Relaxed Partitions

Mingjia Yang
Rutgers University
April 6, 2019

Definition

- A partition of a positive integer n is a finite non-increasing sequence of positive integers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ whose sum is equal to n. For example, $(4,4,2,1)$ is a partition of 11 .

Definition

- A partition of a positive integer n is a finite non-increasing sequence of positive integers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ whose sum is equal to n. For example, $(4,4,2,1)$ is a partition of 11 .
- A relaxed partition of a positive integer n is a finite sequence of positive integers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\left(\lambda_{i}-\lambda_{i+1} \geq r\right)$ whose sum is equal to n. We also call this partition an r-partition of n. For example, $(3,4,2,1)$ a (-1)-partition of 10 . Partitons into distinct parts are 1-partitions.

Definition

- A partition of a positive integer n is a finite non-increasing sequence of positive integers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ whose sum is equal to n. For example, $(4,4,2,1)$ is a partition of 11 .
- A relaxed partition of a positive integer n is a finite sequence of positive integers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\left(\lambda_{i}-\lambda_{i+1} \geq r\right)$ whose sum is equal to n. We also call this partition an r-partition of n. For example, $(3,4,2,1)$ a (-1)-partition of 10 . Partitons into distinct parts are 1-partitions.

Relaxed partitions

Q: For a fixed r, how many r-partitions of integer n do we have? Noticing some reccurrence relations, we used Maple to program a procedure which we called $\operatorname{NPr}(n, r)$ and it returns the number of r-partitions of n for any n and r. Below are the first 20 terms of $N \operatorname{Pr}(n,-1)$: number of (-1)-partitions of n :

Relaxed partitions

Q: For a fixed r, how many r-partitions of integer n do we have? Noticing some reccurrence relations, we used Maple to program a procedure which we called $\operatorname{NPr}(n, r)$ and it returns the number of r-partitions of n for any n and r. Below are the first 20 terms of $N \operatorname{Pr}(n,-1)$: number of (-1)-partitions of n :

1,2,4,7,13,23,41,72,127,222,388,677,1179,2052,3569,6203,10778, 18722,32513,56455

Relaxed partitions

Q: For a fixed r, how many r-partitions of integer n do we have? Noticing some reccurrence relations, we used Maple to program a procedure which we called $\operatorname{NPr}(n, r)$ and it returns the number of r-partitions of n for any n and r. Below are the first 20 terms of $N \operatorname{Pr}(n,-1)$: number of (-1)-partitions of n :

1,2,4,7,13,23,41,72,127,222,388,677,1179,2052,3569,6203,10778, 18722,32513,56455

Now, can we find a generating function for a given r ? The answer turned out to be yes! We typed the above sequence produced by $\operatorname{NPr}(n,-1)$ into the OEIS, we found that its generating function seemed to be the reciprocal of

$$
\sum_{k=0}^{\infty} \frac{(-1)^{k} q^{k^{2}}}{(q, q)_{k}}
$$

Proof using bijection and generating functions

Since there is no proof for this formula provided in the OEIS and we could not find it elsewhere, we attempted to prove it by ourselves, and succeeded.

Theorem 1 [Zeilberger, 2018]

$$
\sum_{k=0}^{\infty} \frac{(-1)^{k} q^{k^{2}}}{(q, q)_{k}} \sum_{n=0}^{\infty} N \operatorname{Pr}(n,-1) q^{n}=1
$$

Proof using bijection and generating functions

Since there is no proof for this formula provided in the OEIS and we could not find it elsewhere, we attempted to prove it by ourselves, and succeeded.

Theorem 1 [Zeilberger, 2018]

$$
\sum_{k=0}^{\infty} \frac{(-1)^{k} q^{k^{2}}}{(q, q)_{k}} \sum_{n=0}^{\infty} N \operatorname{Pr}(n,-1) q^{n}=1
$$

- Observation: the first sum is $\sum_{L 1}(-1)^{k} q^{s u m(L 1)}$ where $L 1$ is a partition with parts of difference at least 2 and k is the number of parts of L1.

Proof using bijection and generating functions

Since there is no proof for this formula provided in the OEIS and we could not find it elsewhere, we attempted to prove it by ourselves, and succeeded.

Theorem 1 [Zeilberger, 2018]

$$
\sum_{k=0}^{\infty} \frac{(-1)^{k} q^{k^{2}}}{(q, q)_{k}} \sum_{n=0}^{\infty} N \operatorname{Pr}(n,-1) q^{n}=1
$$

- Observation: the first sum is $\sum_{L 1}(-1)^{k} q^{s u m(L 1)}$ where $L 1$ is a partition with parts of difference at least 2 and k is the number of parts of L1.
- The second sum is equal to $\sum_{L 2} q^{\text {sum(} L 2)}$ where $L 2$ is a (-1)-partition.

Proof using bijection and generating functions

- Consider the pair (L1, L2) where L1 is a partition with parts of difference at least 2 and $L 2$ is a (-1)-partition.

Proof using bijection and generating functions

- Consider the pair (L1, L2) where L1 is a partition with parts of difference at least 2 and $L 2$ is a (-1)-partition.
- Define the weight of the pair (L1, L2) to be $(-1)^{k} q^{\text {sum }(L 1)+\operatorname{sum}(L 2)}$

Proof using bijection and generating functions

- Consider the pair (L1, L2) where L1 is a partition with parts of difference at least 2 and $L 2$ is a (-1)-partition.
- Define the weight of the pair (L1, L2) to be $(-1)^{k} q^{\text {sum }(L 1)+\operatorname{sum}(L 2)}$
- Now take the weight of the whole set $S:=\{(L 1, L 2)\}$ for all possible L1 and L2 by adding up the weight:

$$
\sum_{(L 1, L 2) \in S}(-1)^{k} q^{\operatorname{sum}(L 1)+\operatorname{sum}(L 2)}
$$

Proof using bijection and generating functions

- Consider the pair (L1, L2) where L1 is a partition with parts of difference at least 2 and $L 2$ is a (-1)-partition.
- Define the weight of the pair (L1, L2) to be $(-1)^{k} q^{\text {sum }(L 1)+\operatorname{sum}(L 2)}$
- Now take the weight of the whole set $S:=\{(L 1, L 2)\}$ for all possible L1 and L2 by adding up the weight:

$$
\sum_{(L 1, L 2) \in S}(-1)^{k} q^{\operatorname{sum}(L 1)+\operatorname{sum}(L 2)}
$$

- On one hand, the total weight should equal the lefthand of Theorem 1, that is:

$$
\sum_{L 1, L 2) \in S}(-1)^{k} q^{\operatorname{sum}(L 1)+\operatorname{sum}(L 2)}=\sum_{L 1}(-1)^{k} q^{\operatorname{sum}(L 1)} \sum_{L 2} q^{\operatorname{sum}(L 2)}
$$

Proof using bijection and generating functions

- On the other hand, the total weight should equal to 1 , which is the weight of a pair of empty partitions (,) (Note $(-1)^{0} q^{0} q^{0}=1$. Why?

Proof using bijection and generating functions

- On the other hand, the total weight should equal to 1 , which is the weight of a pair of empty partitions (,) (Note $(-1)^{0} q^{0} q^{0}=1$. Why?

This is because we can build a bijection between $\mathrm{S}=\{(\mathrm{L} 1, \mathrm{~L} 2)\}$ with itself such that if ($\mathrm{L} 1, \mathrm{~L} 2$) is mapped to ($\mathrm{L} 1^{\prime}, \mathrm{L} 2^{\prime}$) under this bijection, then weight (L1,L2) =-weight(L1', L2'). Also, $(\mathrm{L} 1, \mathrm{~L} 2)$ is mapped to itself if and only if $(\mathrm{L} 1, \mathrm{~L} 2)=($,$) . In this$ case weight $(\mathrm{L} 1, \mathrm{~L} 2)=1$. Therefore, we can pair up the elements in S so that their weight cancel each other except for the stand alone element (,). Thus weight $(S)=1$.

The bijection and generalization

The bijection: let a be the first part of the partition L1 and b be the first part of the partition L2. If $a \geq b-1$ then move a from L1 to the first row of L2, otherwise, move b from L 2 to the first row of L1. (If both L1 and L2 are empty then we do nothing.) For example, if the original pair (L1,L2) is $\{[6,4,2],[3,4,3,4]\}$, then it becomes $\{[4,2],[6,3,4,3,4]\}$. Clearly, under this bijection the number of parts of L 1 either increase by 1 or decrease by 1 , so weight $(\mathrm{L} 1, \mathrm{~L} 2)=-$ weight(L1',L2'). This finishes our proof.

Relaxed partitions with first part=M and exactly N parts

Theorem 2 [Y, 2018] (Generalization of Theorem 1)

Given a negative integer r, the generating function for the number of r-partitions of n is the reciprocal of

$$
\sum_{k=0}^{\infty} \frac{(-1)^{k} q^{k(2+(1-r)(k-1)) / 2}}{(q, q)_{k}}
$$

Since we have found a single-sum formula for the generating function for the number of r-partitions of n, let us move on.

Relaxed partitions with first part=M and exactly N parts

Theorem 2 [Y, 2018] (Generalization of Theorem 1)

Given a negative integer r, the generating function for the number of r-partitions of n is the reciprocal of

$$
\sum_{k=0}^{\infty} \frac{(-1)^{k} q^{k(2+(1-r)(k-1)) / 2}}{(q, q)_{k}}
$$

Since we have found a single-sum formula for the generating function for the number of r-partitions of n, let us move on.

What if we restrict the first part to be M and the number of parts to be exactly N ? Let us call this generating function $F(M, N, r, q)$.

Reccurrence Relation

It is not hard to come up with a recurrence relation for $F(M, N, r, q)$:

$$
F(M, N, r, q)=q^{M} \sum_{M_{1}=1}^{M-r} F\left(M_{1}, N-1, r, q\right)
$$

Conjecture and proof using Maple

Knowing the reccurence relation, we programmed in Maple and found the following:

Typing $[\operatorname{seq}(\mathbf{F}(\mathbf{M 1}, \mathbf{1},-\mathbf{1}, \mathbf{1}), \mathbf{M 1}=\mathbf{1} . .20)]$; yields

$$
[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
$$

To guess a polynomial for this sequence, type: GuessPol([seq(F(M1, 1, -1, 1), M1 = 1..20)], M, 1);
Not surprisingly, it yields the constant polynomial 1.

Conjecture and proof using Maple

Knowing the reccurence relation, we programmed in Maple and found the following:

Typing $[\operatorname{seq}(\mathbf{F}(\mathbf{M 1}, \mathbf{1},-\mathbf{1}, \mathbf{1}), \mathbf{M 1}=\mathbf{1} . .20)]$; yields

$$
[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
$$

To guess a polynomial for this sequence, type:
GuessPol([seq(F(M1, 1, -1, 1), M1 = 1..20)], M, 1);
Not surprisingly, it yields the constant polynomial 1.
Now try $N=2$. Typing $[\mathbf{s e q}(\mathbf{F}(\mathbf{M 1}, \mathbf{2},-\mathbf{1}, \mathbf{1}), \mathbf{M} \mathbf{1}=\mathbf{1 . . 2 0})]$; yields

$$
[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21]
$$

GuessPol([seq(F(M1, 2, -1, 1), M1 = 1..20)], M, 1); yields

$$
M+1
$$

Conjecture and proof using Maple

Also not a surpise. Moving right along,

Conjecture and proof using Maple

Also not a surpise. Moving right along,
GuessPol([seq(F(M1, 3, -1, 1), M1 = 1..20)], M, 1); yields

$$
\frac{(M+4)(M+1)}{2}
$$

Conjecture and proof using Maple

Also not a surpise. Moving right along,
GuessPol([seq(F(M1, 3, -1, 1), M1 = 1..20)], M, 1); yields

$$
\frac{(M+4)(M+1)}{2}
$$

GuessPol([seq(F(M1, 4, -1, 1), M1 = 1..20)], M, 1); yields

$$
\frac{(M+6)(M+5)(M+1)}{6}
$$

Conjecture and proof using Maple

Also not a surpise. Moving right along,
GuessPol([seq(F(M1, 3, -1, 1), M1 = 1..20)], M, 1); yields

$$
\frac{(M+4)(M+1)}{2}
$$

GuessPol([seq(F(M1, 4, -1, 1), M1 = 1..20)], M, 1); yields

$$
\frac{(M+6)(M+5)(M+1)}{6}
$$

GuessPol([seq(F(M1,5,-1, 1), M1 = 1..20)], M, 1); yields

$$
\frac{(M+8)(M+7)(M+6)(M+1)}{24}
$$

Conjecture and proof using Maple

Also not a surpise. Moving right along,
GuessPol([seq(F(M1, 3, -1, 1), M1 = 1..20)], M, 1); yields

$$
\frac{(M+4)(M+1)}{2}
$$

GuessPol $([\operatorname{seq}(\mathbf{F}(\mathbf{M 1} 1,4,-\mathbf{1}, \mathbf{1}), \mathbf{M 1}=\mathbf{1 . . 2 0})], \mathbf{M}, \mathbf{1})$; yields

$$
\frac{(M+6)(M+5)(M+1)}{6}
$$

GuessPol([seq(F(M1,5,-1,1), M1 = 1..20)], M, 1); yields

$$
\frac{(M+8)(M+7)(M+6)(M+1)}{24}
$$

GuessPol([seq(F(M1, 6, -1, 1), M1 = 1..20)], M, 1); yields

$$
\frac{(10+M)(9+M)(8+M)(7+M)(M+1)}{120}
$$

Conjecture and proof using Maple

Without much effort, one can conjecture the following:

$$
F(M, N,-1,1)=\frac{(M+1)(M+2 N-2)!}{(N-1)!(M+N)!}
$$

Conjecture and proof using Maple

Without much effort, one can conjecture the following:

$$
F(M, N,-1,1)=\frac{(M+1)(M+2 N-2)!}{(N-1)!(M+N)!}
$$

With similar experimentation with $r=-2$, one can conjecture that

$$
F(M, N,-2,1)=\frac{(M+2)(M+3 N-2)!}{(N-1)!(M+2 N)!}
$$

Conjecture and proof using Maple

Without much effort, one can conjecture the following:

$$
F(M, N,-1,1)=\frac{(M+1)(M+2 N-2)!}{(N-1)!(M+N)!}
$$

With similar experimentation with $r=-2$, one can conjecture that

$$
F(M, N,-2,1)=\frac{(M+2)(M+3 N-2)!}{(N-1)!(M+2 N)!}
$$

Comparing these two guesses, one can easily conjecture the formula for a general r :

$$
F(M, N, r, 1)=\frac{(M-r)(M+(1-r) N-2)!}{(N-1)!(M-r N)!} .
$$

Conjecture and proof using Maple

Now, how do we prove this conjecture?

Conjecture and proof using Maple

Now, how do we prove this conjecture?
Recall that we programmed $\mathbf{F}(\mathbf{M}, \mathbf{N}, \mathbf{r}, \mathbf{q})$ using the recurrence relation

$$
F(M, N, r, q)=q^{M} \sum_{M_{1}=1}^{M-r} F\left(M_{1}, N-1, r, q\right)
$$

and the initial condition $F(M, 1, r, q)=q^{M}$. Note that $F(M, N, r, q)$ can be fully defind by this information. In other words, if we have found a formula that satisfies this recurrence relation and initial condition, then it is the formula for $F(M, N, r, q)$. This also applies to our current case when $q=1$.

Conjecture and proof using Maple

Now, how do we prove this conjecture?
Recall that we programmed $\mathbf{F}(\mathbf{M}, \mathbf{N}, \mathbf{r}, \mathbf{q})$ using the recurrence relation

$$
F(M, N, r, q)=q^{M} \sum_{M_{1}=1}^{M-r} F\left(M_{1}, N-1, r, q\right)
$$

and the initial condition $F(M, 1, r, q)=q^{M}$. Note that $F(M, N, r, q)$ can be fully defind by this information. In other words, if we have found a formula that satisfies this recurrence relation and initial condition, then it is the formula for $F(M, N, r, q)$. This also applies to our current case when $q=1$.

Therefore we used Maple to verify both this equation and the intial condition are satisfied. So our conjectured formula $F(M, N, r, 1)$ was proved.

Conjecture and proof using Maple

Theorem 3 [Y, 2018]

$$
\begin{aligned}
& F(M, N, r, 1)=\frac{(M-r)(M+(1-r) N-2)!}{(N-1)!(M-r N)!} \\
= & \binom{M+(1-r) N-2}{N-1}+r\binom{M+(1-r) N-2}{N-2}
\end{aligned}
$$

Conjecture and proof using Maple

Theorem 3 [Y, 2018]

$$
\begin{aligned}
& F(M, N, r, 1)=\frac{(M-r)(M+(1-r) N-2)!}{(N-1)!(M-r N)!} \\
= & \binom{M+(1-r) N-2}{N-1}+r\binom{M+(1-r) N-2}{N-2}
\end{aligned}
$$

Now the next step is to try to conjecture a formula for $F(M, N, r, q)$.

Can we find a pattern for $F(M, N, r, q)$?

This turns out to be not so easy. Below are the guesses for $r=-1$ and $N<=5$:
qGuessPol([seq(F(M1, 1, -1, q), M1 = 1..20)], M, q, 1); yields q^{M}

Can we find a pattern for $F(M, N, r, q)$?

This turns out to be not so easy. Below are the guesses for $r=-1$ and $N<=5$:
qGuessPol([seq(F(M1, 1, -1, q), M1 = 1..20)], M, q, 1); yields

$$
q^{M}
$$

$$
\frac{q^{M+1}\left(q^{M+1}-1\right)}{(q-1)}
$$

Can we find a pattern for $F(M, N, r, q)$?

This turns out to be not so easy. Below are the guesses for $r=-1$ and $N<=5$:
$\mathbf{q G u e s s P o l}([\operatorname{seq}(\mathbf{F}(\mathbf{M 1}, \mathbf{1},-\mathbf{1}, \mathbf{q}), \mathbf{M 1}=\mathbf{1 . . 2 0)] , \mathbf { M } , \mathbf { q } , \mathbf { 1 }) \text { ; yields } .}$

$$
q^{M}
$$

$\mathbf{q G u e s s P o l}([\operatorname{seq}(\mathbf{F}(\mathbf{M 1}, \mathbf{2},-\mathbf{1}, \mathbf{q}), \mathrm{M} 1=1 . .20)], \mathrm{M}, \mathbf{q}, \mathbf{1})$; yields

$$
\frac{q^{M+1}\left(q^{M+1}-1\right)}{(q-1)}
$$

$\mathbf{q G u e s s P o l}([\operatorname{seq}(\mathbf{F}(\mathbf{M 1}, \mathbf{3},-\mathbf{1}, \mathbf{q}), \mathbf{M 1}=\mathbf{1 . 2 0})], \mathbf{M}, \mathbf{q}, \mathbf{1})$; yields

$$
\frac{q^{M+2}\left(q^{M+3}+q^{2}-q-1\right)\left(q^{M+1}-1\right)}{(q-1)^{2}(q+1)}
$$

Can we find a pattern for $F(M, N, r, q)$?

$\mathbf{q G u e s s P o l}([\operatorname{seq}(\mathbf{F}(\mathbf{M 1}, \mathbf{4},-\mathbf{1}, \mathbf{q}), \mathbf{M 1}=\mathbf{1 . 2 0})], \mathbf{M}, \mathbf{q}, \mathbf{1})$; yields

$$
\frac{q^{M+3}\left(q^{2 M+8}+q^{M+7}-q^{M+5}-q^{M+4}-q^{M+3}+q^{6}-2 q^{4}-q^{3}+2 q+1\right)\left(q^{M+1}-1\right)}{(q-1)^{3}(q+1)\left(q^{2}+q+1\right)}
$$

Can we find a pattern for $F(M, N, r, q)$?

$\mathbf{q G u e s s P o l}([\operatorname{seq}(\mathbf{F}(\mathbf{M 1}, \mathbf{4},-\mathbf{1}, \mathbf{q}), \mathbf{M 1}=\mathbf{1 . 2 0})], \mathbf{M}, \mathbf{q}, \mathbf{1})$; yields

$$
\frac{q^{M+3}\left(q^{2 M+8}+q^{M+7}-q^{M+5}-q^{M+4}-q^{M+3}+q^{6}-2 q^{4}-q^{3}+2 q+1\right)\left(q^{M+1}-1\right)}{(q-1)^{3}(q+1)\left(q^{2}+q+1\right)}
$$

$\mathbf{q G u e s s P o l}([\operatorname{seq}(\mathbf{F}(\mathbf{M 1}, \mathbf{5},-\mathbf{1}, \mathbf{q}), \mathbf{M 1}=\mathbf{1 . 2 0})], \mathbf{M}, \mathbf{q}, \mathbf{1})$; yields

$$
\frac{q^{M+4}\left(q^{M+5}+q^{4}-q-1\right)\left(q^{2 M+10}-q^{M+4}-q^{M+3}+q^{8}-q^{5}-2 q^{4}+2 q+1\right)\left(q^{M+1}-1\right)}{(q-1)^{4}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)}
$$

Can we find a pattern for $F(M, N, r, q)$?

$\mathbf{q G u e s s P o l}([\operatorname{seq}(\mathbf{F}(\mathbf{M 1}, \mathbf{4},-\mathbf{1}, \mathbf{q}), \mathbf{M 1}=\mathbf{1 . . 2 0)] , \mathbf { M } , \mathbf { q } , \mathbf { 1 }) \text { ; yields } .}$

$$
\frac{q^{M+3}\left(q^{2 M+8}+q^{M+7}-q^{M+5}-q^{M+4}-q^{M+3}+q^{6}-2 q^{4}-q^{3}+2 q+1\right)\left(q^{M+1}-1\right)}{(q-1)^{3}(q+1)\left(q^{2}+q+1\right)}
$$

$\mathbf{q G u e s s P o l}([\operatorname{seq}(\mathbf{F}(\mathbf{M 1}, \mathbf{5},-\mathbf{1}, \mathbf{q}), \mathbf{M 1}=\mathbf{1 . 2 0})], \mathbf{M}, \mathbf{q}, \mathbf{1})$; yields

$$
\frac{q^{M+4}\left(q^{M+5}+q^{4}-q-1\right)\left(q^{2 M+10}-q^{M+4}-q^{M+3}+q^{8}-q^{5}-2 q^{4}+2 q+1\right)\left(q^{M+1}-1\right)}{(q-1)^{4}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)}
$$

We can again prove that they are true by using the recurrence relation. Note that, although the formulas above look like rational functions, they are in fact polynomials. It would be very nice to find a general pattern for $F(M, N, r, q)$.

Some observations

Drew Sills's Observation: $F(M, N,-1, q)$ has denominator $(q ; q)_{N}$ and a numerator of degree $N(M+N-1)$. Thus it is plausible that the numerator is a (possibly alternating) sum of polynomials that are a power of q times a Gaussian polynomial of the form $G(M, N):=G P(2 N+M-1, N)$.

$$
G P(m, r):=\frac{\left(q^{m-r+1}, q\right)_{r}}{(q, q)_{r}}
$$

So far we have not made much progress in this, but we noticed an interesting pattern.

Some observations

$$
\begin{aligned}
& \left\{\begin{array}{l}
G(2,1)=q^{2}+q+1 \\
F(2,2,-1, q)=q^{5}+q^{4}+q^{3}
\end{array}\right. \\
& \left\{\begin{array}{l}
G(2,2)=q^{6}+q^{5}+2 q^{4}+2 q^{3}+2 q^{2}+q+1 \\
F(2,3,-1, q)=q^{9}+q^{8}+2 q^{7}+2 q^{6}+2 q^{5}+q^{4}
\end{array}\right. \\
& \left\{\begin{array}{c}
G(2,3)=\frac{q^{12}+q^{11}+2 q^{10}+3 q^{9}+4 q^{8}+4 q^{7}+5 q^{6}+4 q^{5}}{+3 q^{3}+2 q^{2}+q+1}+4 q^{4} \\
F(2,4,-1, q)=\frac{q^{14}+q^{13}+2 q^{12}+3 q^{11}+4 q^{10}+4 q^{9}+5 q^{8}}{\underline{+4 q^{7}+3 q^{6}+q^{5}}}
\end{array}\right.
\end{aligned}
$$

Connection to other combinatorial objects

- Interestingly, there is a direct connection between
$F(M, N,-1,1)$ and Catalan's triangle (thanks again to OEIS to help us find such a connection). Catalan's triangle is a number triangle whose entries $C(n, k)$ is the number of strings consisting of $n X$'s and $k Y$'s such that no initial segment of the string has more Y 's than X 's.

$$
F(M, N,-1,1)=C(M+N-1, N-1) .
$$

Connection to other combinatorial objects

Example: $M=1, N=3$

$(1,1,1)$

$(1,1,2)$

$(1,2,2)$

$(1,2,3)$

Connection to other combinatorial objects

- There also seems to be a bit of connection between the standard Young Tableau and $F(M, N,-1,1)$. For example, typing the sequence $[\operatorname{seq}(F(5, N,-1,1), N=1 . .20]$ into OEIS, we will found it can also represent the number of standard Young Tableau of shape $(N+3, N-2)$. (A003517)
- We conjecture that $F(M, N,-1,1)$ is equal to the number of standard Young Tableau of shape ($N+\lceil M / 2\rceil, N-\lfloor M / 2\rfloor$).

Thank you!

