM/2e, N − bM/2c). For general r, we haven’t found nice connections yet.

Future work: As mentioned earlier, it would be wonderful if we could discover why the in-

triguing pattern between the F and G exists. This may enable us to find a closed form for

F (M,N,−1, q), and perhaps give us insights for F (M,N, r, q). During my talk at the 2019 AMS

Spring Southeastern Sectional Meeting, Tim Huber (see https://faculty.utrgv.edu/timothy.

huber/) mentioned that these generating functions’ approximation of the Gaussian polynomials

may indicate they count permutations by some statistic and may arise from a quotient of gener-

ating functions of a special form. This is still under exploration. It would also be nice if we can

find connection between F (M,N, r, 1) and other combinatorial objects.

I am also interested in exploring plane partitions and “fractional counting”, some initial Maple

“playing-around” can be found on http://sites.math.rutgers.edu/~my237/RP.

2.4. Enumeration of words that contain pattern 123 exactly once.

Project link: http://sites.math.rutgers.edu/~my237/One123

Recall that a word w = w1...wk is an ordered list of letters on some alphabet. To say a word

contains a pattern (a certain permutation of {1, ...,m}) σ is to say there exist 1 ≤ i1 < i2 <

... < im ≤ k such that the subword wi1 ...wim is order isomorphic to σ (for example, 246 is order

isomorphic to 123). A word avoids the pattern σ if it does not contain it.

https://faculty.utrgv.edu/timothy.huber/
https://faculty.utrgv.edu/timothy.huber/
http://sites.math.rutgers.edu/~my237/RP
http://sites.math.rutgers.edu/~my237/One123
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Enumeration problems related to words avoiding patterns as well as permutations that contain

the pattern 123 exactly once have been studied in great detail. However, the problem of enu-

merating words that contain the pattern 123 exactly once is new and was the focus of this project.

Theorem 2.4. (Noonan, 1996 [20]) The number of permutations with exaclty one 321 pattern

is equal to 3
n

(
2n
n+3

)
.

In a paper published in 2011 [5], Burstein gave an elegant combinatorial proof of this theorem.

Soon after, Zeilberger [Z1] was able to shorten Burstein’s proof by using a bijection between

a permutation with exactly one pattern 321, denoted as π1cπ2bπ3aπ4 (a < b < c), with the

pair (π1bπ2a, cπ3bπ4) where π1bπ2a is a 321-avoiding permutation of {1, ..., b} and cπ3bπ4 is a

321-avoiding permutation of {b, ..., n}.

I was able to extend Zeilberger’s bijective proof idea to words and came up with the following

theorem:

Theorem 2.5. (Yang, 2017) Let A(l1, ..., ln) be the number of 123-avoiding words associated

with the list [l1, ..., ln]. And let B(l1, ..., ln) be the number of words associated with list [l1, ..., ln]

that contain the pattern 123 exactly once. Then we have

B(l1, ..., ln) =
n−1∑
b=2

lb−1∑
j=0

(A(l1, ..., lb−1, j + 1)−A(l1, ..., lb−1, j))

·(A(lb−j, lb+1, ..., ln)−A(lb−j−1, lb+1, ..., ln)).

Building on the ideas from this result, I then extended Shar and Zeilberger’s work [26] on gen-

erating functions enumerating 123-avoiding words (with r occurrences of each letter) to words

(with r occurrences of each letter) having exactly one pattern 123 :

Theorem 2.6. (Yang, 2017)

hr(x) =
1

x

r∑
i=1

(g(0, i mod r)
r −xg(0, i−1)

r −δ(i mod r, 0))(g
(0, (r+1−i) mod r)
r −xg(0, r−i)

r −δ((r+1−i) mod r, 0)).

(the definitions for gr and hr are somewhat complicated, details please see paper.)

Also in [26], for every positive integer r, Shar and Zeilberger found an algorithm for finding

the defining algebraic equation for the ordinary generating function enumerating 123-avoiding

words of length rn where each of the n letters of {1, 2, ..., n} occurs exactly r times.
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Theorem 2.6 allowed us to produce an analogue of that, that is, a defining algebraic equation

for the ordinary generating function enumerating words of length rn where each of the n letters

of {1, 2, ..., n} occurs exactly r times, now with exactly one pattern 123. We used the same

(as in Shar and Zeilberger’s paper [26]) memory-intensive, and exponential time, Buchberger’s

algorithm for finding Gröbner bases, and our computer (running Maple) found the defining

algebraic equation for r = 2:

x4 (x+ 4)2 F 4 + 2x3 (x+ 4) (11x+ 23)F 3 − 4x
(
3x4 − 10x3 − 97x2 − 146x+ 1

)
F 2

+
(
−168x4 − 840x3 − 744x2 + 336x− 24

)
F + 144x3 (x+ 2) = 0.

This took about a second. The minimal algebraic equation for r = 3 has 12 as the highest power

for F and the computation took about 20 seconds. Interested readers can find it on the website:

http://sites.math.rutgers.edu/~my237/One123. Unfortunately, the case when r = 4 already

took too long to compute (more than a month).

Finally, let ar(n) be the number of words of length rn where each of the n letters of {1, 2, ..., n}
occurs exactly r times, with exactly one pattern 123. We used the Maple package SCHUTZEN-

BERGER to derive recurrence relations for our sequences. Having obtained the defining al-

gebraic equations of the generating functions for ar(n) in the cases r = 2 and r = 3, Manuel

Kauers kindly helped us in finding the asymptotics for our sequences a2(n) and a3(n) (thanks to

Kauers, the constants in front are fully rigorous and were computed via a step by step procedure;

for details, please refer to [15]):

a2(n) =
3(13−

√
21)

49
· 1√

π
· 12n · n−3/2 · (1 +O(n−1)),

a3(n) =
−7 + 6

√
7

56
· 1√

π
· 32n · n−3/2 · (1 +O(n−1)).

2.5. Increasing Consecutive Patterns in Words. [This is joint work with Doron Zeilberger.]

Project link: http://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/icpw.html

The enumeration of words/permutations avoiding a classical pattern (as in Section 2.1.), or a

set of patterns, is in general quite difficult, and it is widely believed to be intractable for most

patterns–hence it would be nice to have other notions for which the enumeration is more feasible.

Such an analog was given, in 2003, by Elizalde and Noy, in a seminal paper [9], that introduced

the study of the enumeration of permutations avoiding consecutive patterns. A permutation

http://sites.math.rutgers.edu/~my237/One123
http://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/icpw.html
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π = π1 · · ·πn avoids a consecutive pattern σ = σ1 · · ·σk if none of the n− k+1 length-k consec-

utive subwords, πiπi+1 · · ·πi+k−1 of π, reduces to σ.

Algorithmic approaches to the enumeration of permutations avoiding sets of consecutive pat-

terns were given by Nakamura, Baxter, and Zeilberger [21, 2]. Our project may be viewed as

an extension, from permutations to words, of Nakamura’s paper, who was also inspired by the

Goulden-Jackson cluster method, but in a sense, is more straightforward, and closer in spirit to

the original Goulden-Jackson cluster method ([13], that is beautifully exposited (and extended!)

in [22]).

In this project we consider consecutive patterns of the form 1 · · · r, i.e. increasing consecutive

patterns, and show how to count words in 1m1 · · ·nmn avoiding the pattern 1 · · · r (Theorem

2.7, that is originally due to Ira Gessel [11], we discovered this theorem independently using

experimentation in Maple).

Theorem 2.7. (Gessel [11]) For n ≥ 1, r ≥ 2, the generating function for words in {1, 2, . . . , n}
avoiding the consecutive pattern 12 · · · r, let us call it Fr(x1, . . . , xn) is

Fr(x1, . . . , xn) =
1

1− e1 + er − er+1 + e2r − e2r+1 + e3r − e3r+1 + · · ·
.

This immediately implies:

Fundamental Recurrence (Zeilberger, 2018): Let fr(m) be the number of words in the al-

phabet {1, . . . , n} with m1 1’s, m2 2’s, . . . , mn n’s (where we abbreviate m = (m1, . . . ,mn))

that avoid the consecutive pattern 1 · · · r. Also let Vi be the set of 0− 1 vectors of length n with

i ones, then

fr(m) =
∑
v∈V1

fr(m− v) −
∑
v∈Vr

fr(m− v)

+
∑

v∈Vr+1

fr(m− v) −
∑
v∈V2r

fr(m− v)

+
∑

v∈V2r+1

fr(m− v) −
∑
v∈V3r

fr(m− v)

+
∑

v∈V3r+1

fr(m− v) −
∑
v∈V4r

fr(m− v) + · · · .

Using this recurrence, we devised an algorithm to efficiently count words in 1s · · ·ns avoiding

the pattern 1 · · · r. Our implied algorithms are O(ns+1) and hence yield many more terms, and,

of course, new sequences for OEIS. I also provided a new proof of Theorem 2.7 by tweaking the

Goulden-Jackson cluster method. Using this proof, along with a little more effort, I generalized

Theorem 2.7 to counting words with a specified number of the pattern 12 · · · r (Theorem 2.9),

instead of just avoiding, that is, having zero occurrence of the pattern of interest.
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Definition 2.8. For any integer k ≥ 1 and r ≥ 2, P (r)
k (t) is defined as follows.

If k < r, then it is 0. If k = r then it is t− 1, and if k > r then

P
(r)
k (t) = (t− 1)

r−1∑
i=1

P
(r)
k−i(t) .

Theorem 2.9 (Yang, 2018). For k ≥ 1, r ≥ 2, the generating function of gr(m; t), let us call it

Gr(x1, . . . , xn; t), is

Gr(x1, . . . , xn; t) =
1

1− e1 −
∑n

k=r P
(r)
k (t)ek

.

Maple Packages: This project is accompanied by three Maple packages available from the

webpage:

http://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/icpw.html .

These are

• ICPW.txt: For fast enumeration of sequences enumerating words avoiding increasing consecu-

tive patterns.

• ICPWt.txt: For fast computation of sequences of weight-enumerators for words according to

the number of increasing consecutive patterns (t = 0 reduces to the former case).

• GJpats.txt: For conjecturing generating functions (that still have to be proved by humans).

This page also has links to numerous input and output files. The input files can be modified to

generate more data, if desired.
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