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1. Introduction

While I am broadly interested in all kinds of mathematics, my graduate study and research

focus is in combinatorics. In particular, I study patterns in permutations and words, and more

recently, integer partitions. Side note: my favorite area of math in high school is geometry (I

studied in China before college) and my undergraduate favorite area is abstract algebra. But at

this moment, it is experimental math and combinatorics! I find it a lot of fun to discover patterns

using computers and then try to prove them by various means (or leave them as conjectures).

Below I will summarize the main projects that I have worked on during my graduate school years

and possibilities for future work. Many of them are accessible to undergraduate students

and I will be happy to collaborate with students in my research. The first three projects

(2.1.-2.3.) are especially of current interest. (For a more detailed research statement please see

my website: http://sites.math.rutgers.edu/~my237/.)

2. Projects

2.1. Systematic counting of restricted partitions. [This is joint work with Doron Zeil-

berger]

Project link: http://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/rpr.html

One of the cornerstones of enumerative combinatorics (and number theory!) are integer par-

titions. A partition of a non-negative integer n is a list of integers (λ1, . . . , λk) such that

λ1 ≥ · · · ≥ λk ≥ 1 and λ1 + · · ·+ λk = n.

First, we give a simple definition of a “partition-pattern”, or “pattern” for short.

Definition 2.1. A partition-pattern (pattern for short) is a list a = [a1, . . . , ar] of length r ≥ 1

of non-negative integers. A partition λ = (λ1, . . . , λk) contains the pattern a = [a1, . . . , ar] if

there exists 1 ≤ i ≤ k − r such that

λi − λi+1 = a1 , λi+1 − λi+2 = a2 , . . . λi+r−1 − λi+r = ar .

A partition avoids the pattern if it does not contain the pattern. A partition avoids the set of

patterns A, if it avoids every pattern in A. For example, partitions whose adjacent parts differ

by at least 2 is equivalent to partitions that avoid {[0], [1]}.

Goal: devise an efficient algorithm, that inputs an arbitrary set of patterns, P , and an arbi-

trary positive integer N , and outputs the first N terms of the sequence enumerating partitions
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of n avoiding the set of patterns P .

We used two approaches to attack this problem. One approach is to adapt the celebrated

Goulden-Jackson ([2], [7]) method to this new context. The Goulden-Jackson method tradition-

ally only deals with words. I was able to extend this method to partitions. This approach is of

considerable theoretical interest, but it turned out to be less efficient than a more straightfor-

ward (which we call “positive”) approach, where the basic idea is to cut off the largest part in the

partition and get a system of recurrences and use dynamical programming. This algorithm can

be made quadratic in time and memory. However, we were not content with just stopping here,

so we went on to generalize this algorithm in order to deal with partitions with more specific

restrictions, which also allowed us to efficiently search for new partition identities. This leads to

the birth of the second project, which is described in Section 2.2.

Future work:

1. Make the algorithm in the “positive” approach quadratic in time and memory. This is achiev-

able through substitution, subtraction and some other algebraic manipulations of recurrence

relations. It shouldn’t be too hard and is accessible to undergraduate students.

2. Simplify the algorithm in the “negative” approach.

2.2. Searching for partition identities. [Joint work with Matthew Russell]

Talk slides: https://sites.math.rutgers.edu/~zeilberg/expmath/MingjiaY19.pdf

Even though the previous project enables us to enumerate partitions avoiding an arbitrary (finite)

set of patterns, many partition theoretic sum-sides of partition identities require more specific

restrictions. One example (a Russell-Kanade conjecture, see [5]) is the following:

(a) No consecutive parts allowed.

(b) Odd parts do not repeat.

(c) Even parts appear at most twice.

(d) If a part 2j appears twice then 2j ± 3, 2j ± 2 are forbidden to appear at all.

(e) 2+2 is not allowed as a sub-partition.

In order to generalize the efficient “positive” approach described at the end of 2.1., we introduce

some new notions and formulate these partitions in a different way, which turns out to be very

flexible and also easy to feed to a computer. Here are the three major parameters that we use:

https://sites.math.rutgers.edu/~zeilberg/expmath/MingjiaY19.pdf
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A: the set of patterns to avoid “globally”

Mod: the list of patterns to avoid according to congruence conditions of the largest part of a

sub-partition (for details please see http://sites.math.rutgers.edu/%7Emy237/Pos_Ext)

IC: the list of sub-partitions to avoid (we call this “initial conditions”)

Let us look at the Kanade-Russell conjecture in light of this notation: no consecutive parts al-

lowed translates to the global condition: A = {[1]}. Odd parts do not repeat, even parts appear

at most twice, along with part (d) translate to Mod = [{[0, 0], [0, 3], [0, 2], [2, 0]}, {[0], [3, 0]}].
Part (e), that is, 2+2 is not allowed as a sub-partition translates to IC=[[2,2]].

Using these new notations I came up with an algorithm that enables very efficient computation.

Let GP (m,n,A,Mod,B, IC) be the number of partitions of n, with largest part m, and the

restrictions A, Mod, IC described above, and B and B′′ are beginning restrictions. At the core

of the algorithm is the recurrence relation:

GP (m,n,A,Mod,B, IC) =
∑

1≤m′≤m
[m−m′] 6∈A∪B′∪Mod[i+1]

GP (m′, n−m,A,Mod,B′′, IC) .

With this algorithm and making use of Frank Garvan’s q-series Maple package, we are currently

conducting the search over various parameter restrictions, with the help of Amarel cluster

computing https://oarc.rutgers.edu/amarel/. We have already found many seemingly

new Rogers-Ramanujan type identities, and has generalized one of them to an infinite family.

Future work (all of them are appropriate for collaboration with undergraduate or

master’s students) :

1. Put more variations on the parameters to enlarge our search space.

2. Currently our approach only deals with conditions on contiguous sub-partitions. It will be nice

to develop a general frame work/an efficient way to search for identities that avoid sub-partitions

that are not necessarily contiguous.

3. During my talk at 2019 AMS Fall Southeastern Sectional Meeting, Drew Sills (see http://

home.dimacs.rutgers.edu/~asills/ and Ali Uncu (see https://risc.jku.at/m/ali-uncu/)

offered some great suggestions to make our algorithm more flexible, including allowing the ini-

tial conditions to contradict the global conditions and allowing Nandi-type conditions. We are

currently working on implementing these.

http://sites.math.rutgers.edu/%7Emy237/Pos_Ext
https://oarc.rutgers.edu/amarel/
http://home.dimacs.rutgers.edu/~asills/
http://home.dimacs.rutgers.edu/~asills/
https://risc.jku.at/m/ali-uncu/
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2.3. Relaxed Partitions.

Project link: http://sites.math.rutgers.edu/~my237/RP

Talk slides: http://sites.math.rutgers.edu/~my237/Auburn.pdf

This is a project that can be extended in many directions. I believe this project and

its various related projects could be a lot of fun for undergraduate students.

In this project, we took a road less traveled and studied an object which we call “relaxed parti-

tions”, or more specifically, r-partitions with r to be specified. Unlike the traditional partitions

where we require λi−λi+1 ≥ 0, for r-partitions we require λi−λi+1 ≥ r where r can be negative.

For example, (2, 3, 1, 1) is a (−1)-partition of 7.

Just as with traditional partitions, there are many questions one could ask about r-partitions.

Perhaps one of the first questions to ask is: “for a fixed r, how many r-partitions of the integer

n do we have?” Using an easy recurrence relation, I programmed NPr(n, r), which answers this

question for specific n and r. But can we find a generating function for a given r? The answer

turned out to be yes! And there is a nice closed form for it. By typing in a sequence of entries

produced by NPr(n,−1) into the OEIS, we found that it is the reciprocal of∑∞
k=0(−1)kqk

2∏k
i=1 (1− qi)

.

Recognizing this is the generating function for the “weighted” (with weight (−1)k) number of

partitions (traditional) of integer n into parts with difference at least 2, Doron Zeilberger (2018)

provided a short and elegant bijective proof for it. I generalized this to general r:

Theorem 2.2. (Yang, 2018) The generating function for the number of r-partitions of n is the

reciprocal of ∑∞
k=0(−1)kqk(2+(1−r)(k−1))/2∏k

i=1 (1− qi)
,

which is the “weighted” number of partitions of integer n into parts with difference at least (−r+1).

Since this question was answered, we turned our focus to restricted r-partitions such that the

first part and the number of the parts are fixed. Let ar(M,N, n) be the number of r partitions

with the first part equal to M and exactly N parts. To go with the notation in our Maple

package rPar, let Ftr(M,N, r, q) be the generating function for ar(M,N, n). Using a simple

recurrence relation Ftr(M,N, r, q) satisfies, I was able to program it in Maple and happily used

Maple to conjecture (and prove!) the closed form for the case q = 1 (i.e., the total number of

r partitions with the first part equal to M and exactly N parts). It is:

http://sites.math.rutgers.edu/~my237/RP
http://sites.math.rutgers.edu/~my237/Auburn.pdf
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Theorem 2.3. (Yang, 2018)

Ftr(M,N, r, 1) =
(M − r)(M + (1− r)N − 2)!

(N − 1)!(M − rN)

=

(
M + (1− r)N − 2

N − 1

)
+ r

(
M + (1− r)N − 2

N − 2

)

Although I was not yet able to find a closed form formula for the generating function Ftr(M,N, r, q),

I found out (using Maple) some initial terms (according to N) of it. Below are the first four

terms produced by our Maple program, which can be proven easily using a recurrence relation.

Note even though they look like rational functions, they are in fact polynomials.

qGuessPol([seq(F(M1,1,−1,q),M1 = 1..20)],M,q,1); yields

qM

qGuessPol([seq(F(M1,2,−1,q),M1 = 1..20)],M,q,1); yields

qM+1(qM+1 − 1)

(q − 1)

qGuessPol([seq(F(M1,3,−1,q),M1 = 1..20)],M,q,1); yields

qM+2(qM+3 + q2 − q − 1)(qM+1 − 1)

(q − 1)2(q + 1)

qGuessPol([seq(F(M1,4,−1,q),M1 = 1..20)],M,q,1); yields

qM+3(q2M+8 + qM+7 − qM+5 − qM+4 − qM+3 + q6 − 2q4 − q3 + 2q + 1)(qM+1 − 1)

(q − 1)3(q + 1)(q2 + q + 1)

Drew Sills, during his short visit to Rutgers and our brief meeting, observed that F (M,N,−1, q)
has denominator (q; q)N and a numerator of degree N(M + N − 1). He pointed out that it is

plausible the numerator is a (possibly alternating) sum of polynomials that are a power of q

times a Gaussian polynomial of the form G(M,N) := GP (2N +M − 1, N), where

GP (m, r) :=
(qm−r+1, q)r

(q, q)r
.

So far we have not made much progress in this, but this led me to discover an interesting pattern:{
G(2, 1) = q2 + q + 1

F (2, 2,−1, q) = q5 + q4 + q3

{
G(2, 2) = q6 + q5 + 2q4 + 2q3 + 2q2 + q + 1

F (2, 3,−1, q) = q9 + q8 + 2q7 + 2q6 + 2q5 + q4


G(2, 3) = q12 + q11 + 2q10 + 3q9 + 4q8 + 4q7 + 5q6 + 4q5 + 4q4

+3q3 + 2q2 + q + 1

F (2, 4,−1, q) = q14 + q13 + 2q12 + 3q11 + 4q10 + 4q9 + 5q8

+4q7 + 3q6 + q5
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Notice for each pair, the underlined parts have the same coefficients. This pattern continues in-

definitely for bigger M and N . This is an ongoing project to explore why this intriguing pattern

exists and if it can point us to discover a closed form for F (M,N,−1, q), or even F (M,N, r, q).

Connection to other combinatorial objects:

With the help of OEIS, I found a direct connection between F (M,N,−1, 1) and Catalan’s tri-

angle. Since F (M,N,−1, 1) = (M−r)(M+(1−r)N−2)!
(N−1)!(M−rN)! , it is clear that F (M,N,−1, 1) = C(M +

N − 1, N − 1). And there turned out to be a nice a geometric interpretation.

There also seems to be a bit of connection between the standard Young Tableau and F (M,N,−1, 1).
For example, typing the sequence [seq(F (5, N,−1, 1), N = 1..20] into OEIS, we will find it can

also represent the number of standard Young Tableau of shape (N + 3, N − 2). (A003517) If

we change the value of M, then we can find correspondence with other standard Young Tableau.

I conjecture that F (M,N,−1, 1) is equal to the number of standard Young Tableau of shape

(N + dM/2e, N − bM/2c). For general r, we haven’t found nice connections yet.

Future work: As mentioned earlier, it would be wonderful if we could discover why the in-

triguing pattern between the F and G exists. This may enable us to find a closed form for

F (M,N,−1, q), and perhaps give us insights for F (M,N, r, q). During my talk at 2019 AMS

Spring Southeastern Sectional Meeting, Tim Huber (see https://faculty.utrgv.edu/timothy.

huber/) mentioned that these generating functions’ approximation of the Gaussian polynomials

may indicate they count permutations by some statistic and may arise from a quotient of gener-

ating functions of a special form. This is still under exploration. It would also be nice if we can

find connection between F (M,N, r, 1) and other combinatorial objects. I am also interested in

exploring plane partitions and “fractional counting”, some initial Maple “playing-around” can be

found on http://sites.math.rutgers.edu/~my237/RP.

Below are two projects related to permutations and words, which are also interesting,

but less recent. I only list them here. For details, please see the long version of my

research statement on my website: http://sites.math.rutgers.edu/~my237/.

2.4. Increasing Consecutive Patterns in Words. (2018)

Project link: http://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/icpw.html

J. Algebr. Comb. (2019). https://link.springer.com/article/10.1007/s10801-018-0868-5

2.5. Enumeration of words that contain pattern 123 exactly once. (2017)

Project link: http://sites.math.rutgers.edu/~my237/One123

Ann. Comb. 23 (2019) 207–217. https://link.springer.com/article/10.1007/s00026-019-00416-z

https://faculty.utrgv.edu/timothy.huber/
https://faculty.utrgv.edu/timothy.huber/
http://sites.math.rutgers.edu/~my237/RP
http://sites.math.rutgers.edu/~my237/
http://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/icpw.html
https://link.springer.com/article/10.1007/s10801-018-0868-5
http://sites.math.rutgers.edu/~my237/One123
https://link.springer.com/article/10.1007/s00026-019-00416-z
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